优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标,从而造成漏检。针对这些问题,该文提出一种基于极化SAR梯度和复Wishart分类器的舰船检测方法。首先,将似然比检验(LRT)梯度引入对数比值梯度框架,使其适用于极化SAR数据;基于LRT梯度图进行恒虚警(CFAR)检测,提取舰船的边缘信息,消除伪影的同时抑制强旁瓣对舰船精细轮廓提取的影响。其次,利用复Wishart迭代分类器对舰船强散射部分进行检测,可排除大部分的杂波干扰且保持舰船形态细节。最后,将二者信息融合,从而可以保持舰船形态细节的同时克服旁瓣和伪信号的虚警。该文在3幅来自ALOS-2卫星的极化SAR图像上进行了对比实验,实验表明与其他方法相比,该文所提算法具有更少的虚警和漏检,且能够有效克服旁瓣泄露,保持舰船形态细节。 舰船检测是极化SAR系统的重要应用之一。现有的舰船检测方法容易受到旁瓣泄露的干扰,使得舰船目标的形态难以提取,导致检测结果不符合真实情况。此外,在舰船过于密集、尺度不一致的情况下,相邻舰船由于旁瓣的影响有时会被认为是单个目标,从而造成漏检。针对这些问题,该文提出一种基于极化SAR梯度和复Wishart分类器的舰船检测方法。首先,将似然比检验(LRT)梯度引入对数比值梯度框架,使其适用于极化SAR数据;基于LRT梯度图进行恒虚警(CFAR)检测,提取舰船的边缘信息,消除伪影的同时抑制强旁瓣对舰船精细轮廓提取的影响。其次,利用复Wishart迭代分类器对舰船强散射部分进行检测,可排除大部分的杂波干扰且保持舰船形态细节。最后,将二者信息融合,从而可以保持舰船形态细节的同时克服旁瓣和伪信号的虚警。该文在3幅来自ALOS-2卫星的极化SAR图像上进行了对比实验,实验表明与其他方法相比,该文所提算法具有更少的虚警和漏检,且能够有效克服旁瓣泄露,保持舰船形态细节。
分布式孔径相参合成通过对多个分散布置小孔径的收/发信号进行相参调整,使协同的分布式系统可以用相对低的成本获得比拟于大孔径的功率孔径积,是替代大孔径的可行技术选择。该文首先阐述了分布式孔径相参合成的概念和实现原理,根据是否需要合成目的地处的外部信号输入,将相参合成的实现架构分为闭环式和开环式两类;然后,较为全面地综述了分布式孔径相参合成在导弹防御、深空遥测遥控、超远距离雷达探测、射电天文多领域发展应用情况;进一步阐述相参合成必要且用于对准各孔径收发信号时间和相位的关键技术,包括高精度分布式时频传递和同步技术,以及相参合成参数估计、测量标定和预测技术;最后对分布式孔径相参合成研究进行了总结和展望。 分布式孔径相参合成通过对多个分散布置小孔径的收/发信号进行相参调整,使协同的分布式系统可以用相对低的成本获得比拟于大孔径的功率孔径积,是替代大孔径的可行技术选择。该文首先阐述了分布式孔径相参合成的概念和实现原理,根据是否需要合成目的地处的外部信号输入,将相参合成的实现架构分为闭环式和开环式两类;然后,较为全面地综述了分布式孔径相参合成在导弹防御、深空遥测遥控、超远距离雷达探测、射电天文多领域发展应用情况;进一步阐述相参合成必要且用于对准各孔径收发信号时间和相位的关键技术,包括高精度分布式时频传递和同步技术,以及相参合成参数估计、测量标定和预测技术;最后对分布式孔径相参合成研究进行了总结和展望。
合成孔径雷达(SAR)图像是当前微波视觉研究领域的重要数据源。计算机视觉以光学视觉规律为理论基础,无法有效解译SAR图像。因此,借鉴人类视觉感知规律和计算机视觉技术,并融合电磁物理规律的微波视觉成为当前微波遥感领域的一个重要研究方向。探索微波视觉的认知基础对于完善微波视觉理论体系至关重要。该文旨在探讨光学感知规律在微波视觉中的有效性,作为完善微波视觉理论的基础尝试。格式塔感知规律是一类经典的视觉理论,常用于描述了人类视觉系统对外部光学世界的感知规律,是计算机视觉的认知理论基础之一。在此背景下,本文以SAR图像为研究对象,借鉴认知心理学实验的设计流程,对格式塔感知规律中的感知组合律和感知不变律在SAR图像中的有效性进行初步研究,探索微波视觉的认知基础。实验结果表明,格式塔感知规律不能够直接应用到SAR图像的算法设计中,人类视觉系统从光学世界中总结出的知识概念、视觉规律在SAR图像中表现不佳,未来需要针对SAR图像等微波图像的特点总结相应的微波视觉认知规律。 合成孔径雷达(SAR)图像是当前微波视觉研究领域的重要数据源。计算机视觉以光学视觉规律为理论基础,无法有效解译SAR图像。因此,借鉴人类视觉感知规律和计算机视觉技术,并融合电磁物理规律的微波视觉成为当前微波遥感领域的一个重要研究方向。探索微波视觉的认知基础对于完善微波视觉理论体系至关重要。该文旨在探讨光学感知规律在微波视觉中的有效性,作为完善微波视觉理论的基础尝试。格式塔感知规律是一类经典的视觉理论,常用于描述了人类视觉系统对外部光学世界的感知规律,是计算机视觉的认知理论基础之一。在此背景下,本文以SAR图像为研究对象,借鉴认知心理学实验的设计流程,对格式塔感知规律中的感知组合律和感知不变律在SAR图像中的有效性进行初步研究,探索微波视觉的认知基础。实验结果表明,格式塔感知规律不能够直接应用到SAR图像的算法设计中,人类视觉系统从光学世界中总结出的知识概念、视觉规律在SAR图像中表现不佳,未来需要针对SAR图像等微波图像的特点总结相应的微波视觉认知规律。
机载广角凝视合成孔径雷达(WasSAR)是一种可对观测区域实施多角度长时间凝视成像探测的新兴SAR成像技术。将机载WasSAR成像与地面运动目标指示(GMTI)技术相结合,则可对重点区域内出现的地面运动目标实施持续成像跟踪监视,从而获取准确的动态感知信息。该文首先建立了机载多通道WasSAR动目标回波模型,分析了WasSAR动目标特性;然后,通过采用偏移相位校正和改进二维自适应校正方法,消除了载机姿态误差与通道非均衡的影响;在此基础上,提出了机载多通道WasSAR动目标检测跟踪算法,实现了复杂路况上行驶动目标的准确检测与跟踪;最后,提出了机载多通道WasSAR动目标行驶轨迹重构算法,实现了起伏路面下的动目标行驶轨迹精确重构。此外,文中给出了作者团队利用自主研制机载多通道WasSAR-GMTI系统开展的外场飞行试验和实测数据处理结果,验证了地面运动目标持续跟踪监视的有效性和实用性,为后续开展更加深入研究提供基础。 机载广角凝视合成孔径雷达(WasSAR)是一种可对观测区域实施多角度长时间凝视成像探测的新兴SAR成像技术。将机载WasSAR成像与地面运动目标指示(GMTI)技术相结合,则可对重点区域内出现的地面运动目标实施持续成像跟踪监视,从而获取准确的动态感知信息。该文首先建立了机载多通道WasSAR动目标回波模型,分析了WasSAR动目标特性;然后,通过采用偏移相位校正和改进二维自适应校正方法,消除了载机姿态误差与通道非均衡的影响;在此基础上,提出了机载多通道WasSAR动目标检测跟踪算法,实现了复杂路况上行驶动目标的准确检测与跟踪;最后,提出了机载多通道WasSAR动目标行驶轨迹重构算法,实现了起伏路面下的动目标行驶轨迹精确重构。此外,文中给出了作者团队利用自主研制机载多通道WasSAR-GMTI系统开展的外场飞行试验和实测数据处理结果,验证了地面运动目标持续跟踪监视的有效性和实用性,为后续开展更加深入研究提供基础。
间歇采样转发干扰属于一类脉内相干欺骗干扰,其运用欠采样原理,在距离维上产生多个虚假的目标峰,从而干扰真实目标的检测与跟踪。为了解决这一问题,该文提出了一种基于波形域的匹配滤波前抗间歇采样转发干扰方法。首先,考虑到间歇采样转发干扰的部分匹配特性,该文在匹配滤波过程中引入了扩展域,即波形域,以研究干扰信号与真实目标回波信号元素的局部特征,并在每个波形域上定义了自适应的阈值函数。其次,引入卡尔曼滤波对波形域信号进行状态估计,通过自适应阈值检测筛选出波形域信号中的有效积分元素与无效积分元素,并建立关于有效积分元素的估计状态空间。最后,在抑制波形域信号中的无效积分元素的同时,从有效积分元素的估计状态空间中补充相应长度的积分元素,保留剩余的有效积分元素,通过积分得到不含虚假目标的距离像结果。该文所提方法不倚赖于任何干扰机参数等先验信息,即可有效抑制间歇采样转发干扰。仿真实验表明,与传统方法相比,该文方法实现的抗间歇采样转发干扰性能更优。 间歇采样转发干扰属于一类脉内相干欺骗干扰,其运用欠采样原理,在距离维上产生多个虚假的目标峰,从而干扰真实目标的检测与跟踪。为了解决这一问题,该文提出了一种基于波形域的匹配滤波前抗间歇采样转发干扰方法。首先,考虑到间歇采样转发干扰的部分匹配特性,该文在匹配滤波过程中引入了扩展域,即波形域,以研究干扰信号与真实目标回波信号元素的局部特征,并在每个波形域上定义了自适应的阈值函数。其次,引入卡尔曼滤波对波形域信号进行状态估计,通过自适应阈值检测筛选出波形域信号中的有效积分元素与无效积分元素,并建立关于有效积分元素的估计状态空间。最后,在抑制波形域信号中的无效积分元素的同时,从有效积分元素的估计状态空间中补充相应长度的积分元素,保留剩余的有效积分元素,通过积分得到不含虚假目标的距离像结果。该文所提方法不倚赖于任何干扰机参数等先验信息,即可有效抑制间歇采样转发干扰。仿真实验表明,与传统方法相比,该文方法实现的抗间歇采样转发干扰性能更优。
合理有效的资源调度是天基雷达效能得以充分发挥的关键。针对天基雷达多目标跟踪资源调度问题,建立了综合考虑目标威胁度、跟踪精度与低截获概率(LPI)的代价函数;考虑目标的不确定、天基平台约束以及长远期期望代价,建立了多约束下的基于部分可观测的马尔科夫决策过程(POMDP)的资源调度模型;采用拉格朗日松弛法将多约束下的多目标跟踪资源调度问题转换分解为多个无约束的子问题;针对连续状态空间、连续动作空间及连续观测空间引起的维数灾难问题,采用基于蒙特卡洛树搜索(MCTS)的在线POMDP算法—POMCPOW算法进行求解,最终提出了一种综合多指标性能的非短视快速天基雷达多目标跟踪资源调度算法。仿真表明,与已有调度算法相比,所提算法资源分配更合理,系统性能更优。 合理有效的资源调度是天基雷达效能得以充分发挥的关键。针对天基雷达多目标跟踪资源调度问题,建立了综合考虑目标威胁度、跟踪精度与低截获概率(LPI)的代价函数;考虑目标的不确定、天基平台约束以及长远期期望代价,建立了多约束下的基于部分可观测的马尔科夫决策过程(POMDP)的资源调度模型;采用拉格朗日松弛法将多约束下的多目标跟踪资源调度问题转换分解为多个无约束的子问题;针对连续状态空间、连续动作空间及连续观测空间引起的维数灾难问题,采用基于蒙特卡洛树搜索(MCTS)的在线POMDP算法—POMCPOW算法进行求解,最终提出了一种综合多指标性能的非短视快速天基雷达多目标跟踪资源调度算法。仿真表明,与已有调度算法相比,所提算法资源分配更合理,系统性能更优。
星弹双基前视SAR能够全天时全天候获取导弹前方区域高分辨图像,是一种极具潜力的成像制导技术。然而,距离和方位参数的耦合与空变,阻碍着星弹双基前视SAR向高分辨成像发展。该文首先基于低轨星载照射源与高速前视的弹载接收平台构型,推导了回波信号的精确距离多普勒域解析式。然后,在距离向上,提出距离非线性变标(NCS)算法来均衡距离徙动和距离调频率,并在二维频域一致补偿;在方位向上,该文所提算法将收发机的方位调频率进行分解,利用方位NCS消除方位调频率在方位向上的高阶空变。最后,进行二维匹配滤波,得到全局聚焦良好的SAR图像。点目标和场景仿真验证了所提算法的有效性。 星弹双基前视SAR能够全天时全天候获取导弹前方区域高分辨图像,是一种极具潜力的成像制导技术。然而,距离和方位参数的耦合与空变,阻碍着星弹双基前视SAR向高分辨成像发展。该文首先基于低轨星载照射源与高速前视的弹载接收平台构型,推导了回波信号的精确距离多普勒域解析式。然后,在距离向上,提出距离非线性变标(NCS)算法来均衡距离徙动和距离调频率,并在二维频域一致补偿;在方位向上,该文所提算法将收发机的方位调频率进行分解,利用方位NCS消除方位调频率在方位向上的高阶空变。最后,进行二维匹配滤波,得到全局聚焦良好的SAR图像。点目标和场景仿真验证了所提算法的有效性。
随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力。该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取。在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合。该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度。实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%。而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率。所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性。 随着合成孔径雷达(SAR)图像在舰船检测和识别领域的广泛应用,准确而高效地进行舰船分类已经成为一个亟待解决的问题。在小样本学习场景下,一般的方法面临着泛化能力不足的问题,因此该文引入了额外的信息和特征,旨在增加模型对目标的理解和泛化能力。该文通过散射关键点构建拓扑结构以表征舰船目标的结构和形状特征,并计算拓扑结构的拉普拉斯矩阵,将散射点之间的拓扑关系转化为矩阵形式,最后将SAR图像和拉普拉斯矩阵分别作为双分支网络的输入进行特征提取。在网络结构方面,该文设计了一个由两个独立的卷积分支组成的双分支卷积神经网络,分别负责处理视觉特征和拓扑特征,并用两个交叉融合注意力模块分别对两个分支的特征进行交互融合。该方法有效地将目标散射点拓扑关系与网络的自动学习过程相结合,从而增强模型的泛化能力并提高分类精度。实验结果表明,在OpenSARShip数据集上,所提方法在1-shot和5-shot任务的平均准确率分别为53.80%和73.00%。而在FUSAR-Ship数据集上,所提方法分别取得了54.44%和71.36%的平均准确率。所提方法在1-shot和5-shot的设置下相比基础方法准确率均提升超过15%,证明了散射点拓扑的应用对SAR图像小样本舰船分类的有效性。
基于调频(FM)广播信号的外辐射源雷达有着检测概率低、虚警率高、量测精度差的特点,这给组网目标跟踪带来了极大挑战。一方面,较高的虚警率使计算量增加,组网算法的实时性受到考验;另一方面检测概率低、方位角精度差造成冗余信息缺乏,量测关联与航迹起始变得困难。为解决这些问题,该文提出初级假设点和初级假设航迹的概念,以及基于此概念的FM广播外辐射源雷达网航迹起始算法。首先构造可能的低维关联假设,并解算出与其对应的初级假设点;随后关联不同时刻的初级假设点,形成多条可能的初级假设航迹;最后联合多场雷达网数据进行假设航迹判决,真实目标对应的初级假设航迹会得到确认,错误关联导致的虚假初级假设航迹会被剔除。相比于已有算法,所提算法有着更低的计算量,更快的航迹起始速度,仿真与实测结果均验证了所提算法的有效性。 基于调频(FM)广播信号的外辐射源雷达有着检测概率低、虚警率高、量测精度差的特点,这给组网目标跟踪带来了极大挑战。一方面,较高的虚警率使计算量增加,组网算法的实时性受到考验;另一方面检测概率低、方位角精度差造成冗余信息缺乏,量测关联与航迹起始变得困难。为解决这些问题,该文提出初级假设点和初级假设航迹的概念,以及基于此概念的FM广播外辐射源雷达网航迹起始算法。首先构造可能的低维关联假设,并解算出与其对应的初级假设点;随后关联不同时刻的初级假设点,形成多条可能的初级假设航迹;最后联合多场雷达网数据进行假设航迹判决,真实目标对应的初级假设航迹会得到确认,错误关联导致的虚假初级假设航迹会被剔除。相比于已有算法,所提算法有着更低的计算量,更快的航迹起始速度,仿真与实测结果均验证了所提算法的有效性。
无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了4.7 dB,旋翼叶长估计误差降低了10.9%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。 无人机等低慢小目标探测对雷达目标检测和识别技术提出了很高的挑战,迫切需要构建相关数据集,支撑低慢小探测技术的发展和应用。该文公开了一个多波段调频连续波(FMCW)雷达低慢小目标探测数据集,基于Ku波段和L波段的FMCW雷达采集6种类型的无人机回波数据,通过雷达调制周期和调制带宽,具备不同时域和频域分辨和测量能力,构建了多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1.0)。为了进一步提升无人机微动特征提取能力,该文提出基于局部极大值同步提取变换的无人机微动提取和参数估计方法,在短时傅里叶变换的基础上提取时频能量最大值,保留有用信号分量,实现精细化时频表示。基于LSS-FMCWR-1.0进行验证分析,结果表明该方法相较于传统时频方法,熵值平均降低了4.7 dB,旋翼叶长估计误差降低了10.9%,所提方法兼顾高时频分辨率和较高的参数估计精度,为后续目标识别奠定了基础。
射频掩护是最早的雷达主动抗干扰措施之一,其通过在雷达脉冲信号之前发射不同频率的掩护脉冲来诱导敌方干扰机,实现抗干扰。近年来,随着抗干扰需求更加迫切,射频掩护技术进一步发展,最具代表性的是采用非连续谱信号作为掩护信号,但掩护信号的能量利用率仍存在提升空间。针对此问题,该文在非连续谱掩护信号基础上提出了一种离散谱掩护信号,建立了恒模和频谱幅度联合约束下的波形设计优化问题,通过交替向量乘子法以及频谱塑形算法求解,生成频谱离散、能量聚集的掩护信号。仿真结果表明,在能量和带宽相同的情况下,离散谱掩护信号相比于非连续谱掩护信号具有更高的频谱幅度,提升5~12 dB;在能量相同,频谱幅度接近的情况下,离散谱掩护信号能覆盖更大的频谱范围,实现了更好的抗干扰掩护效果。 射频掩护是最早的雷达主动抗干扰措施之一,其通过在雷达脉冲信号之前发射不同频率的掩护脉冲来诱导敌方干扰机,实现抗干扰。近年来,随着抗干扰需求更加迫切,射频掩护技术进一步发展,最具代表性的是采用非连续谱信号作为掩护信号,但掩护信号的能量利用率仍存在提升空间。针对此问题,该文在非连续谱掩护信号基础上提出了一种离散谱掩护信号,建立了恒模和频谱幅度联合约束下的波形设计优化问题,通过交替向量乘子法以及频谱塑形算法求解,生成频谱离散、能量聚集的掩护信号。仿真结果表明,在能量和带宽相同的情况下,离散谱掩护信号相比于非连续谱掩护信号具有更高的频谱幅度,提升5~12 dB;在能量相同,频谱幅度接近的情况下,离散谱掩护信号能覆盖更大的频谱范围,实现了更好的抗干扰掩护效果。
在现代电子战中,雷达面临的干扰环境比以前更加复杂,机载干扰机会根据突袭任务与突袭阶段的不同而改变其干扰方式。近年来基于强化学习的雷达抗干扰方法在单一干扰的对抗场景下取得了一定进展,但与实际复杂多干扰场景差距较大。为了解决该问题,该文提出了一种基于复数域深度强化学习的多干扰场景雷达抗干扰方法以优化频率捷变雷达的抗干扰策略。首先,根据突袭任务的阶段特点,建立噪声瞄准干扰、距离假目标欺骗干扰与密集假目标转发干扰3种干扰模型,并设计了3种干扰顺序策略模拟实际干扰场景。其次,针对多干扰场景模型,构建了一种融合信干噪比与目标航迹完整性的强化学习奖励函数,并针对干扰信号的复数域特征,提出了一种基于复数域深度强化学习的多干扰场景雷达抗干扰方法。最后,基于3种干扰顺序策略设计雷达抗干扰仿真实验,结果表明,该方法能够有效处理雷达面临的时序条件下复杂多干扰场景的主瓣干扰问题,与两种经典深度强化学习算法相比该方法抗干扰决策性能大幅提高,平均决策时间降低至405.3 ms。 在现代电子战中,雷达面临的干扰环境比以前更加复杂,机载干扰机会根据突袭任务与突袭阶段的不同而改变其干扰方式。近年来基于强化学习的雷达抗干扰方法在单一干扰的对抗场景下取得了一定进展,但与实际复杂多干扰场景差距较大。为了解决该问题,该文提出了一种基于复数域深度强化学习的多干扰场景雷达抗干扰方法以优化频率捷变雷达的抗干扰策略。首先,根据突袭任务的阶段特点,建立噪声瞄准干扰、距离假目标欺骗干扰与密集假目标转发干扰3种干扰模型,并设计了3种干扰顺序策略模拟实际干扰场景。其次,针对多干扰场景模型,构建了一种融合信干噪比与目标航迹完整性的强化学习奖励函数,并针对干扰信号的复数域特征,提出了一种基于复数域深度强化学习的多干扰场景雷达抗干扰方法。最后,基于3种干扰顺序策略设计雷达抗干扰仿真实验,结果表明,该方法能够有效处理雷达面临的时序条件下复杂多干扰场景的主瓣干扰问题,与两种经典深度强化学习算法相比该方法抗干扰决策性能大幅提高,平均决策时间降低至405.3 ms。
卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在SAR图像数据集上的应用仍处于起步阶段。基于此,该文从神经元特征提取能力和网络决策依据两个层面出发,提出了一种面向SAR图像的CNN模型可视化方法。首先,基于神经元的激活值,对神经元在其感受野范围内的目标结构学习能力进行可视化,然后提出一种通道-空间混合的类激活映射方法,通过对SAR图像中的重要区域进行定位,为模型的决策过程提供依据。实验结果表明,该方法给出了模型在不同设置下的可解释性分析,有效拓展了卷积神经网络在SAR图像上的可视化应用。 卷积神经网络(CNN)在合成孔径雷达(SAR)图像目标分类任务中应用广泛。由于网络工作机理不透明,CNN模型难以满足高可靠性实际应用的要求。类激活映射方法常用于可视化CNN模型的决策区域,但现有方法主要基于通道级或空间级类激活权重,且在SAR图像数据集上的应用仍处于起步阶段。基于此,该文从神经元特征提取能力和网络决策依据两个层面出发,提出了一种面向SAR图像的CNN模型可视化方法。首先,基于神经元的激活值,对神经元在其感受野范围内的目标结构学习能力进行可视化,然后提出一种通道-空间混合的类激活映射方法,通过对SAR图像中的重要区域进行定位,为模型的决策过程提供依据。实验结果表明,该方法给出了模型在不同设置下的可解释性分析,有效拓展了卷积神经网络在SAR图像上的可视化应用。
多径利用雷达(MER)目标探测技术主要基于电磁波在介质表面的反射、衍射等非直视(NLOS)多路径传播特性,实现对城市街角、车辆遮挡等“视觉”盲区内隐蔽目标的有效探测,其能够为城市作战、智能驾驶等多种应用提供服务,具有重要的现实意义和研究价值。为获知该领域的发展脉络,并预测未来可能的发展趋势,该文对21世纪初以来该领域国内外公开文献进行了归纳总结。相关文献的梳理结果表明,根据探测平台类型的不同,多径利用雷达目标探测技术目前主要包括两类:基于空中平台的多径探测技术和基于地面平台的多径探测技术。这两类技术均已取得一定具有实际意义的研究成果。针对空中平台,该文围绕可行性验证、影响因素分析、建筑环境感知和非视距目标探测4个方面展开梳理;针对地面平台,该文则从目标检测与识别、目标二维定位、目标三维信息获取及新型探测方法4个方面展开论述。最后,对多径利用雷达目标探测技术进行总结和展望,指出该技术在目前实际应用中所面临的潜在问题和挑战。这些结果表明,多径利用雷达目标探测技术正朝着多样化、智能化的方向发展。 多径利用雷达(MER)目标探测技术主要基于电磁波在介质表面的反射、衍射等非直视(NLOS)多路径传播特性,实现对城市街角、车辆遮挡等“视觉”盲区内隐蔽目标的有效探测,其能够为城市作战、智能驾驶等多种应用提供服务,具有重要的现实意义和研究价值。为获知该领域的发展脉络,并预测未来可能的发展趋势,该文对21世纪初以来该领域国内外公开文献进行了归纳总结。相关文献的梳理结果表明,根据探测平台类型的不同,多径利用雷达目标探测技术目前主要包括两类:基于空中平台的多径探测技术和基于地面平台的多径探测技术。这两类技术均已取得一定具有实际意义的研究成果。针对空中平台,该文围绕可行性验证、影响因素分析、建筑环境感知和非视距目标探测4个方面展开梳理;针对地面平台,该文则从目标检测与识别、目标二维定位、目标三维信息获取及新型探测方法4个方面展开论述。最后,对多径利用雷达目标探测技术进行总结和展望,指出该技术在目前实际应用中所面临的潜在问题和挑战。这些结果表明,多径利用雷达目标探测技术正朝着多样化、智能化的方向发展。
在开展认知雷达波形设计时,由于发射波形与接收滤波器的非匹配体制,互模糊函数赋形相比传统模糊函数赋形优化自由度更高。该文针对强杂波条件下微弱运动目标检测问题,以最大化信干噪比为优化准则,提出了一种联合发射相位编码序列与接收滤波器设计的互模糊函数赋形方法。在恒模约束下,优化问题被建模为二次分式规划形式;然后通过引入辅助变量,并利用共轭梯度法求解Stiefel流形空间上的最小化问题,非凸优化据此转化为恒模约束二次优化问题;通过交替循环和类幂迭代算法求得最优解。此外考虑到发射波形受硬件限制而难以实现严格恒模,该文构建了一种低峰均比约束二次优化问题模型,并利用最近邻向量法求得最优解。最后,不同参数下的仿真与实测数据实验表明,该文赋形方法相较于传统方法具有较高的信干噪比增益和收敛速度。 在开展认知雷达波形设计时,由于发射波形与接收滤波器的非匹配体制,互模糊函数赋形相比传统模糊函数赋形优化自由度更高。该文针对强杂波条件下微弱运动目标检测问题,以最大化信干噪比为优化准则,提出了一种联合发射相位编码序列与接收滤波器设计的互模糊函数赋形方法。在恒模约束下,优化问题被建模为二次分式规划形式;然后通过引入辅助变量,并利用共轭梯度法求解Stiefel流形空间上的最小化问题,非凸优化据此转化为恒模约束二次优化问题;通过交替循环和类幂迭代算法求得最优解。此外考虑到发射波形受硬件限制而难以实现严格恒模,该文构建了一种低峰均比约束二次优化问题模型,并利用最近邻向量法求得最优解。最后,不同参数下的仿真与实测数据实验表明,该文赋形方法相较于传统方法具有较高的信干噪比增益和收敛速度。
全姿态散射中心模型是一种性能优良的光学区复杂目标电磁散射参数化模型。针对传统的基于候选点筛选和聚类的全姿态散射中心建模方法易出现虚假散射中心和遗漏真实散射中心的问题,该文提出了一种基于目标三维空间电磁散射强度场谱峰分析的建模方法。首先,基于目标多视一维散射中心参数,利用随机采样一致性(RANSAC)方法和Parzen窗函数方法估计目标在三维空间中的电磁散射强度场。然后,通过谱峰分析、散射中心关联和多视量测融合,得到全姿态三维散射中心的位置。最后,利用二值形态学处理修正全姿态散射中心的角度可见性,估计全姿态散射中心的散射系数和类型参数。仿真结果表明,该文方法所提取的全姿态散射中心与目标几何结构具有极强的关联性,相较传统方法,在缩减三维散射中心数量的同时提升了模型的表示精度。 全姿态散射中心模型是一种性能优良的光学区复杂目标电磁散射参数化模型。针对传统的基于候选点筛选和聚类的全姿态散射中心建模方法易出现虚假散射中心和遗漏真实散射中心的问题,该文提出了一种基于目标三维空间电磁散射强度场谱峰分析的建模方法。首先,基于目标多视一维散射中心参数,利用随机采样一致性(RANSAC)方法和Parzen窗函数方法估计目标在三维空间中的电磁散射强度场。然后,通过谱峰分析、散射中心关联和多视量测融合,得到全姿态三维散射中心的位置。最后,利用二值形态学处理修正全姿态散射中心的角度可见性,估计全姿态散射中心的散射系数和类型参数。仿真结果表明,该文方法所提取的全姿态散射中心与目标几何结构具有极强的关联性,相较传统方法,在缩减三维散射中心数量的同时提升了模型的表示精度。
雷达前视成像技术在精确制导打击、自主下降着陆、汽车自动驾驶等军民领域具有广阔的应用前景。由于多普勒相位历程的限制,机载平台的前视成像分辨率较低。解卷积方法可以进行前视成像,但当前视成像场景复杂时,现有的前视成像方法的成像质量会下降。针对复杂前视成像构型下的场景稀疏度度量和表征问题,该文提出一种基于概率模型驱动的机载贝叶斯前视超分辨多目标成像方法。首先通过将前视成像场景的数据维度由单帧空间扩展到多帧空间提升场景的稀疏度,然后基于广义高斯概率模型对成像场景的稀疏特性进行统计建模和稀疏度求解,最后基于贝叶斯框架完成稀疏前视成像。由于选取的稀疏度表征参数嵌入到前视成像的整个过程中,在每次迭代期间都会进行前视成像参数的更新,从而保证了前视成像算法的稳健性。通过计算机结果和实测数据处理,验证了该文方法的有效性。 雷达前视成像技术在精确制导打击、自主下降着陆、汽车自动驾驶等军民领域具有广阔的应用前景。由于多普勒相位历程的限制,机载平台的前视成像分辨率较低。解卷积方法可以进行前视成像,但当前视成像场景复杂时,现有的前视成像方法的成像质量会下降。针对复杂前视成像构型下的场景稀疏度度量和表征问题,该文提出一种基于概率模型驱动的机载贝叶斯前视超分辨多目标成像方法。首先通过将前视成像场景的数据维度由单帧空间扩展到多帧空间提升场景的稀疏度,然后基于广义高斯概率模型对成像场景的稀疏特性进行统计建模和稀疏度求解,最后基于贝叶斯框架完成稀疏前视成像。由于选取的稀疏度表征参数嵌入到前视成像的整个过程中,在每次迭代期间都会进行前视成像参数的更新,从而保证了前视成像算法的稳健性。通过计算机结果和实测数据处理,验证了该文方法的有效性。
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。 该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器。该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能。具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果。基于两个公开雷达数据集上的实验验证了所提检测器的检测性能。
针对前视合成孔径雷达(SAR)成像中的左右多普勒模糊问题,前视多通道SAR (FLMC-SAR)通过波束形成可实现多普勒解模糊成像。然而阵列偏角误差和时变姿态误差会导致目标的空时特性失配,进而影响左右多普勒解模糊成像的性能。该文提出了一种FLMC-SAR成像及阵列姿态误差补偿方法,首先建立了FLMC-SAR三维阵列偏角误差和时变平台姿态误差模型,分析了二维空时谱平面中目标的空时特性匹配机理,建立分析阵列姿态误差带来的空时特性失配在空时平面中的表征模型,然后基于误差的非左右空变特性,提出在BP函数中添加误差补偿相位统一补偿左右目标的阵列姿态误差。仿真实验证明所提方法可实现FLMC-SAR阵列姿态校正及误差补偿,提升了前视多普勒模糊抑制性能,保证了前视成像的方位分辨性能。 针对前视合成孔径雷达(SAR)成像中的左右多普勒模糊问题,前视多通道SAR (FLMC-SAR)通过波束形成可实现多普勒解模糊成像。然而阵列偏角误差和时变姿态误差会导致目标的空时特性失配,进而影响左右多普勒解模糊成像的性能。该文提出了一种FLMC-SAR成像及阵列姿态误差补偿方法,首先建立了FLMC-SAR三维阵列偏角误差和时变平台姿态误差模型,分析了二维空时谱平面中目标的空时特性匹配机理,建立分析阵列姿态误差带来的空时特性失配在空时平面中的表征模型,然后基于误差的非左右空变特性,提出在BP函数中添加误差补偿相位统一补偿左右目标的阵列姿态误差。仿真实验证明所提方法可实现FLMC-SAR阵列姿态校正及误差补偿,提升了前视多普勒模糊抑制性能,保证了前视成像的方位分辨性能。
该文针对分布式相控阵多雷达网络的多目标跟踪场景,研究非理想检测条件下的节点选择与辐射资源联合优化分配算法。首先,根据分布式相控阵多雷达网络构成、目标运动模型、雷达量测模型以及雷达节点检测情况,推导非理想检测下以雷达节点选择、辐射功率和信号带宽为变量的贝叶斯克拉默-拉奥下界(BCRLB)闭式解析表达式,并以此作为多目标跟踪精度衡量指标。在此基础上,以最小化系统各雷达节点对所有目标的总辐射功率为优化目标,以满足目标跟踪精度门限以及给定的系统射频辐射资源限制为约束条件,建立非理想检测条件下多雷达网络节点选择与辐射资源联合优化分配模型,对各时刻雷达节点选择、辐射功率和信号带宽等参数进行联合优化设计,以提升多雷达网络的射频隐身性能。最后,针对上述非线性、非凸优化问题,采用基于障碍函数法和循环最小化算法的4步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能在满足给定多目标跟踪精度的条件下有效降低分布式相控阵多雷达网络的总辐射功率,至少降低了约32.3%,从而提升其射频隐身性能。 该文针对分布式相控阵多雷达网络的多目标跟踪场景,研究非理想检测条件下的节点选择与辐射资源联合优化分配算法。首先,根据分布式相控阵多雷达网络构成、目标运动模型、雷达量测模型以及雷达节点检测情况,推导非理想检测下以雷达节点选择、辐射功率和信号带宽为变量的贝叶斯克拉默-拉奥下界(BCRLB)闭式解析表达式,并以此作为多目标跟踪精度衡量指标。在此基础上,以最小化系统各雷达节点对所有目标的总辐射功率为优化目标,以满足目标跟踪精度门限以及给定的系统射频辐射资源限制为约束条件,建立非理想检测条件下多雷达网络节点选择与辐射资源联合优化分配模型,对各时刻雷达节点选择、辐射功率和信号带宽等参数进行联合优化设计,以提升多雷达网络的射频隐身性能。最后,针对上述非线性、非凸优化问题,采用基于障碍函数法和循环最小化算法的4步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能在满足给定多目标跟踪精度的条件下有效降低分布式相控阵多雷达网络的总辐射功率,至少降低了约32.3%,从而提升其射频隐身性能。
波达角估计算法用于机载多通道雷达前视成像时可以突破瑞利极限,实现同一波束主瓣宽度内的多目标分辨,改善成像的方位向分辨率,然而天线波束覆盖有限且其快速扫描使得可用于协方差矩阵估计的数据样本缺乏,导致对目标位置和幅度估计出现误差。该文提出了一种基于单快拍迭代超分辨处理的多通道雷达前视成像算法,通过对单个空域快拍的迭代谱估计可获得目标的准确位置和幅度信息,再通过多个脉冲的非相干累积得到前视方位高分辨成像。仿真和实测数据处理结果表明,所提算法具有分辨多目标的能力,相较于传统前视成像算法显著提高了前视图像的方位分辨率,同时保证了点目标的精确重构和面目标的轮廓重构。 波达角估计算法用于机载多通道雷达前视成像时可以突破瑞利极限,实现同一波束主瓣宽度内的多目标分辨,改善成像的方位向分辨率,然而天线波束覆盖有限且其快速扫描使得可用于协方差矩阵估计的数据样本缺乏,导致对目标位置和幅度估计出现误差。该文提出了一种基于单快拍迭代超分辨处理的多通道雷达前视成像算法,通过对单个空域快拍的迭代谱估计可获得目标的准确位置和幅度信息,再通过多个脉冲的非相干累积得到前视方位高分辨成像。仿真和实测数据处理结果表明,所提算法具有分辨多目标的能力,相较于传统前视成像算法显著提高了前视图像的方位分辨率,同时保证了点目标的精确重构和面目标的轮廓重构。
随着卫星技术的发展,极化合成孔径雷达(PolSAR)数据的分辨率和数据质量得到大幅提升,为人造目标的精细化目视解译提供了良好的数据条件。目前主要采用多分量分解的方法,但是易造成像素错分问题,为此,该文结合Yamaguchi极化分解和极化熵提出了一种非固定阈值划分的方法用于实现全极化SAR图像船只结构精细化特征表征。Yamaguchi极化分解能够识别基本散射机制,其修正后的体散射模型更符合实测数据,可有效对人造目标进行表征。极化熵H在弱去极化状态下可以看成某一指定等效点的目标散射机制,能够有效突出船只主散射特征。因此,该文通过将Yamaguchi极化分解算法的非固定三分量与极化熵的低中高熵内嵌,将其分为非固定阈值的九分类成分,从而降低硬阈值处理在阈值边界处受噪声影响产生的类别随机性。并且将二次散射和单次散射均显著的区域称为混合散射(MSM),以更好匹配实验中船只典型结构的散射类型。在此基础上,利用广义相似性参数进一步缩短类内距离,采用改进后的GSP-Wishart分类器进行迭代聚类,旨在通过提高二次散射和混合散射机制以提高不同类型船只可区分度。最后,该文采用中国上海某港口的高分三号全极化SAR数据进行实验,为了验证每艘船只特征表征正确性,通过船舶自动识别系统(AIS)收集并筛选了该港口船只信息及光学数据,并与极化SAR数据中每艘船只进行匹配。实验结果表明该方法可有效区分散货船、集装箱船和油轮3种类型船只。 随着卫星技术的发展,极化合成孔径雷达(PolSAR)数据的分辨率和数据质量得到大幅提升,为人造目标的精细化目视解译提供了良好的数据条件。目前主要采用多分量分解的方法,但是易造成像素错分问题,为此,该文结合Yamaguchi极化分解和极化熵提出了一种非固定阈值划分的方法用于实现全极化SAR图像船只结构精细化特征表征。Yamaguchi极化分解能够识别基本散射机制,其修正后的体散射模型更符合实测数据,可有效对人造目标进行表征。极化熵H在弱去极化状态下可以看成某一指定等效点的目标散射机制,能够有效突出船只主散射特征。因此,该文通过将Yamaguchi极化分解算法的非固定三分量与极化熵的低中高熵内嵌,将其分为非固定阈值的九分类成分,从而降低硬阈值处理在阈值边界处受噪声影响产生的类别随机性。并且将二次散射和单次散射均显著的区域称为混合散射(MSM),以更好匹配实验中船只典型结构的散射类型。在此基础上,利用广义相似性参数进一步缩短类内距离,采用改进后的GSP-Wishart分类器进行迭代聚类,旨在通过提高二次散射和混合散射机制以提高不同类型船只可区分度。最后,该文采用中国上海某港口的高分三号全极化SAR数据进行实验,为了验证每艘船只特征表征正确性,通过船舶自动识别系统(AIS)收集并筛选了该港口船只信息及光学数据,并与极化SAR数据中每艘船只进行匹配。实验结果表明该方法可有效区分散货船、集装箱船和油轮3种类型船只。
自动目标识别(ATR)是一个汇集模式识别、人工智能、信息处理等多学科融合发展的技术领域,ATR评价则是将ATR算法/系统等作为研究对象的评价行为。由于ATR算法/系统面临目标非合作、工作条件复杂多样、决策者自身存在多种主观偏好等诸多困难,ATR评价贯穿ATR研制的全过程,对ATR技术发展起到重要的指导作用。该文首先阐述了ATR评价方法研究的内涵,简要回顾ATR技术发展;然后从性能指标定义、测试条件构建、推断与决策等方面详细梳理分析了ATR评价方法研究的成果、应用及最新研究进展;最后总结了若干ATR评价方法研究的发展方向。该文旨在为更好地理解ATR评价和有效使用ATR评价方法提供新的参考借鉴。 自动目标识别(ATR)是一个汇集模式识别、人工智能、信息处理等多学科融合发展的技术领域,ATR评价则是将ATR算法/系统等作为研究对象的评价行为。由于ATR算法/系统面临目标非合作、工作条件复杂多样、决策者自身存在多种主观偏好等诸多困难,ATR评价贯穿ATR研制的全过程,对ATR技术发展起到重要的指导作用。该文首先阐述了ATR评价方法研究的内涵,简要回顾ATR技术发展;然后从性能指标定义、测试条件构建、推断与决策等方面详细梳理分析了ATR评价方法研究的成果、应用及最新研究进展;最后总结了若干ATR评价方法研究的发展方向。该文旨在为更好地理解ATR评价和有效使用ATR评价方法提供新的参考借鉴。
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。 合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势。飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点。近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能。该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势。
由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。 由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。