优先发表

优先发表栏目的论文已经同行评议并正式录用,目前处于编校和网络出版状态,其卷期、页码尚未确定,但可以根据DOI引用。本栏目内容尚未正式出版,未经许可,不得转载。
海洋表面是一种高度不规则和时空不重复的复杂动态体系。海杂波是雷达电磁信号照射到海面产生的大量散射体回波的叠加,受风力、洋流、海浪等的影响呈现非均匀性和非平稳性。海杂波信号对海上目标的探测具有一定的干扰作用,尤其是高海情条件下,海浪起伏更加剧烈,目标信号极易淹没在强海杂波信号中,严重限制着雷达对海上目标的检测能力。海杂波及目标电磁散射特性研究是提升复杂海洋环境下目标检测能力的基础,以电磁波与实际复杂动态海面及目标电磁散射机理为基础,形成实际海洋环境下目标回波数据,对海杂波及目标雷达回波特征分析,实测数据集的补充,均存在重大意义。为了让更多相关研究者获得基于物理机理的复杂海环境与目标回波仿真方法近些年的发展和未来趋势,该文总结了回波仿真的六类方法,并针对海面与目标仿真场景特点,分析了六类方法的优劣和适应性,给出了部分仿真结果;还介绍了一些基于实测的回波数据集,可方便学者对回波特性进行分析;最后对复杂海面与目标回波仿真方法和特性研究的发展趋势进行了展望。 海洋表面是一种高度不规则和时空不重复的复杂动态体系。海杂波是雷达电磁信号照射到海面产生的大量散射体回波的叠加,受风力、洋流、海浪等的影响呈现非均匀性和非平稳性。海杂波信号对海上目标的探测具有一定的干扰作用,尤其是高海情条件下,海浪起伏更加剧烈,目标信号极易淹没在强海杂波信号中,严重限制着雷达对海上目标的检测能力。海杂波及目标电磁散射特性研究是提升复杂海洋环境下目标检测能力的基础,以电磁波与实际复杂动态海面及目标电磁散射机理为基础,形成实际海洋环境下目标回波数据,对海杂波及目标雷达回波特征分析,实测数据集的补充,均存在重大意义。为了让更多相关研究者获得基于物理机理的复杂海环境与目标回波仿真方法近些年的发展和未来趋势,该文总结了回波仿真的六类方法,并针对海面与目标仿真场景特点,分析了六类方法的优劣和适应性,给出了部分仿真结果;还介绍了一些基于实测的回波数据集,可方便学者对回波特性进行分析;最后对复杂海面与目标回波仿真方法和特性研究的发展趋势进行了展望。
在精确制导、自主着陆、地形测绘等多种领域,雷达前视成像至关重要。传统的基于实波束扫描的前视成像方法受到实际雷达孔径约束难以获得高分辨图像。与整个成像场景相比,感兴趣目标通常只占一小部分区域,这种稀疏性使得压缩感知(CS)可以应用于高分辨率前视图像重建。然而,雷达回波中的强噪声影响了基于CS方法生成图像质量。受到最终生成图像具有低秩特性的启发,该文建立了一种联合低秩和稀疏特性的前视超分辨成像模型。为了有效地解决所提模型中的双重约束优化问题,提出了一种在交替方向乘子法(ADMM)框架下基于增广拉格朗日乘子(ALM)的前视图像重构方法。仿真和实测数据实验结果表明,所提方法能够有效提高雷达前视成像的方位分辨率,并且具有较强噪声鲁棒性。 在精确制导、自主着陆、地形测绘等多种领域,雷达前视成像至关重要。传统的基于实波束扫描的前视成像方法受到实际雷达孔径约束难以获得高分辨图像。与整个成像场景相比,感兴趣目标通常只占一小部分区域,这种稀疏性使得压缩感知(CS)可以应用于高分辨率前视图像重建。然而,雷达回波中的强噪声影响了基于CS方法生成图像质量。受到最终生成图像具有低秩特性的启发,该文建立了一种联合低秩和稀疏特性的前视超分辨成像模型。为了有效地解决所提模型中的双重约束优化问题,提出了一种在交替方向乘子法(ADMM)框架下基于增广拉格朗日乘子(ALM)的前视图像重构方法。仿真和实测数据实验结果表明,所提方法能够有效提高雷达前视成像的方位分辨率,并且具有较强噪声鲁棒性。
相较于稀疏标量阵列和均匀多极化阵列,稀疏多极化阵列由于其可感知信号的极化状态、避免极化失配以及增加阵列自由度、减小互耦效应与降低硬件成本等优点,对其进行系统性研究具有重要的应用价值和理论指导意义。稀疏多极化阵列的设计较之于稀疏标量阵列的设计更加多样化,因其不仅与天线阵元位置有关,还与天线阵元极化种类和阵元指向等因素有关。该文首先对近年来该领域内相关研究进行归纳总结,从非均匀稀疏、均匀稀疏、混合均匀与非均匀稀疏3种稀疏方式出发,介绍和探究了主流稀疏多极化阵列结构优化方式,然后从基于深度学习的稀疏多极化阵列优化设计、稀疏多极化多输入多输出(MIMO)雷达、稀疏极化频率分集阵(PFDA)雷达和稀疏PFDA-MIMO雷达、稀疏多极化智能超表面以及稀疏多极化阵列在家居智能通信和工业物联网等复杂室内场景下的应用等方面对未来的发展方向进行了展望。 相较于稀疏标量阵列和均匀多极化阵列,稀疏多极化阵列由于其可感知信号的极化状态、避免极化失配以及增加阵列自由度、减小互耦效应与降低硬件成本等优点,对其进行系统性研究具有重要的应用价值和理论指导意义。稀疏多极化阵列的设计较之于稀疏标量阵列的设计更加多样化,因其不仅与天线阵元位置有关,还与天线阵元极化种类和阵元指向等因素有关。该文首先对近年来该领域内相关研究进行归纳总结,从非均匀稀疏、均匀稀疏、混合均匀与非均匀稀疏3种稀疏方式出发,介绍和探究了主流稀疏多极化阵列结构优化方式,然后从基于深度学习的稀疏多极化阵列优化设计、稀疏多极化多输入多输出(MIMO)雷达、稀疏极化频率分集阵(PFDA)雷达和稀疏PFDA-MIMO雷达、稀疏多极化智能超表面以及稀疏多极化阵列在家居智能通信和工业物联网等复杂室内场景下的应用等方面对未来的发展方向进行了展望。
该文针对分布式雷达组网系统提出了一种基于脉冲交错的实时波束驻留调度算法。该算法引入时间指针向量,用于指示何时选择具有最高综合优先级的波束驻留任务,该任务被分配至交错时间利用程度最低的雷达节点,有效减少了调度过程中引入的时间空隙;同时,脉冲交错分析方法决定对于被分配的波束驻留任务是否可以在相应的雷达节点成功调度执行,其中,引入时隙占用矩阵和能量消耗矩阵来表征各个雷达节点的时间与能量资源使用情况,简化了交错分析过程,并实现了具有不同脉冲重复周期与个数的波束驻留任务之间的交错。此外,为了提高波束驻留调度的效率,所提算法还引入交错时间利用率门限自适应选择时间指针的滑动步长。仿真结果表明,该文所提算法能实现分布式雷达组网系统实时的波束驻留调度,并能获得较现有波束驻留调度算法更好的调度性能。 该文针对分布式雷达组网系统提出了一种基于脉冲交错的实时波束驻留调度算法。该算法引入时间指针向量,用于指示何时选择具有最高综合优先级的波束驻留任务,该任务被分配至交错时间利用程度最低的雷达节点,有效减少了调度过程中引入的时间空隙;同时,脉冲交错分析方法决定对于被分配的波束驻留任务是否可以在相应的雷达节点成功调度执行,其中,引入时隙占用矩阵和能量消耗矩阵来表征各个雷达节点的时间与能量资源使用情况,简化了交错分析过程,并实现了具有不同脉冲重复周期与个数的波束驻留任务之间的交错。此外,为了提高波束驻留调度的效率,所提算法还引入交错时间利用率门限自适应选择时间指针的滑动步长。仿真结果表明,该文所提算法能实现分布式雷达组网系统实时的波束驻留调度,并能获得较现有波束驻留调度算法更好的调度性能。
随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。 随着信息技术的发展和空战模式的改变,机载雷达告警接收机(RWR)成为现代战机不可缺少的电子战系统。为了更好地理解机载RWR,该文从接收机体制角度考虑,将机载RWR的系统架构划分成两个阶段,对每个阶段的特点和组成进行了分析。接着详细阐述了机载RWR的信号处理流程,并且梳理了与信号分选、信号识别和威胁评估相关的技术。最后,从实际运用出发,系统总结了机载RWR在复杂电磁环境中和应对新体制雷达中面临的挑战以及未来的发展需求。
认知雷达波形设计往往依赖于精准的杂波先验信息,当先验信息数据存在缺失时,所构建的杂波模型会严重失配,进而影响雷达对杂波的抑制能力。该文针对杂波先验数据缺失条件下的雷达波形优化问题,建立完全随机缺失机制下的点状与块状缺失场景,设计恒模与相似性约束的波形优化模型,提出基于优先级填充-强化学习级联优化的雷达波形训练算法:即采用强化学习智能体与填充算法修复后的杂波环境相交互的级联方法,以最大化信杂噪比为优化目标,通过迭代训练得到雷达最佳波形参数配置策略。最后,仿真验证不同缺失概率条件下所提算法的优越性。结果表明:相比于传统非级联优化算法,该文所提算法均可获得更优的杂波抑制性能,有效提升雷达的探测能力。 认知雷达波形设计往往依赖于精准的杂波先验信息,当先验信息数据存在缺失时,所构建的杂波模型会严重失配,进而影响雷达对杂波的抑制能力。该文针对杂波先验数据缺失条件下的雷达波形优化问题,建立完全随机缺失机制下的点状与块状缺失场景,设计恒模与相似性约束的波形优化模型,提出基于优先级填充-强化学习级联优化的雷达波形训练算法:即采用强化学习智能体与填充算法修复后的杂波环境相交互的级联方法,以最大化信杂噪比为优化目标,通过迭代训练得到雷达最佳波形参数配置策略。最后,仿真验证不同缺失概率条件下所提算法的优越性。结果表明:相比于传统非级联优化算法,该文所提算法均可获得更优的杂波抑制性能,有效提升雷达的探测能力。
为了精化星载SAR影像几何参数并提高立体定位精度,借鉴星载激光测高数据光学遥感影像高程控制点提取思路,设计了一种多策略高级地形激光测高系统(ATLAS)数据优选与影像匹配相结合的SAR高程控制点提取方法。该方法采用非夜间观测光子滤除、高置信度光子选取、SRTM DEM辅助的粗差剔除、大偏心率椭圆滤波核平坦区域光子筛选等多种策略,从ATLAS数据ATL03级产品中提取高质量、平坦区域的激光高程点,再依据SRTM DEM对斜距SAR影像进行地理编码,按激光高程点的平面坐标选取局部谷歌地球影像作为足印影像,采用秩自相似描述子进行足印影像与SAR地理编码影像的匹配,得到与激光高程点对应的SAR影像像点坐标,从而提取SAR高程控制点。采用中国登封市、日本横须贺市两个区域的ATLAS数据进行了高分三号SAR高程控制点提取实验,利用提取的高程控制点进行SAR影像几何参数精化,大幅提升了立体定位精度,验证了该文高程控制点提取方法的可行性和有效性。 为了精化星载SAR影像几何参数并提高立体定位精度,借鉴星载激光测高数据光学遥感影像高程控制点提取思路,设计了一种多策略高级地形激光测高系统(ATLAS)数据优选与影像匹配相结合的SAR高程控制点提取方法。该方法采用非夜间观测光子滤除、高置信度光子选取、SRTM DEM辅助的粗差剔除、大偏心率椭圆滤波核平坦区域光子筛选等多种策略,从ATLAS数据ATL03级产品中提取高质量、平坦区域的激光高程点,再依据SRTM DEM对斜距SAR影像进行地理编码,按激光高程点的平面坐标选取局部谷歌地球影像作为足印影像,采用秩自相似描述子进行足印影像与SAR地理编码影像的匹配,得到与激光高程点对应的SAR影像像点坐标,从而提取SAR高程控制点。采用中国登封市、日本横须贺市两个区域的ATLAS数据进行了高分三号SAR高程控制点提取实验,利用提取的高程控制点进行SAR影像几何参数精化,大幅提升了立体定位精度,验证了该文高程控制点提取方法的可行性和有效性。
迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全。昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑。传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量。新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度。但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准。针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制。最后,利用多频全极化雷达(X, Ku, Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性。 迁飞性虫害突发性强、危害范围广,严重威胁国家粮食安全。昆虫雷达是监测昆虫迁飞的最有效手段,可为迁飞虫害预警防控提供关键信息支撑。传统昆虫雷达通过低分辨波形、旋转线极化天线等方式,实现昆虫体重、体轴方向等生物学参数测量。新型昆虫雷达采用调频步进频高分辨波形、瞬时全极化体制,可大幅提升昆虫生物学参数测量精度。但是,在传统极化测量误差之外,调频步进频成像会给不同极化通道引入新的乘性误差分量,导致极化通道间不一致更加复杂,必须进行高精度极化校准。针对以上问题,该文结合调频步进频波形特点对全极化测量模型进行了优化,并设计了一种基于松姿态约束下双定标体(金属球和金属丝)联合的高分辨全极化雷达极化校准方法,补偿了系统通道间不一致对极化信息测量的影响;在此基础上,进一步提出了基于生物对称模型的昆虫体轴方向估计方法,解析推导分析了极化通道间交叉串扰对体轴方向估计的影响机制。最后,利用多频全极化雷达(X, Ku, Ka)进行了极化校准和昆虫轴向测量实验,实测昆虫体轴方向测量误差优于3°,验证了所提方法的有效性。
针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。 针对集中式MIMO雷达同时跟踪多批机动目标场景,该文提出一种低截获背景下的快速功率分配算法。首先,将目标机动过程建模为自适应当前统计(ACS)模型,并采用粒子滤波对各目标状态进行估计。其次,对条件克拉默-拉奥下界(PC-CRLB)进行推导,并基于目标运动特性和电磁特性构建目标综合威胁度评估模型。随后,将目标跟踪误差评估指数和雷达未被截获概率的加权和作为优化目标,建立了关于发射功率的优化模型,利用目标函数单调递减性质,提出了一种基于序列松弛的求解算法进行模型求解。最后,通过仿真验证所提算法的有效性和时效性。结果表明,所提算法能够有效提高目标跟踪精度和雷达系统低截获性能,相比采用内点法求解运算速度提高近50%。
传统面向区域覆盖的多机航迹优化方法大多针对静态环境建立优化模型,在复杂动态环境下面临着模型失配的挑战。因此,该文提出了一种多机雷达协同区域动态覆盖航迹优化方法。首先,该方法引入衰减因子来表征机载雷达对动态环境的实际覆盖效果,将动态覆盖背景下的区域覆盖率作为优化函数,并结合待优化多维航迹控制参数约束,构建了多机雷达协同区域动态覆盖航迹优化的数学模型。然后,采用随机优化法对协同区域动态覆盖航迹优化问题进行了求解。最后,仿真实验表明,相对于采用预设航迹的多机雷达搜索模式,所提航迹优化方法能够显著提高动态区域的动态覆盖性能,且相较于面向静态环境的传统航迹优化模型,动态覆盖性能平均提升约6%。 传统面向区域覆盖的多机航迹优化方法大多针对静态环境建立优化模型,在复杂动态环境下面临着模型失配的挑战。因此,该文提出了一种多机雷达协同区域动态覆盖航迹优化方法。首先,该方法引入衰减因子来表征机载雷达对动态环境的实际覆盖效果,将动态覆盖背景下的区域覆盖率作为优化函数,并结合待优化多维航迹控制参数约束,构建了多机雷达协同区域动态覆盖航迹优化的数学模型。然后,采用随机优化法对协同区域动态覆盖航迹优化问题进行了求解。最后,仿真实验表明,相对于采用预设航迹的多机雷达搜索模式,所提航迹优化方法能够显著提高动态区域的动态覆盖性能,且相较于面向静态环境的传统航迹优化模型,动态覆盖性能平均提升约6%。
全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。 全息凝视雷达是一种同时覆盖全空域、同时多功能的阵列雷达,该文首先明确全息凝视雷达定义,并概述全息凝视雷达特点、性能优势以及处理难点;然后,较为全面地介绍了全息凝视雷达的发展历程,归纳了当前的主要应用方向,并对中山大学在全息凝视雷达系统研究方面的进展情况进行了介绍,给出了实际场景下目标探测结果,展示了全息凝视雷达在低空目标监视等方面的应用潜力;接着较为全面地介绍了全息凝视雷达相关关键技术的研究进展,包括系统设计、收发波束控制、目标积累检测以及参数估计等方面;最后总结了全息凝视雷达的发展趋势。
针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。 针对现有联合设计的通感一体化波形对运动目标探测性能不足的问题,该文提出了一种具有多普勒容忍性的通感一体化波形联合设计方案。首先,基于脉冲串模糊函数,推导了构造多普勒容忍波形等价于波形在相关区内具有极低的积分旁瓣电平。基于此,构建了以最小化一体化波形的加权积分旁瓣电平为优化准则,以发射波形的能量、峰均功率比以及与通信波形之间的相位差为约束条件的优化问题,从而实现具有多普勒容忍性的通感一体化波形的构造。由于该优化问题的非凸性,该文提出一种基于优化最小化的迭代优化算法对其进行求解。数值仿真实验表明,相比传统一体化波形,该文提出的一体化波形具有更高的多普勒容忍性和更低的误符号率,在保证通信质量的前提下显著提升了通感一体化系统对运动目标的探测性能。
硬件差异会形成辐射源的独有指纹,并附加在无线电信号上,利用辐射源的这一独特属性可进行射频指纹识别。在非合作条件下,由于信道环境未知、信号调制方案等先验知识匮乏,基于特征工程的射频指纹识别方法面临巨大挑战,而基于深度学习的射频指纹识别方法,尤其是能够直接处理Raw I/Q的方法表现出了很大潜力,但是该方向的研究成果较为零散,妨碍了研究者对关键问题的把握。该文首先从先验知识的利用上,对基于深度学习的射频指纹识别方法进行了分类对比,将问题聚焦到基于Raw I/Q和深度学习的射频指纹识别方法。然后,该文重点对使用Raw I/Q进行射频指纹识别的深度神经网络模型进行了分类和讨论,并对射频指纹识别相关的开源数据集、数据表示方法和数据增强方法进行了整理和归纳。最后,该文讨论了基于深度学习的射频指纹识别方法所面临的难题和值得关注的研究方向,以期对射频指纹识别的研究与应用有所帮助。 硬件差异会形成辐射源的独有指纹,并附加在无线电信号上,利用辐射源的这一独特属性可进行射频指纹识别。在非合作条件下,由于信道环境未知、信号调制方案等先验知识匮乏,基于特征工程的射频指纹识别方法面临巨大挑战,而基于深度学习的射频指纹识别方法,尤其是能够直接处理Raw I/Q的方法表现出了很大潜力,但是该方向的研究成果较为零散,妨碍了研究者对关键问题的把握。该文首先从先验知识的利用上,对基于深度学习的射频指纹识别方法进行了分类对比,将问题聚焦到基于Raw I/Q和深度学习的射频指纹识别方法。然后,该文重点对使用Raw I/Q进行射频指纹识别的深度神经网络模型进行了分类和讨论,并对射频指纹识别相关的开源数据集、数据表示方法和数据增强方法进行了整理和归纳。最后,该文讨论了基于深度学习的射频指纹识别方法所面临的难题和值得关注的研究方向,以期对射频指纹识别的研究与应用有所帮助。
面对日渐复杂的电磁干扰环境,合成孔径雷达干扰抑制已成为亟须解决的难题。现有主流合成孔径雷达非参数/参数化干扰抑制方法,严重依赖干扰先验和强能量差异,存在计算复杂度高、信号损失严重等问题,难以满足对抗日益复杂的干扰的需求。针对上述问题,该文提出一种基于纹理异常感知的SAR自监督学习干扰抑制方法,利用正常雷达回波与干扰的时频域纹理差异性特征克服干扰先验的约束。首先,构建了一种干扰时频定位网络模型Location-Net,对雷达回波时频谱进行压缩重构,根据网络的重构误差对干扰进行时频定位;其次,针对干扰抑制损失问题,构建了一种信号修复神经网络模型Recovery-Net,实现对干扰抑制后回波信号损失修复。相比传统方法,所提方法克服对干扰先验的需求,可有效对抗多种复杂干扰类型,具备较强的泛化能力。基于仿真和实测数据的抗干扰处理结果,验证了所提方法对多种有源主瓣压制干扰的有效性,并通过与3种现有抗干扰方法进行对比,体现了该算法的优越性。最后,对比了所提神经网络与主流轻量化神经网络的复杂度差异,结果表明设计的两个神经网络计算复杂度更低,具备实时应用前景。 面对日渐复杂的电磁干扰环境,合成孔径雷达干扰抑制已成为亟须解决的难题。现有主流合成孔径雷达非参数/参数化干扰抑制方法,严重依赖干扰先验和强能量差异,存在计算复杂度高、信号损失严重等问题,难以满足对抗日益复杂的干扰的需求。针对上述问题,该文提出一种基于纹理异常感知的SAR自监督学习干扰抑制方法,利用正常雷达回波与干扰的时频域纹理差异性特征克服干扰先验的约束。首先,构建了一种干扰时频定位网络模型Location-Net,对雷达回波时频谱进行压缩重构,根据网络的重构误差对干扰进行时频定位;其次,针对干扰抑制损失问题,构建了一种信号修复神经网络模型Recovery-Net,实现对干扰抑制后回波信号损失修复。相比传统方法,所提方法克服对干扰先验的需求,可有效对抗多种复杂干扰类型,具备较强的泛化能力。基于仿真和实测数据的抗干扰处理结果,验证了所提方法对多种有源主瓣压制干扰的有效性,并通过与3种现有抗干扰方法进行对比,体现了该算法的优越性。最后,对比了所提神经网络与主流轻量化神经网络的复杂度差异,结果表明设计的两个神经网络计算复杂度更低,具备实时应用前景。
相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有P值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。 相对于窄带多普勒雷达,超宽带雷达能够同时获取目标的距离和多普勒信息,更利于行为识别。为了提高跌倒行为的识别性能,该文采用调频连续波超宽带雷达在两个真实的室内复杂场景下采集36名受试者的日常行为和跌倒的回波数据,建立了动作种类丰富的多场景跌倒检测数据集;通过预处理,获取受试者的距离时间谱、距离多普勒谱和时间多普勒谱;基于MobileNet-V3轻量级网络,设计了数据级、特征级和决策级3种雷达图谱深度学习融合网络。统计分析结果表明,该文提出的决策级融合方法相对于仅用单种图谱、数据级和特征级融合的方法,能够提高跌倒检测的性能(显著性检验方法得到的所有P值<0.003)。决策级融合方法的5折交叉验证的准确率为0.9956,在新场景下测试的准确率为0.9778,具有良好的泛化能力。
该文针对频谱共存环境下多目标跟踪资源分配问题,提出了组网雷达功率时间联合优化算法。首先,推导了包含雷达节点选择、发射功率和驻留时间等射频辐射参数的预测贝叶斯克拉默-拉奥下界(BCRLB),以此作为多目标跟踪精度的衡量指标;在此基础上,以最小化多目标跟踪BCRLB为优化目标,以满足给定的组网雷达射频资源和预先设定的通信基站最大可容忍干扰能量阈值为约束条件,建立了频谱共存下面向多目标跟踪的组网雷达功率时间联合优化分配模型,对雷达节点选择、发射功率和驻留时间进行自适应联合优化配置;然后,针对上述优化问题,采用两步分解法将其分解为多个子凸问题,并结合半正定规划(SDP)算法和循环最小化算法进行求解。仿真结果表明,与现有算法相比,所提算法能够在保证通信基站正常工作的条件下,有效提高组网雷达的多目标跟踪精度。 该文针对频谱共存环境下多目标跟踪资源分配问题,提出了组网雷达功率时间联合优化算法。首先,推导了包含雷达节点选择、发射功率和驻留时间等射频辐射参数的预测贝叶斯克拉默-拉奥下界(BCRLB),以此作为多目标跟踪精度的衡量指标;在此基础上,以最小化多目标跟踪BCRLB为优化目标,以满足给定的组网雷达射频资源和预先设定的通信基站最大可容忍干扰能量阈值为约束条件,建立了频谱共存下面向多目标跟踪的组网雷达功率时间联合优化分配模型,对雷达节点选择、发射功率和驻留时间进行自适应联合优化配置;然后,针对上述优化问题,采用两步分解法将其分解为多个子凸问题,并结合半正定规划(SDP)算法和循环最小化算法进行求解。仿真结果表明,与现有算法相比,所提算法能够在保证通信基站正常工作的条件下,有效提高组网雷达的多目标跟踪精度。
该文基于不同雷达参数和海洋环境参数条件下的岸基雷达海杂波实测数据,利用深度神经网络(DNN)建模技术,建立了从多个测量条件参数出发的海杂波多普勒谱参数预测模型,实现了独立于杂波数据、基于环境特征的海杂波谱特征认知,谱频移和展宽的预测精度达90%以上。基于该预测模型,该文提出了一种基于参数循环递减认知的多普勒谱影响因素分析方法,分析了不同测量参数对海杂波多普勒谱预测的影响,得到了谱参数随主要影响因素的变化规律,结果对基于多普勒特征的海面目标检测应用具有重要意义。 该文基于不同雷达参数和海洋环境参数条件下的岸基雷达海杂波实测数据,利用深度神经网络(DNN)建模技术,建立了从多个测量条件参数出发的海杂波多普勒谱参数预测模型,实现了独立于杂波数据、基于环境特征的海杂波谱特征认知,谱频移和展宽的预测精度达90%以上。基于该预测模型,该文提出了一种基于参数循环递减认知的多普勒谱影响因素分析方法,分析了不同测量参数对海杂波多普勒谱预测的影响,得到了谱参数随主要影响因素的变化规律,结果对基于多普勒特征的海面目标检测应用具有重要意义。
该文建立混合分布式相控阵-多输入多输出(PA-MIMO)雷达系统模型,推导出基于Neyman-Pearson(NP)准则的似然比检测(LRT)器,在收发两端实施子阵级和阵元级优化部署,达到对雷达系统中相参增益和空间分集增益协调优化的目的。针对整数规划的子阵、阵元部署模型,提出基于量子粒子群优化的随机取整(SR-QPSO)求解算法,在较少的迭代步骤内获得最优阵元配置策略,实现子阵级和阵元级之间的联合优化。最后,通过对3个典型优化问题进行数值仿真,所提出的混合分布式PA-MIMO雷达系统优化配置较其他典型雷达系统有较大提升,探测概率达到0.98,有效距离达到1166.3 km,探测性能得到显著提升。 该文建立混合分布式相控阵-多输入多输出(PA-MIMO)雷达系统模型,推导出基于Neyman-Pearson(NP)准则的似然比检测(LRT)器,在收发两端实施子阵级和阵元级优化部署,达到对雷达系统中相参增益和空间分集增益协调优化的目的。针对整数规划的子阵、阵元部署模型,提出基于量子粒子群优化的随机取整(SR-QPSO)求解算法,在较少的迭代步骤内获得最优阵元配置策略,实现子阵级和阵元级之间的联合优化。最后,通过对3个典型优化问题进行数值仿真,所提出的混合分布式PA-MIMO雷达系统优化配置较其他典型雷达系统有较大提升,探测概率达到0.98,有效距离达到1166.3 km,探测性能得到显著提升。
为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。 为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。
大气变化是地基干涉合成孔径雷达(GB-InSAR)形变监测的主要干扰因素。由于监测环境的地形复杂,水汽、湿度和温度的空间异质性,基于均匀大气介质假设的校正方法可能导致大气校正精度较低。该文提出了一种两阶段半经验模型,用于估计和校正复杂大气条件下特大滑坡GB-InSAR监测过程中出现的大气相位误差。该方法兼顾线性大气相位和非线性大气相位,首先根据测区的范围和高程对观测到的大气相位进行建模,校正与地形相关的线性大气相位。然后,考虑复杂大气条件和方位向大视场角度场景下出现的空间域非均匀大气情况,选取稳定永久散射体(PS)通过插值的方式获取所有PS点的大气相位,校正非线性大气相位。采用该方法对三峡库区新铺和藕塘特大滑坡的地基大视场雷达图像进行处理,相比于常规方法减小大气相位误差最大约2 mm。能有效校正特大滑坡监测场景下出现的非均匀大气相位,满足特大滑坡广域范围监测需求。 大气变化是地基干涉合成孔径雷达(GB-InSAR)形变监测的主要干扰因素。由于监测环境的地形复杂,水汽、湿度和温度的空间异质性,基于均匀大气介质假设的校正方法可能导致大气校正精度较低。该文提出了一种两阶段半经验模型,用于估计和校正复杂大气条件下特大滑坡GB-InSAR监测过程中出现的大气相位误差。该方法兼顾线性大气相位和非线性大气相位,首先根据测区的范围和高程对观测到的大气相位进行建模,校正与地形相关的线性大气相位。然后,考虑复杂大气条件和方位向大视场角度场景下出现的空间域非均匀大气情况,选取稳定永久散射体(PS)通过插值的方式获取所有PS点的大气相位,校正非线性大气相位。采用该方法对三峡库区新铺和藕塘特大滑坡的地基大视场雷达图像进行处理,相比于常规方法减小大气相位误差最大约2 mm。能有效校正特大滑坡监测场景下出现的非均匀大气相位,满足特大滑坡广域范围监测需求。
间歇采样转发式干扰机通过对其接收到的雷达发射信号进行采样、存储、处理和多次转发,在雷达接收端形成逼真的假目标干扰效果。为提升上述干扰场景下的雷达探测性能,该文提出了一种新的信号差分特征提取方法,在此基础上,利用目标回波和干扰信号在差分特征空间的差异设计判决准则,从而在有效辨识并抑制干扰的同时实现目标检测。仿真结果表明:该方法干扰抑制效果显著,相比于3种典型的时频域滤波算法等效信噪比改善4.2 dB以上。 间歇采样转发式干扰机通过对其接收到的雷达发射信号进行采样、存储、处理和多次转发,在雷达接收端形成逼真的假目标干扰效果。为提升上述干扰场景下的雷达探测性能,该文提出了一种新的信号差分特征提取方法,在此基础上,利用目标回波和干扰信号在差分特征空间的差异设计判决准则,从而在有效辨识并抑制干扰的同时实现目标检测。仿真结果表明:该方法干扰抑制效果显著,相比于3种典型的时频域滤波算法等效信噪比改善4.2 dB以上。
合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。 合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。
基于有向边界框的合成孔径雷达(SAR)舰船目标检测器能输出精准的边界框,但仍存在模型计算复杂度高、推理速度慢、存储消耗大等问题,导致其难以在星载平台上部署。基于此该文提出了结合特征图和检测头分支知识蒸馏的无锚框轻量化旋转检测方法。首先,结合目标的长宽比和方向角信息提出改进高斯核,使生成的热度图能更好地刻画目标形状。然后在检测器预测头部引入前景区域增强分支,使网络更关注前景特征且抑制背景杂波的干扰。在训练轻量化网络时,将像素点间的相似度构建为热度图蒸馏知识。为解决特征蒸馏中正负样本不平衡问题,将前景注意力区域作为掩模引导网络蒸馏与目标相关的特征。另外,该文提出全局语义模块对像素进行上下文信息建模,能够结合背景知识加强目标精确表征。基于HRSID数据集的实验结果表明所提方法在模型参数仅有9.07 M的轻量化条件下,mAP能达到80.71%,且检测帧率满足实时应用需求。 基于有向边界框的合成孔径雷达(SAR)舰船目标检测器能输出精准的边界框,但仍存在模型计算复杂度高、推理速度慢、存储消耗大等问题,导致其难以在星载平台上部署。基于此该文提出了结合特征图和检测头分支知识蒸馏的无锚框轻量化旋转检测方法。首先,结合目标的长宽比和方向角信息提出改进高斯核,使生成的热度图能更好地刻画目标形状。然后在检测器预测头部引入前景区域增强分支,使网络更关注前景特征且抑制背景杂波的干扰。在训练轻量化网络时,将像素点间的相似度构建为热度图蒸馏知识。为解决特征蒸馏中正负样本不平衡问题,将前景注意力区域作为掩模引导网络蒸馏与目标相关的特征。另外,该文提出全局语义模块对像素进行上下文信息建模,能够结合背景知识加强目标精确表征。基于HRSID数据集的实验结果表明所提方法在模型参数仅有9.07 M的轻量化条件下,mAP能达到80.71%,且检测帧率满足实时应用需求。
由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。 由于FDA-MIMO具有的超分辨特性使得可以在单个距离分辨单元之内利用目标更多的散射点,本文将高斯杂波背景下协方差矩阵未知的分布式目标检测问题建立为一个求和形式而非MIMO或相控阵雷达中仅考虑单点目标问题。进而,设计了无须训练数据的自适应Rao检测器。理论分析和仿真结果均验证了该算法的正确性和有效性。
密集转发干扰与雷达发射信号高度相关,兼具压制式和欺骗式干扰效果,使雷达系统难以检测到真实目标,严重威胁雷达作战能力。针对这一问题,该文提出一种基于支持向量机(SVM)的捷变频雷达密集转发干扰智能抑制方法。通过对随机样本集进行离线训练获得最优SVM模型,智能化识别并分类目标和干扰;然后,采用平滑滤波进一步抑制目标所在距离单元内的干扰信号;最后,基于压缩感知(CS)理论进行二维高分辨重构,估计出目标参数信息。仿真实验与实测数据处理结果表明,所提算法在不同场景下均能够有效抑制密集转发干扰,准确检测出真实目标。 密集转发干扰与雷达发射信号高度相关,兼具压制式和欺骗式干扰效果,使雷达系统难以检测到真实目标,严重威胁雷达作战能力。针对这一问题,该文提出一种基于支持向量机(SVM)的捷变频雷达密集转发干扰智能抑制方法。通过对随机样本集进行离线训练获得最优SVM模型,智能化识别并分类目标和干扰;然后,采用平滑滤波进一步抑制目标所在距离单元内的干扰信号;最后,基于压缩感知(CS)理论进行二维高分辨重构,估计出目标参数信息。仿真实验与实测数据处理结果表明,所提算法在不同场景下均能够有效抑制密集转发干扰,准确检测出真实目标。
由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。 由于多输入多输出(MIMO)系统具有波形、空间分集和多路复用等优势,MIMO探通一体化(DFRC)系统通过共享软硬件资源以同时实现目标探测和保密通信功能受到了极大关注。该文针对基于预编码矩阵调制的MIMO探通一体化系统,提出了基于交替方向乘子(ADMM)的一体化信号矩阵设计方法。通过用户和窃听用户参考密码本约束下最大化方向图峰值主瓣旁瓣电平比(PMSR),保证了探测方向图性能的同时防止通信信息被窃听。针对预编码矩阵通信解调问题,提出了基于交替方向惩罚(ADPM)的排序学习优化解调方法,提升了一体化波形信息解调效率。数值仿真验证了所提设计方法实现探通一体化的有效性,与已有算法相比可实现多用户通信和更高的PMSR。
多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。 多传感器多目标跟踪是信息融合领域的热点问题,其通过融合多个局部传感器数据,提高目标跟踪精度和稳定性。多传感器多目标跟踪按融合体系可分为分布式、集中式、混合式3类,其中分布式融合结构对网络通信带宽要求低、可靠性和稳定性强,广泛应用于军事、民用领域。该文聚焦分布式多传感器多目标跟踪涉及的目标跟踪、传感器配准、航迹关联、数据融合4项关键技术,主要分析了各关键技术的理论原理与适用条件,重点介绍了不完整测量条件下的空间配准与航迹关联,并给出仿真结果。最后,该文总结了现有分布式多传感器多目标跟踪关键技术存在的问题,并指出了其未来发展趋势。
合成孔径雷达三维成像技术(3D-SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低。压缩感知稀疏重构技术在简化3D-SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用。针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D-SAR成像方法。首先,探讨了常规3D-SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率。其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优化约束及网络的训练方法。最后,通过仿真数据和地面实验,证明了所提方法在提升成像精度的同时,其运行时间较传统稀疏成像算法降低一个数量级。 合成孔径雷达三维成像技术(3D-SAR)能通过孔径维度扩展实现三维成像能力,但数据维度大、系统实现难、成像分辨率低。压缩感知稀疏重构技术在简化3D-SAR系统、提升成像质量等方面展现出巨大潜力,但面临计算复杂度高、参数设置困难、弱稀疏场景适应差等新问题,制约了其实际应用。针对上述问题,该文结合卷积神经网络的特征学习及迭代算法的深度展开理论,提出了基于自学习稀疏先验的3D-SAR成像方法。首先,探讨了常规3D-SAR稀疏成像中矩阵向量线性表征模型的局限性,引入成像算子提升成像算法处理效率。其次,讨论了迭代算法映射网络的深度展开模型和实现方式,包括网络拓扑结构设计、算法参数的优化约束及网络的训练方法。最后,通过仿真数据和地面实验,证明了所提方法在提升成像精度的同时,其运行时间较传统稀疏成像算法降低一个数量级。
针对正交频分复用(OFDM)雷达通信一体化波形方案中循环前缀引起的弱回波掩盖问题和敌方战场低截获概率问题,该文提出了基于滤波器组的多载波偏移正交幅度调制(FBMC-OQAM)的低截获雷达通信一体化波形设计方案。分别构建FBMC雷达通信一体化波形与目标检测概率、通信信道容量之间的数学模型,在保证一定系统雷达与通信性能的条件约束下,设计最小化系统总发射功率联合优化问题,优化各个子载波发射功率分配方案。该算法利用测量值和信道状态信息,对下一个脉冲的发射波形参数进行优化设计,实现自适应传输。此外,从平均模糊函数角度分析了FBMC作为雷达信号的可行性和优势。仿真结果表明,与等功率分配方案相比,该文提出的功率分配方案可有效降低一体化系统总发射功率,从而实现低截获性能,并且FBMC波形可有效降低循环前缀引起的距离旁瓣,提高雷达分辨率与信息速率。 针对正交频分复用(OFDM)雷达通信一体化波形方案中循环前缀引起的弱回波掩盖问题和敌方战场低截获概率问题,该文提出了基于滤波器组的多载波偏移正交幅度调制(FBMC-OQAM)的低截获雷达通信一体化波形设计方案。分别构建FBMC雷达通信一体化波形与目标检测概率、通信信道容量之间的数学模型,在保证一定系统雷达与通信性能的条件约束下,设计最小化系统总发射功率联合优化问题,优化各个子载波发射功率分配方案。该算法利用测量值和信道状态信息,对下一个脉冲的发射波形参数进行优化设计,实现自适应传输。此外,从平均模糊函数角度分析了FBMC作为雷达信号的可行性和优势。仿真结果表明,与等功率分配方案相比,该文提出的功率分配方案可有效降低一体化系统总发射功率,从而实现低截获性能,并且FBMC波形可有效降低循环前缀引起的距离旁瓣,提高雷达分辨率与信息速率。