优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
该文针对异步多目标跟踪场景,研究了非理想检测下的异构多雷达网络功率时间联合优化问题。首先,将各融合采样间隔内得到的来自不同雷达节点的所有异步量测信息融合为复合量测信息,结合该复合量测信息推导了非理想检测下包含雷达节点选择、辐射功率和驻留时间等参数的异步目标跟踪误差贝叶斯克拉美罗下界(BCRLB)解析表达式,并将其作为异步多目标跟踪精度的衡量指标。在此基础上,建立了非理想检测下面向异步多目标跟踪的异构多雷达网络功率时间联合优化模型,即以最小化异步多目标跟踪误差为优化目标,以满足给定的系统辐射资源限制为约束条件,对不同雷达网络中雷达节点的选择方式、辐射功率和驻留时间等发射参数进行自适应联合优化设计,从而提升异构多雷达网络的异步多目标跟踪精度。最后,针对上述优化问题,结合序列二次规划(SQP)算法和循环最小法,采用四步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能够有效提升异构多雷达网络的异步多目标跟踪精度。 该文针对异步多目标跟踪场景,研究了非理想检测下的异构多雷达网络功率时间联合优化问题。首先,将各融合采样间隔内得到的来自不同雷达节点的所有异步量测信息融合为复合量测信息,结合该复合量测信息推导了非理想检测下包含雷达节点选择、辐射功率和驻留时间等参数的异步目标跟踪误差贝叶斯克拉美罗下界(BCRLB)解析表达式,并将其作为异步多目标跟踪精度的衡量指标。在此基础上,建立了非理想检测下面向异步多目标跟踪的异构多雷达网络功率时间联合优化模型,即以最小化异步多目标跟踪误差为优化目标,以满足给定的系统辐射资源限制为约束条件,对不同雷达网络中雷达节点的选择方式、辐射功率和驻留时间等发射参数进行自适应联合优化设计,从而提升异构多雷达网络的异步多目标跟踪精度。最后,针对上述优化问题,结合序列二次规划(SQP)算法和循环最小法,采用四步分解算法进行求解。仿真结果表明,与现有算法相比,所提算法能够有效提升异构多雷达网络的异步多目标跟踪精度。
超分辨波达方位角估计是车载毫米波雷达实现目标精准定位及跟踪需要解决的关键问题。针对车载场景中常见的阵列孔径受限、少快拍、低信噪比以及信源相干的情况,该文提出了一种基于距离多普勒域原子范数最小化(RD-ANM)的车载毫米波雷达动目标超分辨DOA估计方法:首先,构建了基于动目标雷达回波的距离多普勒域阵列接收信号;其次,设计了动目标多普勒耦合相位补偿矢量,用以削弱目标运动对DOA估计的影响;最后,提出了基于原子范数框架的多目标超分辨DOA估计方法。相较于车载毫米波雷达现使用的DOA估计算法,该文算法能够在基于低信噪比条件和单快拍处理前提下获得较高的测角分辨率和估计精度,以及拥有不牺牲阵列孔径对相干信号进行处理的稳健性能。理论分析、数值仿真以及实测实验验证了该文算法的有效性。 超分辨波达方位角估计是车载毫米波雷达实现目标精准定位及跟踪需要解决的关键问题。针对车载场景中常见的阵列孔径受限、少快拍、低信噪比以及信源相干的情况,该文提出了一种基于距离多普勒域原子范数最小化(RD-ANM)的车载毫米波雷达动目标超分辨DOA估计方法:首先,构建了基于动目标雷达回波的距离多普勒域阵列接收信号;其次,设计了动目标多普勒耦合相位补偿矢量,用以削弱目标运动对DOA估计的影响;最后,提出了基于原子范数框架的多目标超分辨DOA估计方法。相较于车载毫米波雷达现使用的DOA估计算法,该文算法能够在基于低信噪比条件和单快拍处理前提下获得较高的测角分辨率和估计精度,以及拥有不牺牲阵列孔径对相干信号进行处理的稳健性能。理论分析、数值仿真以及实测实验验证了该文算法的有效性。
基于动力学与运动学原理的雷达回波建模是炮弹目标微多普勒特征分析与参数提取的理论基础。该文首先对炮弹在直线弹道段受到的起始扰动进行分析,结合炮弹目标动力学方程,建立了以两圆运动模式为特征的炮弹角运动模型,阐明了炮弹目标自旋、章动和进动等角运动的含义;在此基础上,推导了炮弹角运动产生的微多普勒信号参数化表征,获得了炮弹目标角运动对目标回波在信号级的映射关系;然后,对高速自旋炮弹和低速自旋尾翼炮弹两种典型目标角运动受起始扰动影响的雷达回波信号进行仿真和时频分析,并基于炮弹目标实测数据对比验证了理论分析与模型的正确性。通过理论分析、建模仿真与实验验证,丰富和验证了炮弹目标的微多普勒效应理论,为炮弹目标运动特性辨识提供了理论和技术支撑。 基于动力学与运动学原理的雷达回波建模是炮弹目标微多普勒特征分析与参数提取的理论基础。该文首先对炮弹在直线弹道段受到的起始扰动进行分析,结合炮弹目标动力学方程,建立了以两圆运动模式为特征的炮弹角运动模型,阐明了炮弹目标自旋、章动和进动等角运动的含义;在此基础上,推导了炮弹角运动产生的微多普勒信号参数化表征,获得了炮弹目标角运动对目标回波在信号级的映射关系;然后,对高速自旋炮弹和低速自旋尾翼炮弹两种典型目标角运动受起始扰动影响的雷达回波信号进行仿真和时频分析,并基于炮弹目标实测数据对比验证了理论分析与模型的正确性。通过理论分析、建模仿真与实验验证,丰富和验证了炮弹目标的微多普勒效应理论,为炮弹目标运动特性辨识提供了理论和技术支撑。
针对复杂场景舰船检测中正负样本分配不合理以及定位质量较差的问题,该文提出了一种基于自适应锚框分配与交并比(IOU)监督的复杂场景合成孔径雷达(SAR)舰船检测方法(A3-IOUS-Net)。首先,A3-IOUS-Net提出了自适应锚框分配,建立概率分布模型来自适应地将锚框分配为正负样本,增强了复杂场景下的舰船样本学习能力。然后,A3-IOUS-Net提出了IOU监督,在预测头部增加IOU预测分支来监督检测框定位质量,使得网络能够精确定位复杂场景下的舰船目标。此外,在该IOU预测分支中引入了坐标注意力模块,抑制了背景杂波干扰,进一步提高了检测精度。在公开的SAR舰船检测数据集(SSDD)的实验结果表明,A3-IOUS-Net在复杂场景中的平均精度(AP)值为82.04%,优于其他15种对比模型。 针对复杂场景舰船检测中正负样本分配不合理以及定位质量较差的问题,该文提出了一种基于自适应锚框分配与交并比(IOU)监督的复杂场景合成孔径雷达(SAR)舰船检测方法(A3-IOUS-Net)。首先,A3-IOUS-Net提出了自适应锚框分配,建立概率分布模型来自适应地将锚框分配为正负样本,增强了复杂场景下的舰船样本学习能力。然后,A3-IOUS-Net提出了IOU监督,在预测头部增加IOU预测分支来监督检测框定位质量,使得网络能够精确定位复杂场景下的舰船目标。此外,在该IOU预测分支中引入了坐标注意力模块,抑制了背景杂波干扰,进一步提高了检测精度。在公开的SAR舰船检测数据集(SSDD)的实验结果表明,A3-IOUS-Net在复杂场景中的平均精度(AP)值为82.04%,优于其他15种对比模型。
特征检测方法是解决海杂波中小目标检测问题的重要途径,其根据特征值是否在判决区域内判断目标有无,几乎不考虑特征间的时序信息。事实上,历史帧数据与当前帧数据的时序关联性,可以为当前帧特征值的计算提供丰富的先验信息。为此,该文提出了一种使用自回归(AR)模型在特征域对雷达回波进行时序建模和预测的方法,以利用历史帧特征的先验信息。首先,使用AR模型对平均幅度(AA)、相对多普勒峰高(RDPH)、频谱峰均比(FPAR)特征序列进行建模和1步预测分析,验证了对特征序列进行AR建模和预测的可行性。其次,提出利用历史帧特征时序信息作为先验信息的特征值提取方法,在此基础上,提出一种基于三特征预测的小目标检测方法,该方法可有效利用AA, RDPH和FPAR的历史帧特征时序信息。最后,使用实测数据验证了所提方法的有效性。 特征检测方法是解决海杂波中小目标检测问题的重要途径,其根据特征值是否在判决区域内判断目标有无,几乎不考虑特征间的时序信息。事实上,历史帧数据与当前帧数据的时序关联性,可以为当前帧特征值的计算提供丰富的先验信息。为此,该文提出了一种使用自回归(AR)模型在特征域对雷达回波进行时序建模和预测的方法,以利用历史帧特征的先验信息。首先,使用AR模型对平均幅度(AA)、相对多普勒峰高(RDPH)、频谱峰均比(FPAR)特征序列进行建模和1步预测分析,验证了对特征序列进行AR建模和预测的可行性。其次,提出利用历史帧特征时序信息作为先验信息的特征值提取方法,在此基础上,提出一种基于三特征预测的小目标检测方法,该方法可有效利用AA, RDPH和FPAR的历史帧特征时序信息。最后,使用实测数据验证了所提方法的有效性。
针对城市场景中车辆目标分布状态随机,在检测过程中容易受到环境因素干扰等问题,提出一种将多角度合成孔径雷达(SAR)图像用于静止车辆目标提取的检测算法。在特征提取阶段,设计了一种适用于多角度图像上车辆目标的多尺度旋转不变的Gabor滤波器奇分量比例算子(MR-GOFRO)特征提取方法,对原有的GOFRO特征进行了滤波形式、特征尺度、特征方向、特征层次等4个方面的扩展,使其能够适应车辆目标在方向、尺度、形态等方面可能发生的变化。在图像融合阶段,设计了加权的非负矩阵分解(W-NMF)方法,根据特征质量调整来源于不同图像的特征权重,减少由于不同角度间相互干扰造成融合特征质量下降的现象。将该文所提出方法在不同的机载多角度图像数据集上进行验证,实验结果表明,该文提出的特征提取方法与同类方法相比,检测精度平均提升了3.69%;该文提出的特征融合方法与同类方法相比,检测精度提升了4.67%。 针对城市场景中车辆目标分布状态随机,在检测过程中容易受到环境因素干扰等问题,提出一种将多角度合成孔径雷达(SAR)图像用于静止车辆目标提取的检测算法。在特征提取阶段,设计了一种适用于多角度图像上车辆目标的多尺度旋转不变的Gabor滤波器奇分量比例算子(MR-GOFRO)特征提取方法,对原有的GOFRO特征进行了滤波形式、特征尺度、特征方向、特征层次等4个方面的扩展,使其能够适应车辆目标在方向、尺度、形态等方面可能发生的变化。在图像融合阶段,设计了加权的非负矩阵分解(W-NMF)方法,根据特征质量调整来源于不同图像的特征权重,减少由于不同角度间相互干扰造成融合特征质量下降的现象。将该文所提出方法在不同的机载多角度图像数据集上进行验证,实验结果表明,该文提出的特征提取方法与同类方法相比,检测精度平均提升了3.69%;该文提出的特征融合方法与同类方法相比,检测精度提升了4.67%。
近年来,由于毫米波雷达具有穿透能力强、体积小巧、探测精度高等特性,因此被广泛应用于安全检测、零件无损探测和医学诊断等领域。然而,由于硬件发射带宽的限制,如何实现超高二维分辨率成为毫米波雷达应用中的挑战之一。采用雷达平台扫描形成二维孔径的方式可以实现高度向和方位向的二维高分辨。然而,在扫描过程中,毫米波雷达在高度维会产生稀疏的轨迹,使得高度向回波采样稀疏,进而降低成像质量。为了解决这一问题,该文提出了一种基于Hankel变换矩阵填充的毫米波雷达高分辨三维成像算法。该方法采用了矩阵填充算法对稀疏采样回波进行了恢复,保证了毫米波雷达在扫描平面的成像精度。该文首先分析了毫米波雷达高度-距离切面的低秩先验特性,为了解决稀疏轨迹采样时,数据整行整列缺失的问题,对回波数据矩阵采用Hankel变换进行重新构造,使得待恢复数据矩阵满足矩阵填充算法应用条件。然后,提出了一种融合低秩与稀疏先验的基于截断的Schatten-p范数的矩阵填充算法,对采样数据矩阵进行恢复,以保证稀疏轨迹毫米波雷达的三维分辨率。最后,通过仿真和多组实测数据,证明了采用该文方法可以在仅使用20%~30%的高度向回波时仍实现目标高分辨三维成像。 近年来,由于毫米波雷达具有穿透能力强、体积小巧、探测精度高等特性,因此被广泛应用于安全检测、零件无损探测和医学诊断等领域。然而,由于硬件发射带宽的限制,如何实现超高二维分辨率成为毫米波雷达应用中的挑战之一。采用雷达平台扫描形成二维孔径的方式可以实现高度向和方位向的二维高分辨。然而,在扫描过程中,毫米波雷达在高度维会产生稀疏的轨迹,使得高度向回波采样稀疏,进而降低成像质量。为了解决这一问题,该文提出了一种基于Hankel变换矩阵填充的毫米波雷达高分辨三维成像算法。该方法采用了矩阵填充算法对稀疏采样回波进行了恢复,保证了毫米波雷达在扫描平面的成像精度。该文首先分析了毫米波雷达高度-距离切面的低秩先验特性,为了解决稀疏轨迹采样时,数据整行整列缺失的问题,对回波数据矩阵采用Hankel变换进行重新构造,使得待恢复数据矩阵满足矩阵填充算法应用条件。然后,提出了一种融合低秩与稀疏先验的基于截断的Schatten-p范数的矩阵填充算法,对采样数据矩阵进行恢复,以保证稀疏轨迹毫米波雷达的三维分辨率。最后,通过仿真和多组实测数据,证明了采用该文方法可以在仅使用20%~30%的高度向回波时仍实现目标高分辨三维成像。
多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。 多站协同雷达目标识别旨在利用多站信息的互补性提升识别性能。传统多站协同目标识别方法未直接考虑站间数据差异问题,且通常采用相对简单的融合策略,难以取得准确、稳健的识别性能。该文针对多站协同雷达高分辨距离像(HRRP)目标识别问题,提出了一种基于角度引导的Transformer融合网络。该网络以Transformer作为特征提取主体结构,提取单站HRRP的局部和全局特征。并在此基础上设计了3个新的辅助模块促进多站特征融合学习,角度引导模块、前级特征交互模块以及深层注意力特征融合模块。首先,角度引导模块使用目标方位角度对站间数据差异进行建模,强化了所提特征与多站视角的对应关系,提升了特征稳健性与一致性。其次,前级特征交互模块和深层注意力特征融合模块相结合的融合策略,实现了对各站特征的多阶段层次化融合。最后,基于实测数据模拟多站场景进行协同识别实验,结果表明所提方法能够有效地提升多站协同时的目标识别性能。
传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。 传统的组网雷达功率分配一般在干扰模型给定的情况下进行优化,而干扰机资源优化是在雷达功率分配方式给定情况下,这样的研究缺乏博弈和交互。考虑到日益严重的雷达和干扰机相互博弈的作战场景,该文提出了伴随压制干扰下组网雷达功率分配深度博弈问题,其中智能化的目标压制干扰采用深度强化学习(DRL)训练。首先在该问题中干扰机和组网雷达被映射为两个智能体,根据干扰模型和雷达检测模型建立了压制干扰下组网雷达的目标检测模型和最大化目标检测概率优化目标函数。在组网雷达智能体方面,由近端策略优化(PPO)策略网络生成雷达功率分配向量;在干扰机智能体方面,设计了混合策略网络来同时生成波束选择动作和功率分配动作;引入领域知识构建更加有效的奖励函数,目标检测模型、等功率分配策略和贪婪干扰功率分配策略3种领域知识分别用于生成组网雷达智能体和干扰机智能体的导向奖励,从而提高智能体的学习效率和性能。最后采用交替训练方法来学习两个智能体的策略网络参数。实验结果表明;当干扰机采用基于DRL的资源分配策略时,采用基于DRL的组网雷达功率分配在目标检测概率和运行速度两种指标上明显优于基于粒子群的组网雷达功率分配和基于人工鱼群的组网雷达功率分配。
真实场景的高分辨率合成孔径雷达(SAR)图像大多是复杂的,对于地物场景来说,其背景中存在草地、树木、道路和建筑物等杂波,这些复杂背景杂波使得传统SAR图像目标检测算法的结果包含大量虚警和漏警,严重影响了SAR目标检测性能。该文提出一种基于特征分解卷积神经网络(CNN)的SAR图像目标检测方法,该方法在特征提取模块对输入图像提取特征后,通过特征分解模块分解出鉴别特征和干扰特征,最后将鉴别特征输入到多尺度检测模块进行目标检测。特征分解后去除的干扰特征是对目标检测不利的部分,其中包括复杂背景杂波,而保留的鉴别特征是对目标检测有利的部分,其中包括感兴趣目标,从而有效降低虚警和漏警,提高SAR目标检测性能。该文所提方法在MiniSAR实测数据集和SAR飞机检测实测数据集(SADD)上的F1-score值分别为0.9357和0.9211,与不加特征分解模块的单步多框检测器相比,所提方法的F1-score值分别提升了0.0613和0.0639。基于实测数据集的实验结果证明了所提方法对复杂场景SAR图像进行目标检测的有效性。 真实场景的高分辨率合成孔径雷达(SAR)图像大多是复杂的,对于地物场景来说,其背景中存在草地、树木、道路和建筑物等杂波,这些复杂背景杂波使得传统SAR图像目标检测算法的结果包含大量虚警和漏警,严重影响了SAR目标检测性能。该文提出一种基于特征分解卷积神经网络(CNN)的SAR图像目标检测方法,该方法在特征提取模块对输入图像提取特征后,通过特征分解模块分解出鉴别特征和干扰特征,最后将鉴别特征输入到多尺度检测模块进行目标检测。特征分解后去除的干扰特征是对目标检测不利的部分,其中包括复杂背景杂波,而保留的鉴别特征是对目标检测有利的部分,其中包括感兴趣目标,从而有效降低虚警和漏警,提高SAR目标检测性能。该文所提方法在MiniSAR实测数据集和SAR飞机检测实测数据集(SADD)上的F1-score值分别为0.9357和0.9211,与不加特征分解模块的单步多框检测器相比,所提方法的F1-score值分别提升了0.0613和0.0639。基于实测数据集的实验结果证明了所提方法对复杂场景SAR图像进行目标检测的有效性。
该文针对多雷达协同场景下的多任务实时规划问题,提出了一种基于任务效用最大化的多雷达协同在线任务规划模型。该模型以任务效用函数最大化为目标将多雷达协同任务分配建模成一个基于整数规划的多变量混合优化问题;随后提出了启发式穷举搜索算法和基于凸松弛的两步解耦算法,可在多项式时间内完成了该NP难优化问题的求解,且分别在优化性能和计算效率方面有所侧重。仿真实验表明,相比于可找到最优解的穷举搜索算法,该文提出算法可有效降低任务规划问题复杂度,提升问题求解效率,以满足在线任务分配的实时性要求。 该文针对多雷达协同场景下的多任务实时规划问题,提出了一种基于任务效用最大化的多雷达协同在线任务规划模型。该模型以任务效用函数最大化为目标将多雷达协同任务分配建模成一个基于整数规划的多变量混合优化问题;随后提出了启发式穷举搜索算法和基于凸松弛的两步解耦算法,可在多项式时间内完成了该NP难优化问题的求解,且分别在优化性能和计算效率方面有所侧重。仿真实验表明,相比于可找到最优解的穷举搜索算法,该文提出算法可有效降低任务规划问题复杂度,提升问题求解效率,以满足在线任务分配的实时性要求。
频控阵-多输入多输出(FDA-MIMO)雷达通过波束形成技术实现抗干扰的研究已经十分丰富。然而,在实际工作中,受元器件老化和存储设备容量等硬件因素的影响,计算得到的信号协方差矩阵可能会出现数据缺失的情况。为了克服协方差矩阵数据缺失对波束形成算法性能的影响,该文提出了一种基于深度学习的FDA-MIMO雷达协方差矩阵数据恢复方法,并建立了协方差矩阵恢复-自适应波束形成的两阶段处理框架;提出了一种双通道生成对抗网络(GAN)来解决矩阵数据恢复问题,该网络主要由鉴别器(D)和生成器(G)两部分组成:生成器主要功能是输出完整的矩阵数据,鉴别器则是判别数据为真实数据还是填补数据。整个网络通过鉴别器和生成器之间相互对抗使生成器生成样本接近于真实数据的分布,从而实现对协方差矩阵缺失数据的恢复。此外,考虑到协方差矩阵数据为复数,分别构造两个独立的GAN网络以满足矩阵数据实部和虚部的训练。最后,数值实验结果表明,协方差矩阵真实数据与恢复后的数据平均均方根误差仅为0.01量级,验证了所提方法能够有效恢复协方差矩阵的缺失数据。 频控阵-多输入多输出(FDA-MIMO)雷达通过波束形成技术实现抗干扰的研究已经十分丰富。然而,在实际工作中,受元器件老化和存储设备容量等硬件因素的影响,计算得到的信号协方差矩阵可能会出现数据缺失的情况。为了克服协方差矩阵数据缺失对波束形成算法性能的影响,该文提出了一种基于深度学习的FDA-MIMO雷达协方差矩阵数据恢复方法,并建立了协方差矩阵恢复-自适应波束形成的两阶段处理框架;提出了一种双通道生成对抗网络(GAN)来解决矩阵数据恢复问题,该网络主要由鉴别器(D)和生成器(G)两部分组成:生成器主要功能是输出完整的矩阵数据,鉴别器则是判别数据为真实数据还是填补数据。整个网络通过鉴别器和生成器之间相互对抗使生成器生成样本接近于真实数据的分布,从而实现对协方差矩阵缺失数据的恢复。此外,考虑到协方差矩阵数据为复数,分别构造两个独立的GAN网络以满足矩阵数据实部和虚部的训练。最后,数值实验结果表明,协方差矩阵真实数据与恢复后的数据平均均方根误差仅为0.01量级,验证了所提方法能够有效恢复协方差矩阵的缺失数据。
相比于单部雷达系统,空间分置的网络化雷达由于空间分集、频率分集等优势,通常具备更优的探测性能。当前基于网络化雷达系统的融合检测方法大多仅依据目标回波幅度信息,未考虑相参雷达系统能够获取的多普勒信息对融合检测的增益。直观地,网络化雷达系统中不同雷达观测到目标的空间位置与径向速度应当满足一定的物理约束,利用该额外信息应当能够提升目标与虚警的可分性。基于此,该文提出了多普勒信息辅助的网络化雷达融合检测算法:首先利用多雷达站对同一目标角度与多普勒速度观测的耦合性构建观测间需要满足的约束不等式组,然后基于运筹学中两阶段法对该不等式组是否有可行解做出判断,进而对目标是否存在做出判决。仿真实验表明,所提算法能够有效提升网络化雷达系统的融合检测性能。同时,该文还针对所提算法分析了雷达布站位置及目标位置对融合检测性能的影响。 相比于单部雷达系统,空间分置的网络化雷达由于空间分集、频率分集等优势,通常具备更优的探测性能。当前基于网络化雷达系统的融合检测方法大多仅依据目标回波幅度信息,未考虑相参雷达系统能够获取的多普勒信息对融合检测的增益。直观地,网络化雷达系统中不同雷达观测到目标的空间位置与径向速度应当满足一定的物理约束,利用该额外信息应当能够提升目标与虚警的可分性。基于此,该文提出了多普勒信息辅助的网络化雷达融合检测算法:首先利用多雷达站对同一目标角度与多普勒速度观测的耦合性构建观测间需要满足的约束不等式组,然后基于运筹学中两阶段法对该不等式组是否有可行解做出判断,进而对目标是否存在做出判决。仿真实验表明,所提算法能够有效提升网络化雷达系统的融合检测性能。同时,该文还针对所提算法分析了雷达布站位置及目标位置对融合检测性能的影响。
随着合成孔径雷达(SAR)在测绘带宽度、空间以及时间分辨率上的大幅提升,由不同时间获取的SAR图像配准得到的时间序列能更加精确地提供观测区域的动态变化信息。然而,相干斑噪声以及沿时间维度突变信号为后续的解译工作带来了严重挑战。尽管现有的主流方法可以对时序SAR图像的相干斑进行有效抑制,但沿时间维度突变信号会对去噪结果产生干扰。为更好地解决此问题,该文提出了一种基于对数域加性信号分解的方法,能同时抑制相干斑噪声并且对时序图像中的稳定信号和沿时间维度突变信号进行分离,从而消除突变信号对于去噪结果的影响。在仿真数据受到突变信号干扰的情况下,所提方法与其他主流方法相比,其去噪结果在峰值信噪比(PSNR)指标上取得了大约3 dB的提升。在哨兵1号数据上,所提方法能鲁棒地对时序图像中的相干斑噪声进行抑制,并且得到的突变信号成分也为后续的解译工作提供了参考数据。 随着合成孔径雷达(SAR)在测绘带宽度、空间以及时间分辨率上的大幅提升,由不同时间获取的SAR图像配准得到的时间序列能更加精确地提供观测区域的动态变化信息。然而,相干斑噪声以及沿时间维度突变信号为后续的解译工作带来了严重挑战。尽管现有的主流方法可以对时序SAR图像的相干斑进行有效抑制,但沿时间维度突变信号会对去噪结果产生干扰。为更好地解决此问题,该文提出了一种基于对数域加性信号分解的方法,能同时抑制相干斑噪声并且对时序图像中的稳定信号和沿时间维度突变信号进行分离,从而消除突变信号对于去噪结果的影响。在仿真数据受到突变信号干扰的情况下,所提方法与其他主流方法相比,其去噪结果在峰值信噪比(PSNR)指标上取得了大约3 dB的提升。在哨兵1号数据上,所提方法能鲁棒地对时序图像中的相干斑噪声进行抑制,并且得到的突变信号成分也为后续的解译工作提供了参考数据。
在雷达道路目标识别领域,目标类别多变且特性相近时增加目标特征维数是一种提高识别性能常用的手段。然而特征维数的增多会导致特征冗余和维数灾难,因此需对提取的高维特征集进行优选,基于随机搜索的自适应遗传算法(AGA)是一种有效的特征优选方法。为提升AGA算法的特征优选效率和精度,现有方法通常通过引入特征与目标种类的先验相关度对高维特征集进行预降维,然而此类算法仅考虑了单个特征与目标的相关性,忽略了特征组合与目标类别的匹配度,使得优选出的特征集不一定是目标的最佳识别组合。针对该问题,该文通过引入直方图分析对不同特征组合与目标类别的匹配度加以研究,提出了一种新的改进自适应遗传(HA-AGA)特征优选方法,在提升特征优选效率和精度的同时提升目标的识别性能。基于毫米波雷达实测数据集的对比实验表明,所提出的HA-AGA方法的目标识别平均精确率可达到95.7%,分别比IG-GA, ReliefF-IAGA和改进RetinaNet方法提升了1.9%, 2.4%和10.1%。基于公共数据集CARRADA的对比实验表明,所提出的HA-AGA方法的目标识别平均精确率达到93.0%,分别比IG-GA和ReliefF-IAGA方法提升了1.2%和1.5%,验证了所提方法的有效性和优越性。此外,还进行了不同特征优选方法分别结合集成装袋树、精细树和K-最邻近(KNN)分类器的性能对比,实验结果表明所提方法结合不同分类器均具有明显优势,具有一定的广泛适用性。 在雷达道路目标识别领域,目标类别多变且特性相近时增加目标特征维数是一种提高识别性能常用的手段。然而特征维数的增多会导致特征冗余和维数灾难,因此需对提取的高维特征集进行优选,基于随机搜索的自适应遗传算法(AGA)是一种有效的特征优选方法。为提升AGA算法的特征优选效率和精度,现有方法通常通过引入特征与目标种类的先验相关度对高维特征集进行预降维,然而此类算法仅考虑了单个特征与目标的相关性,忽略了特征组合与目标类别的匹配度,使得优选出的特征集不一定是目标的最佳识别组合。针对该问题,该文通过引入直方图分析对不同特征组合与目标类别的匹配度加以研究,提出了一种新的改进自适应遗传(HA-AGA)特征优选方法,在提升特征优选效率和精度的同时提升目标的识别性能。基于毫米波雷达实测数据集的对比实验表明,所提出的HA-AGA方法的目标识别平均精确率可达到95.7%,分别比IG-GA, ReliefF-IAGA和改进RetinaNet方法提升了1.9%, 2.4%和10.1%。基于公共数据集CARRADA的对比实验表明,所提出的HA-AGA方法的目标识别平均精确率达到93.0%,分别比IG-GA和ReliefF-IAGA方法提升了1.2%和1.5%,验证了所提方法的有效性和优越性。此外,还进行了不同特征优选方法分别结合集成装袋树、精细树和K-最邻近(KNN)分类器的性能对比,实验结果表明所提方法结合不同分类器均具有明显优势,具有一定的广泛适用性。
步态识别作为一种生物识别技术,在实际生活中通常被认为是一项检索任务。然而,受限于现有雷达步态识别数据集的规模,目前的研究主要针对分类任务且局限于单一行走视角和相同穿着条件,这限制了基于雷达的步态识别在实际场景中的应用。该文公开了一个多视角多穿着条件下的雷达步态识别数据集,该数据集使用毫米波雷达采集了121位受试者在多种穿着条件下沿不同视角行走的时频谱图数据,每位受试者共采集8个视角,每个视角采集10组,其中6组为正常穿着,2组为穿大衣,2组为挎包。同时,该文提出一种基于检索任务的雷达步态识别方法,并在公布数据集上进行了实验,实验结果可以作为基准性能指标,方便更多学者在此数据集上开展进一步研究。 步态识别作为一种生物识别技术,在实际生活中通常被认为是一项检索任务。然而,受限于现有雷达步态识别数据集的规模,目前的研究主要针对分类任务且局限于单一行走视角和相同穿着条件,这限制了基于雷达的步态识别在实际场景中的应用。该文公开了一个多视角多穿着条件下的雷达步态识别数据集,该数据集使用毫米波雷达采集了121位受试者在多种穿着条件下沿不同视角行走的时频谱图数据,每位受试者共采集8个视角,每个视角采集10组,其中6组为正常穿着,2组为穿大衣,2组为挎包。同时,该文提出一种基于检索任务的雷达步态识别方法,并在公布数据集上进行了实验,实验结果可以作为基准性能指标,方便更多学者在此数据集上开展进一步研究。
针对分布式组网相控阵雷达多目标跟踪(MTT)场景,该文提出一种目标动态威胁度驱动的波束分配与驻留时间联合优化算法。首先,在采用分布式组网架构的基础上,推导包含波束和驻留时间分配的贝叶斯克拉美罗界(BCRLB)。其次,基于目标实时运动状态构建综合威胁度评估尺度,按照威胁度为不同目标设计基于跟踪精度参考门限和贡献度的效用函数,以此衡量资源在多目标间的优先分配关系。随后,将该效用函数结合组网相控阵雷达系统资源,建立了目标动态威胁度驱动的波束分配与驻留时间联合优化模型。最后,采用一种基于奖励的迭代下降搜索算法进行求解。仿真结果表明,相较于平均资源分配方法,所提算法具备对若干差异性目标的跟踪精度需求感知能力,能够在基于多目标威胁度评估的基础上,有针对性地分配跟踪资源,从而有效提高组网相控阵雷达面对不同威胁度目标时的综合跟踪精度。 针对分布式组网相控阵雷达多目标跟踪(MTT)场景,该文提出一种目标动态威胁度驱动的波束分配与驻留时间联合优化算法。首先,在采用分布式组网架构的基础上,推导包含波束和驻留时间分配的贝叶斯克拉美罗界(BCRLB)。其次,基于目标实时运动状态构建综合威胁度评估尺度,按照威胁度为不同目标设计基于跟踪精度参考门限和贡献度的效用函数,以此衡量资源在多目标间的优先分配关系。随后,将该效用函数结合组网相控阵雷达系统资源,建立了目标动态威胁度驱动的波束分配与驻留时间联合优化模型。最后,采用一种基于奖励的迭代下降搜索算法进行求解。仿真结果表明,相较于平均资源分配方法,所提算法具备对若干差异性目标的跟踪精度需求感知能力,能够在基于多目标威胁度评估的基础上,有针对性地分配跟踪资源,从而有效提高组网相控阵雷达面对不同威胁度目标时的综合跟踪精度。
针对合成孔径雷达(SAR)在稀疏采样条件下方位向分辨率低、易受噪声干扰等问题,提出改进的高分辨率SAR成像算法。该文在现有的L1/2正则化理论及其阈值迭代算法的基础上,改进了其表达式中的梯度算子,提高重构图像的求解精度,降低计算量。然后,在全采样和欠采样条件下,将原有L1/2阈值迭代算法与所提改进L1/2阈值迭代算法,分别结合近似观测模型对SAR回波信号进行成像处理和性能对比。实验结果表明,改进的算法具有更加优越的收敛性能,并且对于SAR图像方位向分辨率有一定的改善。 针对合成孔径雷达(SAR)在稀疏采样条件下方位向分辨率低、易受噪声干扰等问题,提出改进的高分辨率SAR成像算法。该文在现有的L1/2正则化理论及其阈值迭代算法的基础上,改进了其表达式中的梯度算子,提高重构图像的求解精度,降低计算量。然后,在全采样和欠采样条件下,将原有L1/2阈值迭代算法与所提改进L1/2阈值迭代算法,分别结合近似观测模型对SAR回波信号进行成像处理和性能对比。实验结果表明,改进的算法具有更加优越的收敛性能,并且对于SAR图像方位向分辨率有一定的改善。
该文针对分布式雷达组网系统提出了一种基于脉冲交错的实时波束驻留调度算法。该算法引入时间指针向量,用于指示何时选择具有最高综合优先级的波束驻留任务,该任务被分配至交错时间利用程度最低的雷达节点,有效减少了调度过程中引入的时间空隙;同时,脉冲交错分析方法决定对于被分配的波束驻留任务是否可以在相应的雷达节点成功调度执行,其中,引入时隙占用矩阵和能量消耗矩阵来表征各个雷达节点的时间与能量资源使用情况,简化了交错分析过程,并实现了具有不同脉冲重复周期与个数的波束驻留任务之间的交错。此外,为了提高波束驻留调度的效率,所提算法还引入交错时间利用率门限自适应选择时间指针的滑动步长。仿真结果表明,该文所提算法能实现分布式雷达组网系统实时的波束驻留调度,并能获得较现有波束驻留调度算法更好的调度性能。 该文针对分布式雷达组网系统提出了一种基于脉冲交错的实时波束驻留调度算法。该算法引入时间指针向量,用于指示何时选择具有最高综合优先级的波束驻留任务,该任务被分配至交错时间利用程度最低的雷达节点,有效减少了调度过程中引入的时间空隙;同时,脉冲交错分析方法决定对于被分配的波束驻留任务是否可以在相应的雷达节点成功调度执行,其中,引入时隙占用矩阵和能量消耗矩阵来表征各个雷达节点的时间与能量资源使用情况,简化了交错分析过程,并实现了具有不同脉冲重复周期与个数的波束驻留任务之间的交错。此外,为了提高波束驻留调度的效率,所提算法还引入交错时间利用率门限自适应选择时间指针的滑动步长。仿真结果表明,该文所提算法能实现分布式雷达组网系统实时的波束驻留调度,并能获得较现有波束驻留调度算法更好的调度性能。
针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。 针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。
传统面向区域覆盖的多机航迹优化方法大多针对静态环境建立优化模型,在复杂动态环境下面临着模型失配的挑战。因此,该文提出了一种多机雷达协同区域动态覆盖航迹优化方法。首先,该方法引入衰减因子来表征机载雷达对动态环境的实际覆盖效果,将动态覆盖背景下的区域覆盖率作为优化函数,并结合待优化多维航迹控制参数约束,构建了多机雷达协同区域动态覆盖航迹优化的数学模型。然后,采用随机优化法对协同区域动态覆盖航迹优化问题进行了求解。最后,仿真实验表明,相对于采用预设航迹的多机雷达搜索模式,所提航迹优化方法能够显著提高动态区域的动态覆盖性能,且相较于面向静态环境的传统航迹优化模型,动态覆盖性能平均提升约6%。 传统面向区域覆盖的多机航迹优化方法大多针对静态环境建立优化模型,在复杂动态环境下面临着模型失配的挑战。因此,该文提出了一种多机雷达协同区域动态覆盖航迹优化方法。首先,该方法引入衰减因子来表征机载雷达对动态环境的实际覆盖效果,将动态覆盖背景下的区域覆盖率作为优化函数,并结合待优化多维航迹控制参数约束,构建了多机雷达协同区域动态覆盖航迹优化的数学模型。然后,采用随机优化法对协同区域动态覆盖航迹优化问题进行了求解。最后,仿真实验表明,相对于采用预设航迹的多机雷达搜索模式,所提航迹优化方法能够显著提高动态区域的动态覆盖性能,且相较于面向静态环境的传统航迹优化模型,动态覆盖性能平均提升约6%。
该文针对频谱共存环境下多目标跟踪资源分配问题,提出了组网雷达功率时间联合优化算法。首先,推导了包含雷达节点选择、发射功率和驻留时间等射频辐射参数的预测贝叶斯克拉默-拉奥下界(BCRLB),以此作为多目标跟踪精度的衡量指标;在此基础上,以最小化多目标跟踪BCRLB为优化目标,以满足给定的组网雷达射频资源和预先设定的通信基站最大可容忍干扰能量阈值为约束条件,建立了频谱共存下面向多目标跟踪的组网雷达功率时间联合优化分配模型,对雷达节点选择、发射功率和驻留时间进行自适应联合优化配置;然后,针对上述优化问题,采用两步分解法将其分解为多个子凸问题,并结合半正定规划(SDP)算法和循环最小化算法进行求解。仿真结果表明,与现有算法相比,所提算法能够在保证通信基站正常工作的条件下,有效提高组网雷达的多目标跟踪精度。 该文针对频谱共存环境下多目标跟踪资源分配问题,提出了组网雷达功率时间联合优化算法。首先,推导了包含雷达节点选择、发射功率和驻留时间等射频辐射参数的预测贝叶斯克拉默-拉奥下界(BCRLB),以此作为多目标跟踪精度的衡量指标;在此基础上,以最小化多目标跟踪BCRLB为优化目标,以满足给定的组网雷达射频资源和预先设定的通信基站最大可容忍干扰能量阈值为约束条件,建立了频谱共存下面向多目标跟踪的组网雷达功率时间联合优化分配模型,对雷达节点选择、发射功率和驻留时间进行自适应联合优化配置;然后,针对上述优化问题,采用两步分解法将其分解为多个子凸问题,并结合半正定规划(SDP)算法和循环最小化算法进行求解。仿真结果表明,与现有算法相比,所提算法能够在保证通信基站正常工作的条件下,有效提高组网雷达的多目标跟踪精度。
该文建立混合分布式相控阵-多输入多输出(PA-MIMO)雷达系统模型,推导出基于Neyman-Pearson(NP)准则的似然比检测(LRT)器,在收发两端实施子阵级和阵元级优化部署,达到对雷达系统中相参增益和空间分集增益协调优化的目的。针对整数规划的子阵、阵元部署模型,提出基于量子粒子群优化的随机取整(SR-QPSO)求解算法,在较少的迭代步骤内获得最优阵元配置策略,实现子阵级和阵元级之间的联合优化。最后,通过对3个典型优化问题进行数值仿真,所提出的混合分布式PA-MIMO雷达系统优化配置较其他典型雷达系统有较大提升,探测概率达到0.98,有效距离达到1166.3 km,探测性能得到显著提升。 该文建立混合分布式相控阵-多输入多输出(PA-MIMO)雷达系统模型,推导出基于Neyman-Pearson(NP)准则的似然比检测(LRT)器,在收发两端实施子阵级和阵元级优化部署,达到对雷达系统中相参增益和空间分集增益协调优化的目的。针对整数规划的子阵、阵元部署模型,提出基于量子粒子群优化的随机取整(SR-QPSO)求解算法,在较少的迭代步骤内获得最优阵元配置策略,实现子阵级和阵元级之间的联合优化。最后,通过对3个典型优化问题进行数值仿真,所提出的混合分布式PA-MIMO雷达系统优化配置较其他典型雷达系统有较大提升,探测概率达到0.98,有效距离达到1166.3 km,探测性能得到显著提升。
为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。 为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。
由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。 由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。