优先发表
状态: , 更新:
机场泊位引导系统对提高机场安全性和运行效率有着重要作用,为了利用激光雷达精确获取飞机停泊位置,该文提出了一种基于深度学习的点云补全网络并通过点云配准的方式定位飞机中心坐标。首先,参考真实场景中飞机停泊过程进行仿真得到模拟激光雷达点云。接着对遮挡等原因造成残缺的模拟点云进行补全,恢复出完整结构。最后将补全后的点云与飞机模型点云配准,坐标转换后计算出飞机中心点在模拟激光雷达坐标系中的准确位置。实验表明,提出的点云补全网络能够完整地恢复出模拟点云中缺失部分,从而计算出模拟点云的飞机中心坐标,实现了对飞机泊位引导过程中飞机位置的精确检测。为了便于研究人员评估和使用,文中算法可通过https://www.scidb.cn/anonymous/UXZFZkFm 开源获取。
机场泊位引导系统对提高机场安全性和运行效率有着重要作用,为了利用激光雷达精确获取飞机停泊位置,该文提出了一种基于深度学习的点云补全网络并通过点云配准的方式定位飞机中心坐标。首先,参考真实场景中飞机停泊过程进行仿真得到模拟激光雷达点云。接着对遮挡等原因造成残缺的模拟点云进行补全,恢复出完整结构。最后将补全后的点云与飞机模型点云配准,坐标转换后计算出飞机中心点在模拟激光雷达坐标系中的准确位置。实验表明,提出的点云补全网络能够完整地恢复出模拟点云中缺失部分,从而计算出模拟点云的飞机中心坐标,实现了对飞机泊位引导过程中飞机位置的精确检测。为了便于研究人员评估和使用,文中算法可通过https://www.scidb.cn/anonymous/UXZFZkFm 开源获取。
状态: , 更新:
作物和土壤参数是表征作物生长状态、监测作物长势的重要基础。雷达遥感具有全天时、全天候、不受气象条件影响的观测能力,微波的穿透能力也对作物覆盖下土壤参数变化具有较强敏感性,在作物土壤参数反演中极具潜力。该文围绕微波散射理论下的作物土壤参数反演模型展开研究和综述。首先回顾了微波散射模型从理论模型发展为半经验模型的历程,明晰模型理论演变趋势与方法改进方向。然后,详细介绍了基于微波散射机理的作物参数、土壤参数以及作物土壤参数耦合的反演方法。最后,阐明模型不足,结合当下技术发展特点明确了未来发展的重点方向,以期为后续研究提供新思路。
作物和土壤参数是表征作物生长状态、监测作物长势的重要基础。雷达遥感具有全天时、全天候、不受气象条件影响的观测能力,微波的穿透能力也对作物覆盖下土壤参数变化具有较强敏感性,在作物土壤参数反演中极具潜力。该文围绕微波散射理论下的作物土壤参数反演模型展开研究和综述。首先回顾了微波散射模型从理论模型发展为半经验模型的历程,明晰模型理论演变趋势与方法改进方向。然后,详细介绍了基于微波散射机理的作物参数、土壤参数以及作物土壤参数耦合的反演方法。最后,阐明模型不足,结合当下技术发展特点明确了未来发展的重点方向,以期为后续研究提供新思路。
状态: , 更新:
无线通信设备在新兴场景的大量应用使得通信用频逐渐向更高频段扩展,进而导致其与雷达用频的重叠现象日益突出。雷达通信一体化凭借其联合信号处理能力和低功耗特性,被视为一种解决频谱拥挤问题的有效途径。相比于传统的天线阵列架构,全息超表面天线(HMA)通过嵌入紧密排列的超材料单元,可以灵活配置各单元的状态以调控频率响应,从而实现可控且高能效的波束成形,为雷达通信一体化系统提供了潜在可行选择。考虑一个基于全息超表面的雷达通信一体化系统,在杂波环境下进行目标感知的同时能够为多个单天线用户提供通信服务。接下来,该文在满足发射功率和HMA频率响应约束的前提下,构建了最大化通信频谱效率和雷达互信息加权和的问题,通过联合优化数字预编码器、HMA权重矩阵和接收滤波器,实现基于HMA的雷达通信一体化波束成形设计。为求解这一非凸优化问题,该文提出一种基于分式规划的交替优化算法。该算法首先利用分式规划技术将原始问题转化为更易于处理的子问题,然后通过拉格朗日对偶分解和流形优化等方法对子问题进行交替优化求解。仿真结果表明,HMA阵列架构的波束成形设计在通信频谱效率与雷达互信息性能间取得了灵活的平衡,并且其性能接近全数字阵列架构。
无线通信设备在新兴场景的大量应用使得通信用频逐渐向更高频段扩展,进而导致其与雷达用频的重叠现象日益突出。雷达通信一体化凭借其联合信号处理能力和低功耗特性,被视为一种解决频谱拥挤问题的有效途径。相比于传统的天线阵列架构,全息超表面天线(HMA)通过嵌入紧密排列的超材料单元,可以灵活配置各单元的状态以调控频率响应,从而实现可控且高能效的波束成形,为雷达通信一体化系统提供了潜在可行选择。考虑一个基于全息超表面的雷达通信一体化系统,在杂波环境下进行目标感知的同时能够为多个单天线用户提供通信服务。接下来,该文在满足发射功率和HMA频率响应约束的前提下,构建了最大化通信频谱效率和雷达互信息加权和的问题,通过联合优化数字预编码器、HMA权重矩阵和接收滤波器,实现基于HMA的雷达通信一体化波束成形设计。为求解这一非凸优化问题,该文提出一种基于分式规划的交替优化算法。该算法首先利用分式规划技术将原始问题转化为更易于处理的子问题,然后通过拉格朗日对偶分解和流形优化等方法对子问题进行交替优化求解。仿真结果表明,HMA阵列架构的波束成形设计在通信频谱效率与雷达互信息性能间取得了灵活的平衡,并且其性能接近全数字阵列架构。
状态: , 更新:
本文针对合成孔径雷达(SAR)成像多模式间分辨率和测绘带宽等参数设计的矛盾问题,提出了一种基于子带搬移拼接的FDA-SAR成像方法,可满足多模式SAR成像的不同分辨率需求。利用频率分集阵( FDA)雷达的多子带并发模式,设计了一种带宽可调控的雷达波形。详细推导了任意带宽合成信号的时频域表达式,实现了阵元方位时延和频带不一致差异补偿。分析了合成信号频谱分布关系对成像性能的影响,采用非均匀子带搬移的频谱合成方式,降低了峰值旁瓣电平,改善了成像性能。该文方法能够同时实现大观测场景粗分辨率成像和重点区域场景精细成像的信号级融合处理,仿真验证了所提方法的有效性。
本文针对合成孔径雷达(SAR)成像多模式间分辨率和测绘带宽等参数设计的矛盾问题,提出了一种基于子带搬移拼接的FDA-SAR成像方法,可满足多模式SAR成像的不同分辨率需求。利用频率分集阵( FDA)雷达的多子带并发模式,设计了一种带宽可调控的雷达波形。详细推导了任意带宽合成信号的时频域表达式,实现了阵元方位时延和频带不一致差异补偿。分析了合成信号频谱分布关系对成像性能的影响,采用非均匀子带搬移的频谱合成方式,降低了峰值旁瓣电平,改善了成像性能。该文方法能够同时实现大观测场景粗分辨率成像和重点区域场景精细成像的信号级融合处理,仿真验证了所提方法的有效性。
状态: , 更新:
太赫兹频段被认为可实现太比特每秒的通信速率并实现高精度感知,因此太赫兹通信感知一体化是未来无线通信系统的关键技术。该文聚焦于一种时延多普勒域波形——正交时延多普勒分路复用(ODDM)调制,提出了一种基于ODDM的太赫兹通信感知一体化传输方案。针对现有信号模型的局限性,该文推导了一种更为通用的离网ODDM调制输入/输出关系,突破了信道路径时延和多普勒频移必须为其分辨率整数倍的假设限制。针对ODDM符号检测问题,该文基于共轭梯度的时域信道均衡器优化计算复杂度,发现ODDM相比OFDM具有针对多普勒效应更高的鲁棒性。最后,该文设计了一种多目标感知估计算法,该算法能够在低复杂度下实现高精度估计,其多目标估计精度与克拉美罗下界相近。
太赫兹频段被认为可实现太比特每秒的通信速率并实现高精度感知,因此太赫兹通信感知一体化是未来无线通信系统的关键技术。该文聚焦于一种时延多普勒域波形——正交时延多普勒分路复用(ODDM)调制,提出了一种基于ODDM的太赫兹通信感知一体化传输方案。针对现有信号模型的局限性,该文推导了一种更为通用的离网ODDM调制输入/输出关系,突破了信道路径时延和多普勒频移必须为其分辨率整数倍的假设限制。针对ODDM符号检测问题,该文基于共轭梯度的时域信道均衡器优化计算复杂度,发现ODDM相比OFDM具有针对多普勒效应更高的鲁棒性。最后,该文设计了一种多目标感知估计算法,该算法能够在低复杂度下实现高精度估计,其多目标估计精度与克拉美罗下界相近。
状态: , 更新:
合成孔径雷达(SAR)海洋遥感仿真是面向海洋应用的SAR系统设计的重要分析工具,同时也可以为复杂海洋现象SAR图像的检测、识别提供训练样本,为海洋参数反演提供正演模型,因此在SAR海洋遥感的SAR系统设计和应用中扮演着非常重要的角色。海面的运动特性、时变特性、去相干特性使得SAR海洋遥感的仿真难度和计算量要远远大于陆地固定目标的仿真,如何在保证仿真精度的情况下提升仿真效率是实现SAR海洋成像高精度、高效率仿真的关键。该文介绍了动态海面SAR成像仿真的主要方法以及发展现状和主要问题,给出了动态海面SAR成像高精度仿真中若干关键问题的实现方法,该仿真方法在保证较高的逼真度情况下(典型工况下仿真SAR图像谱谱峰误差3%,谱宽误差4%),能在10分钟内完成4 m分辨率情况下400 km2场景的仿真。实现并介绍了动态海面SAR成像仿真在波浪谱反演、基于深度对消网络的海浪纹理抑制以及基于Wake2Wake网络的舰船尾迹检测方面的典型应用。这些应用案例一方面验证了该文给出的动态海面SAR成像高精度仿真的逼真度能够达到智能化仿真训练的要求,另一方面也说明了高精度仿真在SAR海洋图像智能化应用有很好的前景,可以成为解决SAR海洋遥感智能化应用中样本数据瓶颈的重要手段。
合成孔径雷达(SAR)海洋遥感仿真是面向海洋应用的SAR系统设计的重要分析工具,同时也可以为复杂海洋现象SAR图像的检测、识别提供训练样本,为海洋参数反演提供正演模型,因此在SAR海洋遥感的SAR系统设计和应用中扮演着非常重要的角色。海面的运动特性、时变特性、去相干特性使得SAR海洋遥感的仿真难度和计算量要远远大于陆地固定目标的仿真,如何在保证仿真精度的情况下提升仿真效率是实现SAR海洋成像高精度、高效率仿真的关键。该文介绍了动态海面SAR成像仿真的主要方法以及发展现状和主要问题,给出了动态海面SAR成像高精度仿真中若干关键问题的实现方法,该仿真方法在保证较高的逼真度情况下(典型工况下仿真SAR图像谱谱峰误差3%,谱宽误差4%),能在10分钟内完成4 m分辨率情况下400 km2场景的仿真。实现并介绍了动态海面SAR成像仿真在波浪谱反演、基于深度对消网络的海浪纹理抑制以及基于Wake2Wake网络的舰船尾迹检测方面的典型应用。这些应用案例一方面验证了该文给出的动态海面SAR成像高精度仿真的逼真度能够达到智能化仿真训练的要求,另一方面也说明了高精度仿真在SAR海洋图像智能化应用有很好的前景,可以成为解决SAR海洋遥感智能化应用中样本数据瓶颈的重要手段。
状态: , 更新:
电磁超表面是一种新型的人工电磁材料,其在无线通信、信号处理等方面展现出了巨大的优势。电磁超表面通过引入外部激励(机械激励、热激励、电激励、光激励、磁激励等方式)实现了对电磁响应更为灵活的动态控制。基于动态调控的方式,电磁超表面能够实现对电磁波的相位、振幅、极化方式、传播模式等特性的精确控制,从而在不同的应用场景中实现波前调控。该文首先归纳总结了电磁超表面动态调控技术的研究进展;然后,讨论了电磁超表面在全息成像、极化转换、超构透镜、波束调控以及智能系统等领域中的研究现状;最后以调控技术为基石总结展望了电磁超表面的发展模式及未来智能化调控的发展趋势。
电磁超表面是一种新型的人工电磁材料,其在无线通信、信号处理等方面展现出了巨大的优势。电磁超表面通过引入外部激励(机械激励、热激励、电激励、光激励、磁激励等方式)实现了对电磁响应更为灵活的动态控制。基于动态调控的方式,电磁超表面能够实现对电磁波的相位、振幅、极化方式、传播模式等特性的精确控制,从而在不同的应用场景中实现波前调控。该文首先归纳总结了电磁超表面动态调控技术的研究进展;然后,讨论了电磁超表面在全息成像、极化转换、超构透镜、波束调控以及智能系统等领域中的研究现状;最后以调控技术为基石总结展望了电磁超表面的发展模式及未来智能化调控的发展趋势。
状态: , 更新:
小光斑全波形激光雷达凭借高穿透、完整回波获取能力而蕴含巨大应用潜力。高效精准处理海量回波信号是全波形激光雷达实际应用前提,成为波形分解技术前沿性挑战。对于小光斑全波形激光雷达系统,单目标回波占比高且仅多目标回波需要精细波形分解处理,然而现有方案通常以牺牲精度为代价而采用简单快速波形分解算法,或将全部回波信号无差别进行波形分解而导致效率低下,难以兼顾精度和效率。该研究面向小光斑全波形激光雷达,提出一种时空耦合模型驱动的多目标回波轻量化检测算法,首次实现从未知回波次数的波形数据中高效精准检测多目标回波,有效避免波形分解算法无差别处理单目标回波而引入冗余计算,显著减少波形分解次数。具体地,(1)该算法构建了激光雷达时空耦合回波信号模型,以揭示回波传输的时空特性;(2)基于该模型驱动双高斯函数叠加拟合方式,轻量化估计波形参数;(3)根据信噪比引入自适应相关性判别方法。结合系统发射脉冲一致性,所提方法能够轻量化且准确检测多目标回波信号,在地基和机载波形数据实验结果证明,该研究提出的轻量化多目标回波检测算法检测准确率高达98.4%,召回率93.1%。利用4种波形分解方法结合多目标回波检测,效率显著提高2~3倍,且在单目标回波数量占比增大情况下效率提升更显著。
小光斑全波形激光雷达凭借高穿透、完整回波获取能力而蕴含巨大应用潜力。高效精准处理海量回波信号是全波形激光雷达实际应用前提,成为波形分解技术前沿性挑战。对于小光斑全波形激光雷达系统,单目标回波占比高且仅多目标回波需要精细波形分解处理,然而现有方案通常以牺牲精度为代价而采用简单快速波形分解算法,或将全部回波信号无差别进行波形分解而导致效率低下,难以兼顾精度和效率。该研究面向小光斑全波形激光雷达,提出一种时空耦合模型驱动的多目标回波轻量化检测算法,首次实现从未知回波次数的波形数据中高效精准检测多目标回波,有效避免波形分解算法无差别处理单目标回波而引入冗余计算,显著减少波形分解次数。具体地,(1)该算法构建了激光雷达时空耦合回波信号模型,以揭示回波传输的时空特性;(2)基于该模型驱动双高斯函数叠加拟合方式,轻量化估计波形参数;(3)根据信噪比引入自适应相关性判别方法。结合系统发射脉冲一致性,所提方法能够轻量化且准确检测多目标回波信号,在地基和机载波形数据实验结果证明,该研究提出的轻量化多目标回波检测算法检测准确率高达98.4%,召回率93.1%。利用4种波形分解方法结合多目标回波检测,效率显著提高2~3倍,且在单目标回波数量占比增大情况下效率提升更显著。
状态: , 更新:
在大规模多输入多输出(MIMO)通信和雷达系统中,采用单比特数模转换器(DAC)是一种降低发射系统硬件成本和功耗的有效方法。该文研究单比特量化下雷达通信一体化系统的发射波形设计,在给定通信服务质量约束下最小化雷达发射波束图的积分旁瓣主瓣比,通过提升发射波束的功率集中程度以获得良好的发射波束赋形性能。针对单比特量化导致发射波形仅具有低自由度可行域的问题,该文采用符号级预编码技术,基于有益干扰(CI)原理充分利用空域和时域自由度来辅助波形设计。由于所提出的波形设计问题具有非凸分式二次目标函数和大量的非凸离散约束,该文提出了一种基于丁克尔巴赫(Dinkelbach)变换和交替方向乘子法(ADMM)的算法来有效求解该NP-难问题。仿真结果表明,所设计的波形能够显著降低对DAC分辨率的需求,并在满足下行用户通信质量需求的条件下具有良好的雷达发射波束图性能。
在大规模多输入多输出(MIMO)通信和雷达系统中,采用单比特数模转换器(DAC)是一种降低发射系统硬件成本和功耗的有效方法。该文研究单比特量化下雷达通信一体化系统的发射波形设计,在给定通信服务质量约束下最小化雷达发射波束图的积分旁瓣主瓣比,通过提升发射波束的功率集中程度以获得良好的发射波束赋形性能。针对单比特量化导致发射波形仅具有低自由度可行域的问题,该文采用符号级预编码技术,基于有益干扰(CI)原理充分利用空域和时域自由度来辅助波形设计。由于所提出的波形设计问题具有非凸分式二次目标函数和大量的非凸离散约束,该文提出了一种基于丁克尔巴赫(Dinkelbach)变换和交替方向乘子法(ADMM)的算法来有效求解该NP-难问题。仿真结果表明,所设计的波形能够显著降低对DAC分辨率的需求,并在满足下行用户通信质量需求的条件下具有良好的雷达发射波束图性能。
状态: , 更新:
无人机隐蔽通信在实现可持续低空经济方面引起了相当大的关注。本文基于通感一体化框架,研究了多无人机协作隐蔽通信网络的系统策略和资源分配,其中多个无人机进行协作感知并在移动监管者(Willie)存在的情况下同时向多个地面用户(GUs)隐蔽传输下行信息。为了提高通信隐蔽性,无人机在干扰(JUAV)模式和信息(IUAV)模式之间自适应切换。为了应对Willie的移动性,采用基于无迹卡尔曼滤波的方法,利用从ISAC回波中提取的时延和多普勒频移来预测和跟踪Willie的位置。通过联合优化JUAV选择策略、IUAV-GU调度、通信/干扰功率分配,本文提出了一个实时公平性传输最大化问题。采用交替优化方法,将原始问题分解为一系列子问题,从而获得有效的次优解。仿真结果表明,所提出的方案能够准确跟踪Willie并有效保证下行隐蔽传输。
无人机隐蔽通信在实现可持续低空经济方面引起了相当大的关注。本文基于通感一体化框架,研究了多无人机协作隐蔽通信网络的系统策略和资源分配,其中多个无人机进行协作感知并在移动监管者(Willie)存在的情况下同时向多个地面用户(GUs)隐蔽传输下行信息。为了提高通信隐蔽性,无人机在干扰(JUAV)模式和信息(IUAV)模式之间自适应切换。为了应对Willie的移动性,采用基于无迹卡尔曼滤波的方法,利用从ISAC回波中提取的时延和多普勒频移来预测和跟踪Willie的位置。通过联合优化JUAV选择策略、IUAV-GU调度、通信/干扰功率分配,本文提出了一个实时公平性传输最大化问题。采用交替优化方法,将原始问题分解为一系列子问题,从而获得有效的次优解。仿真结果表明,所提出的方案能够准确跟踪Willie并有效保证下行隐蔽传输。
状态: , 更新:
随着Wi-Fi感知技术在智能健康监测领域的广泛应用,如何构建高质量的数据集成为亟待解决的关键问题。特别是在监测异常行为(如跌倒)时,传统方法依赖于人体的反复实验,这既存在安全隐患,又面临伦理困境。为应对这一挑战,该文提出了一种基于时间编码超表面的辅助数据样本采集方法。通过模拟人体的运动特征,时间编码超表面可以有效替代人体实验,用于辅助构建Wi-Fi感知数据集。为此该文设计了一款具备0~360°全相位调制能力的时间编码超表面验证了该方案的可行性。实验结果表明,超表面生成的信号能够较好地保留人体运动特征,有效补充真实样本,降低数据采集复杂度,并显著提升模型的监测准确性。该方法为Wi-Fi感知技术的数据采集提供了一种创新且可行的解决方案。
随着Wi-Fi感知技术在智能健康监测领域的广泛应用,如何构建高质量的数据集成为亟待解决的关键问题。特别是在监测异常行为(如跌倒)时,传统方法依赖于人体的反复实验,这既存在安全隐患,又面临伦理困境。为应对这一挑战,该文提出了一种基于时间编码超表面的辅助数据样本采集方法。通过模拟人体的运动特征,时间编码超表面可以有效替代人体实验,用于辅助构建Wi-Fi感知数据集。为此该文设计了一款具备0~360°全相位调制能力的时间编码超表面验证了该方案的可行性。实验结果表明,超表面生成的信号能够较好地保留人体运动特征,有效补充真实样本,降低数据采集复杂度,并显著提升模型的监测准确性。该方法为Wi-Fi感知技术的数据采集提供了一种创新且可行的解决方案。
状态: , 更新:
雷达通信一体化通过资源共享机制,在提高系统频谱利用率的同时实现了轻量化设计,广泛应用于空中交通管制、医疗监测、自动驾驶等领域。传统的雷达通信一体化算法通常依赖于精确的数学建模和信道估计,无法适应难以刻画的动态复杂环境。人工智能凭借其强大的学习能力直接从大量数据中自动学习特征,无需对数据进行显式建模,促进了雷达通信的深度融合。该文围绕人工智能驱动的雷达通信一体化研究展开系统的综述。具体而言,首先阐述了雷达通信一体化系统模型与核心问题。在此基础上,从雷达通信共存和双功能雷达通信一体化两个方面梳理了人工智能驱动的雷达通信一体化最新研究进展。最后,总结全文并对该领域潜在的技术挑战和未来的研究方向进行了展望。
雷达通信一体化通过资源共享机制,在提高系统频谱利用率的同时实现了轻量化设计,广泛应用于空中交通管制、医疗监测、自动驾驶等领域。传统的雷达通信一体化算法通常依赖于精确的数学建模和信道估计,无法适应难以刻画的动态复杂环境。人工智能凭借其强大的学习能力直接从大量数据中自动学习特征,无需对数据进行显式建模,促进了雷达通信的深度融合。该文围绕人工智能驱动的雷达通信一体化研究展开系统的综述。具体而言,首先阐述了雷达通信一体化系统模型与核心问题。在此基础上,从雷达通信共存和双功能雷达通信一体化两个方面梳理了人工智能驱动的雷达通信一体化最新研究进展。最后,总结全文并对该领域潜在的技术挑战和未来的研究方向进行了展望。
状态: , 更新:
波束赋形技术通过向特定方向发射信号,提高了接收信号的功率。然而,在高速动态的车辆网络场景下,频繁的信道状态更新与波束调整导致系统开销过大;波束与用户位置难以实时对齐,易出现错位现象,影响通信稳定性;复杂路况中的遮挡和信道衰落进一步限制了波束赋形的效果。为了解决上述问题,该文提出了一种基于卷积神经网络和注意力机制模型的多模态特征融合波束赋形方法,以实现感知辅助的高可靠通信。模型首先对传感器采集的雷达、激光雷达数据分别定制数据转换和标准化策略,解决数据异构问题。然后使用三维卷积残差块提取多层次高阶多模态特征后,利用注意力机制模型融合特征并预测最佳波束,实现通信性能的优化。实验结果表明,该文所提方法在高速场景下可达到接近90%的平均Top-3波束预测精度,相比单模态方案性能显著提升,验证了其在提升通信性能和可靠性方面的优越性。
波束赋形技术通过向特定方向发射信号,提高了接收信号的功率。然而,在高速动态的车辆网络场景下,频繁的信道状态更新与波束调整导致系统开销过大;波束与用户位置难以实时对齐,易出现错位现象,影响通信稳定性;复杂路况中的遮挡和信道衰落进一步限制了波束赋形的效果。为了解决上述问题,该文提出了一种基于卷积神经网络和注意力机制模型的多模态特征融合波束赋形方法,以实现感知辅助的高可靠通信。模型首先对传感器采集的雷达、激光雷达数据分别定制数据转换和标准化策略,解决数据异构问题。然后使用三维卷积残差块提取多层次高阶多模态特征后,利用注意力机制模型融合特征并预测最佳波束,实现通信性能的优化。实验结果表明,该文所提方法在高速场景下可达到接近90%的平均Top-3波束预测精度,相比单模态方案性能显著提升,验证了其在提升通信性能和可靠性方面的优越性。
状态: , 更新:
基于雷达传感器网络的目标识别系统在自动目标识别领域得到了广泛的研究,该系统从多个角度对目标进行观测从而可获得稳健的目标识别能力,这也带来了多雷达传感器回波数据间相关信息和差异信息的利用问题。其次,现有研究大都需要大规模标记数据来获得目标的先验知识,考虑到大量未标注数据未被有效使用,该文研究了一种基于多重对比损失(MCL)的雷达传感器网络HRRP无监督目标特征提取方法。该方法通过联合实例级损失、Fisher损失和语义一致损失这三重损失约束,用以寻求多雷达传感器回波间具有一致性和判别性的特征向量并用于后续的识别任务。具体而言,将原始回波数据分别映射到对比损失空间和语义标签空间:在对比损失空间中,利用对比损失对样本的相似性和聚集性进行约束,使不同传感器获取的同一目标不同回波间的相对距离和绝对距离被减小,而不同目标回波样本间的距离被拉大;在语义损失空间中,通过提取到的判别特征对语义标签进行约束,实现语义信息和判别特征一致的目标。在实测民用飞机数据集上进行的实验表明,与最先进的无监督和有监督目标识别算法相比,MCL的识别准确率分别提升了0.4%和1.4%,并且MCL能有效提升多雷达传感器协同时的目标识别性能。
基于雷达传感器网络的目标识别系统在自动目标识别领域得到了广泛的研究,该系统从多个角度对目标进行观测从而可获得稳健的目标识别能力,这也带来了多雷达传感器回波数据间相关信息和差异信息的利用问题。其次,现有研究大都需要大规模标记数据来获得目标的先验知识,考虑到大量未标注数据未被有效使用,该文研究了一种基于多重对比损失(MCL)的雷达传感器网络HRRP无监督目标特征提取方法。该方法通过联合实例级损失、Fisher损失和语义一致损失这三重损失约束,用以寻求多雷达传感器回波间具有一致性和判别性的特征向量并用于后续的识别任务。具体而言,将原始回波数据分别映射到对比损失空间和语义标签空间:在对比损失空间中,利用对比损失对样本的相似性和聚集性进行约束,使不同传感器获取的同一目标不同回波间的相对距离和绝对距离被减小,而不同目标回波样本间的距离被拉大;在语义损失空间中,通过提取到的判别特征对语义标签进行约束,实现语义信息和判别特征一致的目标。在实测民用飞机数据集上进行的实验表明,与最先进的无监督和有监督目标识别算法相比,MCL的识别准确率分别提升了0.4%和1.4%,并且MCL能有效提升多雷达传感器协同时的目标识别性能。
状态: , 更新:
全波形高光谱激光雷达(HSL)在获得高精度、高分辨率的空间数据的同时,还能获得目标的光谱信息,可为不同研究和应用领域提供有效和多维的数据。然而,HSL不同波段发射信号强度存在差异,会导致相应回波信号的差异,难以直接利用回波信号来重建目标在不同波段下准确的光学特性(目标的反射率光谱分布曲线)。以往研究通常利用标准漫反射白板法来获取目标的反射率光谱曲线(标准参照板法)。但在某些复杂的检测环境中白板易受污染,且激光器的发射能量会因环境和设备状态的变化出现波动,进而影响计算精度。因此,从全波形信号本身直接提取信息用于反射率光谱曲线重建是一种快捷的途径。基于此,该文提出一种基于HSL全波形数据的回波强度校正方法,用于快速生成目标的反射率光谱曲线。首先,通过理论分析,证明回波与发射波在形状上的相似性。然后,对HSL全波形的发射信号和回波信号进行偏正态高斯函数拟合,计算各波段在理想情况下标准漫反射白板的发射信号与回波信号峰值比值(归一化因子)。最后,通过结合标准漫反射白板的归一化因子与目标的归一化因子来构建目标的反射率光谱分布曲线。为验证方法的有效性,该文将其与基于标准漫反射板计算的反射率光谱曲线进行了对比实验,并进行木叶分离和目标分类实验以评估其适用性。实验结果表明:(1)利用发射信号校正回波强度,可以获得与标准参照板法相似的反射率光谱曲线。并且在不同温度及光照条件下均表现出良好的稳定性;与标准漫反射白板法相比,该方法有效克服了激光器发射能量波动的影响,尤其在HSL长时间工作条件下,显著提升了反射率光谱曲线的测量精度和一致性。(2)在实际应用中,基于该文方法获得的目标反射率光谱曲线能够快速实现木叶分离,且对果树目标分类准确率超过90%。该文方法简化了全波形高光谱激光雷达的回波强度校正流程,可在数据采集过程中实时快速重建目标高光谱信息。
全波形高光谱激光雷达(HSL)在获得高精度、高分辨率的空间数据的同时,还能获得目标的光谱信息,可为不同研究和应用领域提供有效和多维的数据。然而,HSL不同波段发射信号强度存在差异,会导致相应回波信号的差异,难以直接利用回波信号来重建目标在不同波段下准确的光学特性(目标的反射率光谱分布曲线)。以往研究通常利用标准漫反射白板法来获取目标的反射率光谱曲线(标准参照板法)。但在某些复杂的检测环境中白板易受污染,且激光器的发射能量会因环境和设备状态的变化出现波动,进而影响计算精度。因此,从全波形信号本身直接提取信息用于反射率光谱曲线重建是一种快捷的途径。基于此,该文提出一种基于HSL全波形数据的回波强度校正方法,用于快速生成目标的反射率光谱曲线。首先,通过理论分析,证明回波与发射波在形状上的相似性。然后,对HSL全波形的发射信号和回波信号进行偏正态高斯函数拟合,计算各波段在理想情况下标准漫反射白板的发射信号与回波信号峰值比值(归一化因子)。最后,通过结合标准漫反射白板的归一化因子与目标的归一化因子来构建目标的反射率光谱分布曲线。为验证方法的有效性,该文将其与基于标准漫反射板计算的反射率光谱曲线进行了对比实验,并进行木叶分离和目标分类实验以评估其适用性。实验结果表明:(1)利用发射信号校正回波强度,可以获得与标准参照板法相似的反射率光谱曲线。并且在不同温度及光照条件下均表现出良好的稳定性;与标准漫反射白板法相比,该方法有效克服了激光器发射能量波动的影响,尤其在HSL长时间工作条件下,显著提升了反射率光谱曲线的测量精度和一致性。(2)在实际应用中,基于该文方法获得的目标反射率光谱曲线能够快速实现木叶分离,且对果树目标分类准确率超过90%。该文方法简化了全波形高光谱激光雷达的回波强度校正流程,可在数据采集过程中实时快速重建目标高光谱信息。
状态: , 更新:
通过复用随机通信信号,并基于现网中的通信架构实现通信感知一体化(ISAC),能够显著降低ISAC实现成本、加速感知功能融入现有通信网络。然而,通信数据的随机性将会使得感知功能出现随机起伏,造成感知性能不稳定。为了获得稳健的感知性能,该文研究了随机通感一体空域信号处理方法,提出了多输入多输出通感一体(MIMO-ISAC)系统收发预编码联合优化设计方案。具体而言,考虑对目标响应矩阵的估计,该文首先定义了随机信号下感知系统的遍历克拉美罗界(ECRB),并基于复逆Wishart矩阵的分布推导了ECRB的闭合表达式,从理论上说明了使用随机信号进行感知相较于传统使用确定性正交信号的性能损失。进一步地,该文分别考虑了ECRB最小化的感知最优问题以及多天线多用户信号估计的通信最优问题,并获得了感知最优预编码设计和通信最优预编码设计方案。接着,该文将上述收发预编码优化设计思路扩展至通信感知一体化场景。最后,该文通过大量仿真验证了所提方法的有效性,相关结果表明所提出的联合收发预编码设计方案能够支持高精度目标响应矩阵估计,同时能够实现通信信号估计误差与目标响应矩阵估计误差的灵活折衷。
通过复用随机通信信号,并基于现网中的通信架构实现通信感知一体化(ISAC),能够显著降低ISAC实现成本、加速感知功能融入现有通信网络。然而,通信数据的随机性将会使得感知功能出现随机起伏,造成感知性能不稳定。为了获得稳健的感知性能,该文研究了随机通感一体空域信号处理方法,提出了多输入多输出通感一体(MIMO-ISAC)系统收发预编码联合优化设计方案。具体而言,考虑对目标响应矩阵的估计,该文首先定义了随机信号下感知系统的遍历克拉美罗界(ECRB),并基于复逆Wishart矩阵的分布推导了ECRB的闭合表达式,从理论上说明了使用随机信号进行感知相较于传统使用确定性正交信号的性能损失。进一步地,该文分别考虑了ECRB最小化的感知最优问题以及多天线多用户信号估计的通信最优问题,并获得了感知最优预编码设计和通信最优预编码设计方案。接着,该文将上述收发预编码优化设计思路扩展至通信感知一体化场景。最后,该文通过大量仿真验证了所提方法的有效性,相关结果表明所提出的联合收发预编码设计方案能够支持高精度目标响应矩阵估计,同时能够实现通信信号估计误差与目标响应矩阵估计误差的灵活折衷。
状态: , 更新:
相较于地基外辐射源雷达,基于卫星信号的外辐射源雷达(即卫星信号外辐射源雷达)具有全球、全时、全天候覆盖等优势,可弥补地基外辐射源雷达在海上覆盖范围不足的限制;相较于中高轨卫星信号,低轨通信卫星信号具有接收功率强、卫星数目多等优势,可为海上目标无源探测提供可观的探测距离与探测精度。面向未来发展需求,该文详细论述了卫星信号外辐射源雷达研究现状与应用前景,给出了以铱星、星链两类低轨通信卫星系统构建高低频宽窄带融合的低轨通信卫星信号外辐射源雷达系统的可行性分析,据此总结了研发低轨通信卫星信号外辐射源雷达系统面临的技术挑战与候选解决思路。上述研究可为广域范围内,外辐射源雷达探测提供重要参考。
相较于地基外辐射源雷达,基于卫星信号的外辐射源雷达(即卫星信号外辐射源雷达)具有全球、全时、全天候覆盖等优势,可弥补地基外辐射源雷达在海上覆盖范围不足的限制;相较于中高轨卫星信号,低轨通信卫星信号具有接收功率强、卫星数目多等优势,可为海上目标无源探测提供可观的探测距离与探测精度。面向未来发展需求,该文详细论述了卫星信号外辐射源雷达研究现状与应用前景,给出了以铱星、星链两类低轨通信卫星系统构建高低频宽窄带融合的低轨通信卫星信号外辐射源雷达系统的可行性分析,据此总结了研发低轨通信卫星信号外辐射源雷达系统面临的技术挑战与候选解决思路。上述研究可为广域范围内,外辐射源雷达探测提供重要参考。
状态: , 更新:
集探测与通信功能为一体的探通一体(DFRC)综合电子设备平台通过共享硬件平台和发射波形,有效缓解了平台受限、资源紧张、电磁兼容等问题,因此成为近年来的研究热点。以探测为核心、兼顾有限通信能力的DFRC技术,在未来实战中的预警监视、跟踪制导等典型探测场景中具有巨大的应用前景。该文重点关注在保证基本通信性能基础之上,通过有效调节探测与通信在多域资源利用方面的冲突和矛盾,实现雷达探测性能最优化的信号设计方法。该文首先总结了DFRC系统的性能衡量准则,然后全面地介绍了典型探测场景下DFRC信号设计方法,并深入分析了各信号设计方法存在的问题以及目前的解决方案。在最后对全文做了总结,并对未来的研究方向进行了展望。
集探测与通信功能为一体的探通一体(DFRC)综合电子设备平台通过共享硬件平台和发射波形,有效缓解了平台受限、资源紧张、电磁兼容等问题,因此成为近年来的研究热点。以探测为核心、兼顾有限通信能力的DFRC技术,在未来实战中的预警监视、跟踪制导等典型探测场景中具有巨大的应用前景。该文重点关注在保证基本通信性能基础之上,通过有效调节探测与通信在多域资源利用方面的冲突和矛盾,实现雷达探测性能最优化的信号设计方法。该文首先总结了DFRC系统的性能衡量准则,然后全面地介绍了典型探测场景下DFRC信号设计方法,并深入分析了各信号设计方法存在的问题以及目前的解决方案。在最后对全文做了总结,并对未来的研究方向进行了展望。
状态: , 更新:
双基合成孔径雷达(SAR)通过收发分置、协同工作,不仅能对接收站飞行前方实现高分辨成像,还具备出色的隐蔽性和抗干扰能力等优势,在海洋监测、成像侦察等军民领域具有广阔的应用前景。然而,海面舰船目标由于受到海浪影响,存在复杂且未知的三维随机剧烈摆动,且该摆动与双基平台的运动均随时间变化,导致双基SAR舰船目标成像结果的视图与方位时间强相关,难以获得有效的目标特征信息。此外,目标的三维摆动与收发双站的分置运动相互耦合叠加,导致双基舰船回波多普勒存在非线性强空变,造成舰船目标图像出现严重散焦。针对此问题,该文提出了一种双基SAR舰船成像时段寻优的成像处理方法,获得了成像视图最优且聚焦良好的双基SAR舰船目标图像。首先,采用短时傅里叶变换,精确反演舰船目标强散射点的时频信息;然后,联合多散射点时频信息,最优估计舰船目标的三维旋转参数,从而获得成像投影平面的时变规律;最后,以成像投影平面最优为准则,选取双基SAR舰船目标成像视图最优的成像时刻,再以成像分辨率最优为准则,选取双基SAR舰船目标成像时长,从而完成双基SAR舰船目标成像时段寻优成像处理。仿真实验验证了该方法在不同双基构型和不同信噪比条件下目标转动参数估计的准确性、成像投影平面选取的有效性,解决了双基SAR舰船目标成像视图强时变和多普勒非线性强空变问题,实现了双基SAR舰船目标图像的良好聚焦且成像视图最优,极大地提升了舰船目标特征信息获取的准确性。
双基合成孔径雷达(SAR)通过收发分置、协同工作,不仅能对接收站飞行前方实现高分辨成像,还具备出色的隐蔽性和抗干扰能力等优势,在海洋监测、成像侦察等军民领域具有广阔的应用前景。然而,海面舰船目标由于受到海浪影响,存在复杂且未知的三维随机剧烈摆动,且该摆动与双基平台的运动均随时间变化,导致双基SAR舰船目标成像结果的视图与方位时间强相关,难以获得有效的目标特征信息。此外,目标的三维摆动与收发双站的分置运动相互耦合叠加,导致双基舰船回波多普勒存在非线性强空变,造成舰船目标图像出现严重散焦。针对此问题,该文提出了一种双基SAR舰船成像时段寻优的成像处理方法,获得了成像视图最优且聚焦良好的双基SAR舰船目标图像。首先,采用短时傅里叶变换,精确反演舰船目标强散射点的时频信息;然后,联合多散射点时频信息,最优估计舰船目标的三维旋转参数,从而获得成像投影平面的时变规律;最后,以成像投影平面最优为准则,选取双基SAR舰船目标成像视图最优的成像时刻,再以成像分辨率最优为准则,选取双基SAR舰船目标成像时长,从而完成双基SAR舰船目标成像时段寻优成像处理。仿真实验验证了该方法在不同双基构型和不同信噪比条件下目标转动参数估计的准确性、成像投影平面选取的有效性,解决了双基SAR舰船目标成像视图强时变和多普勒非线性强空变问题,实现了双基SAR舰船目标图像的良好聚焦且成像视图最优,极大地提升了舰船目标特征信息获取的准确性。
状态: , 更新:
随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。
随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。
状态: , 更新:
该文针对雷达通信一体化系统中多站协作感知的问题,提出了一种基于无蜂窝网络架构的智能框架HRT-Net,用于实现准确且资源高效的位置估计。具体而言,该文首先将感知区域划分为多个子区域,并基于深度可分离卷积设计了一个轻量级的区域选择网络,以识别目标所属的子区域,从而减少计算负担并实现广域覆盖。其次,考虑到多站数据差异性的隐式问题,该文设计了一种分通道单维注意力机制,旨在有效聚合多站的感知数据并增强特征的提取和表示能力,从而生成注意力权重图以加权修正原始特征。最后,基于多尺度和多重残差连接设计了一个目标定位网络,该网络能够提取更加全面和深层的特征并实现多级特征融合,进而可靠地将其映射到目标的位置坐标。仿真及实测实验结果表明,相比于现有方法,HRT-Net在较低计算复杂度和存储开销下,能够实现厘米级的目标定位。
该文针对雷达通信一体化系统中多站协作感知的问题,提出了一种基于无蜂窝网络架构的智能框架HRT-Net,用于实现准确且资源高效的位置估计。具体而言,该文首先将感知区域划分为多个子区域,并基于深度可分离卷积设计了一个轻量级的区域选择网络,以识别目标所属的子区域,从而减少计算负担并实现广域覆盖。其次,考虑到多站数据差异性的隐式问题,该文设计了一种分通道单维注意力机制,旨在有效聚合多站的感知数据并增强特征的提取和表示能力,从而生成注意力权重图以加权修正原始特征。最后,基于多尺度和多重残差连接设计了一个目标定位网络,该网络能够提取更加全面和深层的特征并实现多级特征融合,进而可靠地将其映射到目标的位置坐标。仿真及实测实验结果表明,相比于现有方法,HRT-Net在较低计算复杂度和存储开销下,能够实现厘米级的目标定位。
状态: , 更新:
激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的联合标定方法需要借助校准靶标物和人工选点的方式处理,导致其无法在动态的应用场景中使用。该文提出一种ResCalib深度神经网络模型用于解决激光雷达与相机的在线联合标定问题,该方法以激光雷达点云、单目图像和相机内参数矩阵作为输入以实现参数解算,而方法对外部特征物或靶标的依赖度低。ResCalib是一个几何监督深度神经网络,通过实施监督学习使输入图像和点云的几何及光度一致性最大化,利用单次迭代网络,自动估计激光雷达和相机之间的6自由度外参关系。实验表明该文方法能够纠正旋转±10°和平移±0.2 m的错误标定,标定解算结果的旋转分量的平均绝对误差为0.35°,平移分量为0.032 m,且单组标定所需时间为0.018 s,为实现动态环境下的自动化联合标定提供了技术支撑。
激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的联合标定方法需要借助校准靶标物和人工选点的方式处理,导致其无法在动态的应用场景中使用。该文提出一种ResCalib深度神经网络模型用于解决激光雷达与相机的在线联合标定问题,该方法以激光雷达点云、单目图像和相机内参数矩阵作为输入以实现参数解算,而方法对外部特征物或靶标的依赖度低。ResCalib是一个几何监督深度神经网络,通过实施监督学习使输入图像和点云的几何及光度一致性最大化,利用单次迭代网络,自动估计激光雷达和相机之间的6自由度外参关系。实验表明该文方法能够纠正旋转±10°和平移±0.2 m的错误标定,标定解算结果的旋转分量的平均绝对误差为0.35°,平移分量为0.032 m,且单组标定所需时间为0.018 s,为实现动态环境下的自动化联合标定提供了技术支撑。
状态: , 更新:
该文针对族群无人机SAR系统的任务分配问题,提出了一种基于低冗余度染色体编码的族群无人机SAR任务分配方法。该方法针对SAR成像任务的特有问题分析了成像性能与成像几何构型之间的内在联系,并据此建立了考虑成像性能的路径函数,将族群无人机SAR任务分配问题建模为广义均衡多旅行商问题;然后,采用冗余度较低的两部分染色体编码方式来表征任务分配方案,提高遗传算法的搜索效率和准确性。针对实际应用中可能发生的意外情况,该文还提出了一种融合了合同网算法和注意力机制的动态任务分配策略,该策略能够根据实际情况灵活调整任务分配方案,确保系统的鲁棒性。仿真实验验证了该文所提方法的有效性。
该文针对族群无人机SAR系统的任务分配问题,提出了一种基于低冗余度染色体编码的族群无人机SAR任务分配方法。该方法针对SAR成像任务的特有问题分析了成像性能与成像几何构型之间的内在联系,并据此建立了考虑成像性能的路径函数,将族群无人机SAR任务分配问题建模为广义均衡多旅行商问题;然后,采用冗余度较低的两部分染色体编码方式来表征任务分配方案,提高遗传算法的搜索效率和准确性。针对实际应用中可能发生的意外情况,该文还提出了一种融合了合同网算法和注意力机制的动态任务分配策略,该策略能够根据实际情况灵活调整任务分配方案,确保系统的鲁棒性。仿真实验验证了该文所提方法的有效性。
状态: , 更新:
相比于微型单基SAR系统,微型多基SAR系统采用收发分置的灵活构型,具备多角度成像等优势。然而,由于微型多基SAR系统需要采用相互独立的振荡源,相位同步是实现微型多基SAR高精度成像的必要条件。当前双基SAR相位同步方案的研究已相对成熟,但这些方案主要基于脉冲体制SAR系统,针对调频连续波(FMCW)体制微型多基SAR系统的相位同步研究仍较为匮乏。与脉冲体制SAR系统相比,FMCW SAR系统的信号连续发射,脉冲间不存在时间间隙,因此部分脉冲体制SAR的相位同步方案无法直接应用于FMCW SAR系统。为此,该文提出了一种适用于FMCW微型多基SAR相位同步方法,旨在有效解决FMCW SAR系统所面临的相位同步难题。该方法采用广义短时正交波形作为不同雷达平台的相位同步信号,通过脉冲压缩技术提取出雷达平台间的相位误差,进而实现相位同步。与传统线性调频波形相比,广义短时正交(STSO)波形在经过相同的脉冲压缩函数处理后,干扰信号的能量会集中于远离匹配信号峰值的位置,从而提高了相位同步的精度。此外,所提方法还适应了FMCW微型多基SAR系统dechirp接收的特点,并通过地面和数值仿真实验验证,所提方法具有较高的同步精度。
相比于微型单基SAR系统,微型多基SAR系统采用收发分置的灵活构型,具备多角度成像等优势。然而,由于微型多基SAR系统需要采用相互独立的振荡源,相位同步是实现微型多基SAR高精度成像的必要条件。当前双基SAR相位同步方案的研究已相对成熟,但这些方案主要基于脉冲体制SAR系统,针对调频连续波(FMCW)体制微型多基SAR系统的相位同步研究仍较为匮乏。与脉冲体制SAR系统相比,FMCW SAR系统的信号连续发射,脉冲间不存在时间间隙,因此部分脉冲体制SAR的相位同步方案无法直接应用于FMCW SAR系统。为此,该文提出了一种适用于FMCW微型多基SAR相位同步方法,旨在有效解决FMCW SAR系统所面临的相位同步难题。该方法采用广义短时正交波形作为不同雷达平台的相位同步信号,通过脉冲压缩技术提取出雷达平台间的相位误差,进而实现相位同步。与传统线性调频波形相比,广义短时正交(STSO)波形在经过相同的脉冲压缩函数处理后,干扰信号的能量会集中于远离匹配信号峰值的位置,从而提高了相位同步的精度。此外,所提方法还适应了FMCW微型多基SAR系统dechirp接收的特点,并通过地面和数值仿真实验验证,所提方法具有较高的同步精度。
状态: , 更新:
星载合成孔径雷达(SAR)受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测3个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。
星载合成孔径雷达(SAR)受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测3个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。
状态: , 更新:
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。