优先发表

动平台分布孔径雷达不仅可以通过多部小孔径雷达相参合成等效获得大孔径雷达的探测性能,也可进一步通过机动性和灵活部署增强探测与抗毁伤能力,是未来雷达重要发展方向之一。但由于多雷达间存在内部钟差和外部传播路径差,各雷达发射信号无法直接相参合成,需进行必要的时间和相位相参参数校正,且分布孔径雷达间距通常远超半波长,合成方向图将存在栅瓣问题,影响目标角度估计。为获得相参参数,该文以闭环式框架为基础,给出动平台分布孔径雷达认知相参框架,并结合运动条件下相参参数的变化规律,提出多脉冲关联相参参数估计方法以提升参数估计精度。同时,针对栅瓣问题,结合平台运动特性提出一种基于阵列构型累积的无模糊角度估计方法。最后,在仿真验证基础上基于所提框架设计了3节点地面动平台分布孔径雷达原理样机并开展了试验验证,试验结果表明在运动场景下,相比单部孔径雷达可以实现最高14.2 dB的信噪比增益,从而提升了目标的测距精度,同时在一定条件下实现了目标角度的无模糊测量,证明了所提方法和框架的有效性。该文工作将对未来分布孔径雷达的工程化实现及发展起到一定的引导作用。 动平台分布孔径雷达不仅可以通过多部小孔径雷达相参合成等效获得大孔径雷达的探测性能,也可进一步通过机动性和灵活部署增强探测与抗毁伤能力,是未来雷达重要发展方向之一。但由于多雷达间存在内部钟差和外部传播路径差,各雷达发射信号无法直接相参合成,需进行必要的时间和相位相参参数校正,且分布孔径雷达间距通常远超半波长,合成方向图将存在栅瓣问题,影响目标角度估计。为获得相参参数,该文以闭环式框架为基础,给出动平台分布孔径雷达认知相参框架,并结合运动条件下相参参数的变化规律,提出多脉冲关联相参参数估计方法以提升参数估计精度。同时,针对栅瓣问题,结合平台运动特性提出一种基于阵列构型累积的无模糊角度估计方法。最后,在仿真验证基础上基于所提框架设计了3节点地面动平台分布孔径雷达原理样机并开展了试验验证,试验结果表明在运动场景下,相比单部孔径雷达可以实现最高14.2 dB的信噪比增益,从而提升了目标的测距精度,同时在一定条件下实现了目标角度的无模糊测量,证明了所提方法和框架的有效性。该文工作将对未来分布孔径雷达的工程化实现及发展起到一定的引导作用。
睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉搏波数据,实现高可靠的轻接触式睡眠呼吸暂停低通气综合征的诊断,以解决传统医学上依赖多导睡眠图(PSG)进行睡眠监测时舒适度差、成本高等缺点。研究中,为兼顾睡眠呼吸异常事件检测的准确率和鲁棒性,该文提出了一种雷达、脉搏波数据预处理算法得到信号中的时频信息和人工特征,并设计了用于将两类信号融合的深度神经网络,以实现对睡眠呼吸暂停和低通气事件的精准识别,从而估算呼吸暂停低通气指数(AHI),用于对患者的睡眠呼吸异常严重程度进行定量评估。基于上海交通大学医学院附属第六人民医院临床试验数据集的实验结果表明,该文所提方案估算的AHI与金标准PSG的相关系数达到了0.93,一致性良好,有潜力普及成为家用睡眠呼吸监护的工具,并起到睡眠呼吸暂停低通气综合征初步筛查的作用。 睡眠呼吸暂停低通气综合征(SAHS)是一种常见的慢性睡眠呼吸障碍疾病,严重影响患者的睡眠质量和身体健康。该文提出了一种基于多源信号融合的睡眠呼吸暂停与低通气检测框架,通过融合毫米波雷达微动信号与光电容积脉搏波(PPG)描记法的脉搏波数据,实现高可靠的轻接触式睡眠呼吸暂停低通气综合征的诊断,以解决传统医学上依赖多导睡眠图(PSG)进行睡眠监测时舒适度差、成本高等缺点。研究中,为兼顾睡眠呼吸异常事件检测的准确率和鲁棒性,该文提出了一种雷达、脉搏波数据预处理算法得到信号中的时频信息和人工特征,并设计了用于将两类信号融合的深度神经网络,以实现对睡眠呼吸暂停和低通气事件的精准识别,从而估算呼吸暂停低通气指数(AHI),用于对患者的睡眠呼吸异常严重程度进行定量评估。基于上海交通大学医学院附属第六人民医院临床试验数据集的实验结果表明,该文所提方案估算的AHI与金标准PSG的相关系数达到了0.93,一致性良好,有潜力普及成为家用睡眠呼吸监护的工具,并起到睡眠呼吸暂停低通气综合征初步筛查的作用。
针对传统相控阵或多输入多输出(MIMO)体制的低截获概率(LPI)阵列雷达仅能控制特定角度的辐射能量,而无法实现特定区域(距离、角度)能量控制的问题,该文提出一种基于神经网络的频控阵-多输入多输出(FDA-MIMO)雷达低截获概率发射波形设计方法。该方法通过对FDA-MIMO雷达的发射波形和接收波束形成联合设计,在确保雷达对目标检测概率的情况下,将雷达辐射能量均匀地分散到空域当中,并尽可能降低辐射到目标位置的能量,从而减小雷达信号被截获的概率。首先,建立了最小化方向图匹配误差准则下LPI性能发射波形设计和接收波束形成的优化目标函数;然后,将目标函数作为神经网络的损失函数;最后,通过迭代训练最小化神经网络的损失函数,直至网络收敛,求解出发射信号波形和对应的接收加权矢量。仿真结果表明,该文所提方法能更好地控制雷达功率分布,相比于传统算法,在控制发射方向图在非目标区域的波束能量分布方面有5 dB的改善;此外,在接收端形成的接收方向图波束能量也更为集中,且在多个干扰位置均产生了–50 dB以下的零陷,具有很好的干扰抑制效果。 针对传统相控阵或多输入多输出(MIMO)体制的低截获概率(LPI)阵列雷达仅能控制特定角度的辐射能量,而无法实现特定区域(距离、角度)能量控制的问题,该文提出一种基于神经网络的频控阵-多输入多输出(FDA-MIMO)雷达低截获概率发射波形设计方法。该方法通过对FDA-MIMO雷达的发射波形和接收波束形成联合设计,在确保雷达对目标检测概率的情况下,将雷达辐射能量均匀地分散到空域当中,并尽可能降低辐射到目标位置的能量,从而减小雷达信号被截获的概率。首先,建立了最小化方向图匹配误差准则下LPI性能发射波形设计和接收波束形成的优化目标函数;然后,将目标函数作为神经网络的损失函数;最后,通过迭代训练最小化神经网络的损失函数,直至网络收敛,求解出发射信号波形和对应的接收加权矢量。仿真结果表明,该文所提方法能更好地控制雷达功率分布,相比于传统算法,在控制发射方向图在非目标区域的波束能量分布方面有5 dB的改善;此外,在接收端形成的接收方向图波束能量也更为集中,且在多个干扰位置均产生了–50 dB以下的零陷,具有很好的干扰抑制效果。
全球老龄化趋势日益加剧,健康生活理念深入人心,居民对居家健康监测的需求也随之而来。为了减少健康监测对日常活动的影响,非接触式监测系统的需求量激增。然而,目前主流的检测方法存在隐私信任度低、电磁兼容性差和制造成本高等问题。对此,该文提出一种基于超声波雷达的非接触式生命体征信号测量系统——U-Sodar,包括一套基于3发4收MIMO架构的硬件和一套信号处理算法。其中U-Sodar本振采用分频技术,相位噪声低,检测精度高;接收机采用前端直接采样技术,在简化结构的同时有效减少外部噪声;发射采用可调PWM直接驱动,可发射多种超声波形,具备软件定义超声波系统特性。U-Sodar的信号处理算法采用信号弦长的图处理技术,利用图片滤波后重构的方法可在5 dB信噪比下实现信号相位的准确恢复。试验测试了U-Sodar系统的抗干扰性能与穿透性能,证明了超声穿透是依赖材料孔隙而非跨介质振动传导。并推导了给定信噪比与正确解调概率下的最小可测量位移。实际生命体征信号测量实验中,U-Sodar可分别在3 m和1.5 m距离内实现呼吸率和心率的准确测量,在1 m内可测得心跳波形。实验结果证明了U-Sodar超声波雷达在非接触式生命体征检测应用中的可行性及发展潜力。 全球老龄化趋势日益加剧,健康生活理念深入人心,居民对居家健康监测的需求也随之而来。为了减少健康监测对日常活动的影响,非接触式监测系统的需求量激增。然而,目前主流的检测方法存在隐私信任度低、电磁兼容性差和制造成本高等问题。对此,该文提出一种基于超声波雷达的非接触式生命体征信号测量系统——U-Sodar,包括一套基于3发4收MIMO架构的硬件和一套信号处理算法。其中U-Sodar本振采用分频技术,相位噪声低,检测精度高;接收机采用前端直接采样技术,在简化结构的同时有效减少外部噪声;发射采用可调PWM直接驱动,可发射多种超声波形,具备软件定义超声波系统特性。U-Sodar的信号处理算法采用信号弦长的图处理技术,利用图片滤波后重构的方法可在5 dB信噪比下实现信号相位的准确恢复。试验测试了U-Sodar系统的抗干扰性能与穿透性能,证明了超声穿透是依赖材料孔隙而非跨介质振动传导。并推导了给定信噪比与正确解调概率下的最小可测量位移。实际生命体征信号测量实验中,U-Sodar可分别在3 m和1.5 m距离内实现呼吸率和心率的准确测量,在1 m内可测得心跳波形。实验结果证明了U-Sodar超声波雷达在非接触式生命体征检测应用中的可行性及发展潜力。
星载合成孔径雷达 (SAR) 受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测三个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。 星载合成孔径雷达 (SAR) 受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测三个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。
UWB雷达由于具有结构简单、发射功率低、穿透能力强、分辨能力高、传输速度快等诸多优势,逐渐成为多探测场景广泛应用的生命信息探测技术及装备。要完成生命信息的有效探测,关键是利用雷达回波信息处理技术从UWB雷达回波中提取被测人员的呼吸心跳信号,这对不同场景实现生命信息的判定、位置信息的获取、疾病的监测和预防以及保障人员安全具有至关重要的意义。为此,该文介绍了UWB雷达及分类、电磁散射机理和探测原理;分析了呼吸心跳信号的雷达回波模型构建现状;从时域、频域、时频域分析方法等角度梳理了现有呼吸心跳信号的提取方法;并从矿山救援、地震救援、医疗健康、穿墙探测等场景归纳了呼吸心跳信号提取的研究进展。总结了当前研究中存在的主要问题,展望了未来研究工作应重点关注的领域。 UWB雷达由于具有结构简单、发射功率低、穿透能力强、分辨能力高、传输速度快等诸多优势,逐渐成为多探测场景广泛应用的生命信息探测技术及装备。要完成生命信息的有效探测,关键是利用雷达回波信息处理技术从UWB雷达回波中提取被测人员的呼吸心跳信号,这对不同场景实现生命信息的判定、位置信息的获取、疾病的监测和预防以及保障人员安全具有至关重要的意义。为此,该文介绍了UWB雷达及分类、电磁散射机理和探测原理;分析了呼吸心跳信号的雷达回波模型构建现状;从时域、频域、时频域分析方法等角度梳理了现有呼吸心跳信号的提取方法;并从矿山救援、地震救援、医疗健康、穿墙探测等场景归纳了呼吸心跳信号提取的研究进展。总结了当前研究中存在的主要问题,展望了未来研究工作应重点关注的领域。
超宽带雷达具有抗干扰能力强、穿透性强等特点,被广泛应用于穿墙人体目标探测。单发单收雷达具有体积小、重量轻的优势,但是无法实现目标的二维定位。MIMO阵列雷达能够实现对于目标的定位,但是存在着体积与分辨率之间的相互制约,同时运算时间较长。该文基于分布式穿墙雷达,提出了一种基于分布式雷达的多目标自动检测方法。首先,对回波信号进行时域预处理、时频转换等,基于恒虚警检测的目标距离测量方法获取目标候选距离单元,使用滤波矩阵进行候选信号增强;基于生命信息对增强后信号进行关联,实现目标匹配;最后使用定位模块来实现雷达位置自确定,进而实现生命目标位置的快速、自动检测。为了避免偶发误差对最终定位结果的影响,该文使用定位场景剖分的方法实现穿墙场景下的生命目标二维定位。实验结果表明,该文所提方法可以实现穿墙场景下多目标的检测定位,在实测数据中运算时间为0.95 s,优于其他对比方法4倍以上。 超宽带雷达具有抗干扰能力强、穿透性强等特点,被广泛应用于穿墙人体目标探测。单发单收雷达具有体积小、重量轻的优势,但是无法实现目标的二维定位。MIMO阵列雷达能够实现对于目标的定位,但是存在着体积与分辨率之间的相互制约,同时运算时间较长。该文基于分布式穿墙雷达,提出了一种基于分布式雷达的多目标自动检测方法。首先,对回波信号进行时域预处理、时频转换等,基于恒虚警检测的目标距离测量方法获取目标候选距离单元,使用滤波矩阵进行候选信号增强;基于生命信息对增强后信号进行关联,实现目标匹配;最后使用定位模块来实现雷达位置自确定,进而实现生命目标位置的快速、自动检测。为了避免偶发误差对最终定位结果的影响,该文使用定位场景剖分的方法实现穿墙场景下的生命目标二维定位。实验结果表明,该文所提方法可以实现穿墙场景下多目标的检测定位,在实测数据中运算时间为0.95 s,优于其他对比方法4倍以上。
间歇采样转发干扰是一种脉内相干干扰,其形成的电子假目标与真实目标高度相似,对雷达目标检测造成了严重威胁。传统抗干扰方法较为被动,且没有考虑到干扰机策略的变化,在干扰抑制时难免会出现干扰残留以及信号损失的情况。为了提升雷达抗干扰性能,该文提出一种联合“干扰感知-参数估计-干扰抑制”的抗干扰方案。首先,利用双向-双滑窗脉冲沿检测和滑动截断匹配滤波方法,准确提取接收回波中的干扰分量并估计采样时长和周期等参数。在此基础上,重构出干扰信号分量并将其从回波中剔除,从而确保准确有效的目标检测。仿真实验表明,所提方法在不损失信号能量的情况下,对于不同调制方式下的间歇采样转发干扰都具有较好的抑制效果。当干噪比为9 dB时,干扰抑制后信干比提升大于33 dB,保证了雷达稳健的抗干扰性能。 间歇采样转发干扰是一种脉内相干干扰,其形成的电子假目标与真实目标高度相似,对雷达目标检测造成了严重威胁。传统抗干扰方法较为被动,且没有考虑到干扰机策略的变化,在干扰抑制时难免会出现干扰残留以及信号损失的情况。为了提升雷达抗干扰性能,该文提出一种联合“干扰感知-参数估计-干扰抑制”的抗干扰方案。首先,利用双向-双滑窗脉冲沿检测和滑动截断匹配滤波方法,准确提取接收回波中的干扰分量并估计采样时长和周期等参数。在此基础上,重构出干扰信号分量并将其从回波中剔除,从而确保准确有效的目标检测。仿真实验表明,所提方法在不损失信号能量的情况下,对于不同调制方式下的间歇采样转发干扰都具有较好的抑制效果。当干噪比为9 dB时,干扰抑制后信干比提升大于33 dB,保证了雷达稳健的抗干扰性能。
近年来,基于商用WiFi设备实现非接触式呼吸监测得到了广泛关注。然而,现有的方法受人体反射信号强度制约,通常要求人正面朝向WiFi设备,当人体侧向或背部朝向设备时,胸腔反射信号的减弱使得呼吸监测变得困难。为了解决这个问题,该文提出了一种基于智能反射表面(IRS)的新型呼吸监测系统。该系统利用智能反射表面控制WiFi信号在环境中的传播路径,增强了人体的反射,最终实现了姿势鲁棒地呼吸监测。此外,该系统易于部署,无需事先知道收发天线与智能反射表面的确切位置和相应的环境信息。实验验证,与现有的方法相比,该系统显著改善了不同姿势下人体的呼吸监测效果。 近年来,基于商用WiFi设备实现非接触式呼吸监测得到了广泛关注。然而,现有的方法受人体反射信号强度制约,通常要求人正面朝向WiFi设备,当人体侧向或背部朝向设备时,胸腔反射信号的减弱使得呼吸监测变得困难。为了解决这个问题,该文提出了一种基于智能反射表面(IRS)的新型呼吸监测系统。该系统利用智能反射表面控制WiFi信号在环境中的传播路径,增强了人体的反射,最终实现了姿势鲁棒地呼吸监测。此外,该系统易于部署,无需事先知道收发天线与智能反射表面的确切位置和相应的环境信息。实验验证,与现有的方法相比,该系统显著改善了不同姿势下人体的呼吸监测效果。
近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常将相位信号作为源信号进行分离,该文引入FMCW雷达下距离维信号和相位信号的对比,推导出相位信号作为源信号存在近似误差,并通过仿真验证距离维信号作为源信号时分离效果更好。另外,该文提出了基于非圆复数独立成分分析的多人呼吸信号分离算法,分析了不同呼吸信号参数对分离效果的影响,仿真和实测实验表明,所提出的方法适用于天线个数不小于目标个数时多人呼吸信号的检测,并且在目标角度差为9.46°时,也能够准确分离呼吸信号。 近年来,人们越来越关注多人环境下的呼吸监测,以及如何同时监测多人的健康状态。在多人呼吸检测的算法中,盲源分离算法因其无需先验信息并且对硬件性能依赖性较小而备受研究者关注。然而,在多人呼吸监测场景中,目前的盲源分离算法通常将相位信号作为源信号进行分离,该文引入FMCW雷达下距离维信号和相位信号的对比,推导出相位信号作为源信号存在近似误差,并通过仿真验证距离维信号作为源信号时分离效果更好。另外,该文提出了基于非圆复数独立成分分析的多人呼吸信号分离算法,分析了不同呼吸信号参数对分离效果的影响,仿真和实测实验表明,所提出的方法适用于天线个数不小于目标个数时多人呼吸信号的检测,并且在目标角度差为9.46°时,也能够准确分离呼吸信号。
对基于干涉相位的合成孔径雷达(SAR)有源欺骗干扰检测进行了性能分析。首先基于真实场景和虚假目标的斜距向局部条纹频率概率分布,推导了欺骗干扰检测概率的显式表达式。分别分析了垂直基线长度、干信比和局部条纹频率估计窗口尺寸3个因素对欺骗干扰检测概率(TPR)的影响。进而分析了在给定虚警概率(FPR)时,SAR系统能够达到检测概率要求时所需的垂直基线长度,为SAR系统的基线设计提供了理论依据。在现有低轨SAR参数条件下,要得到更大的干扰检测概率,所需垂直基线长度也越大,因此,在设计SAR系统的基线时,既要保证垂直基线足够大可满足检测概率的要求,还需要兼顾真实场景的相干系数,垂直基线不能太大,满足场景可进行干涉的条件。最后,对理论分析的结论进行了仿真验证。理论分析与实验结果表明:在虚警概率固定的情况下,一定范围内垂直基线长度越大/干信比越大/局部条纹频率估计窗口越大,则干扰检测概率越大。 对基于干涉相位的合成孔径雷达(SAR)有源欺骗干扰检测进行了性能分析。首先基于真实场景和虚假目标的斜距向局部条纹频率概率分布,推导了欺骗干扰检测概率的显式表达式。分别分析了垂直基线长度、干信比和局部条纹频率估计窗口尺寸3个因素对欺骗干扰检测概率(TPR)的影响。进而分析了在给定虚警概率(FPR)时,SAR系统能够达到检测概率要求时所需的垂直基线长度,为SAR系统的基线设计提供了理论依据。在现有低轨SAR参数条件下,要得到更大的干扰检测概率,所需垂直基线长度也越大,因此,在设计SAR系统的基线时,既要保证垂直基线足够大可满足检测概率的要求,还需要兼顾真实场景的相干系数,垂直基线不能太大,满足场景可进行干涉的条件。最后,对理论分析的结论进行了仿真验证。理论分析与实验结果表明:在虚警概率固定的情况下,一定范围内垂直基线长度越大/干信比越大/局部条纹频率估计窗口越大,则干扰检测概率越大。
作为中国新一代天基长波SAR的代表,陆地探测1号01卫星(LT-1A)于2022年1月发射进入太阳同步轨道。LT-1A搭载的长波合成孔径雷达(SAR)工作在L波段,具备单极化、线性双极化、紧缩双极化、全极化等对地观测能力。现有研究主要侧重于LT-1A重轨干涉数据获取能力以及数字高程模型、沉降产品的生产精度评价,对LT-1A的辐射精度、地物极化信息保持能力的研究较为缺乏。该文以热带雨林植被为观测对象,通过不依赖人工定标器的自主定标方法对LT-1A全极化数据辐射误差、极化误差的稳定性进行评价与分析。实验表明:LT-1A传感器的辐射稳定性较好、极化精度优于国际对地观测组织(CEOS)推荐指标。持续对地观测1000 km内归一化雷达截面(NRCS)误差波动小于1 dB (3倍标准差)、5天内重返观测时辐射误差波动小于0.5 dB (3倍标准差);全极化观测模式下系统串扰低于–35 dB甚至达到–40 dB,交叉极化通道不平衡优于0.2 dB与2°,同通道不平衡优于0.5 dB与10°;系统噪声介于–42~–22 dB,平均系统等效热噪声优于–25 dB,热噪声水平随持续对地观测时长的增加有升高。此外,该研究验证了电离层对LT-1A极化数据质量的影响:5°法拉第旋转角造成的图像退化与–20 dB系统串扰带来的影响相当,而3°~20°法拉第旋转角在中、低纬度较为常见,这将带来–21.16~–8.78 dB的极化通道间扰动,即电离层对全极化数据质量的退化相较传感器–40 dB的串扰更为严重。 作为中国新一代天基长波SAR的代表,陆地探测1号01卫星(LT-1A)于2022年1月发射进入太阳同步轨道。LT-1A搭载的长波合成孔径雷达(SAR)工作在L波段,具备单极化、线性双极化、紧缩双极化、全极化等对地观测能力。现有研究主要侧重于LT-1A重轨干涉数据获取能力以及数字高程模型、沉降产品的生产精度评价,对LT-1A的辐射精度、地物极化信息保持能力的研究较为缺乏。该文以热带雨林植被为观测对象,通过不依赖人工定标器的自主定标方法对LT-1A全极化数据辐射误差、极化误差的稳定性进行评价与分析。实验表明:LT-1A传感器的辐射稳定性较好、极化精度优于国际对地观测组织(CEOS)推荐指标。持续对地观测1000 km内归一化雷达截面(NRCS)误差波动小于1 dB (3倍标准差)、5天内重返观测时辐射误差波动小于0.5 dB (3倍标准差);全极化观测模式下系统串扰低于–35 dB甚至达到–40 dB,交叉极化通道不平衡优于0.2 dB与2°,同通道不平衡优于0.5 dB与10°;系统噪声介于–42~–22 dB,平均系统等效热噪声优于–25 dB,热噪声水平随持续对地观测时长的增加有升高。此外,该研究验证了电离层对LT-1A极化数据质量的影响:5°法拉第旋转角造成的图像退化与–20 dB系统串扰带来的影响相当,而3°~20°法拉第旋转角在中、低纬度较为常见,这将带来–21.16~–8.78 dB的极化通道间扰动,即电离层对全极化数据质量的退化相较传感器–40 dB的串扰更为严重。
该文提出了一种利用计算机视觉技术辅助实现包含运动人体散射特征的毫米波无线信道仿真方法。该方法旨在为毫米波无线人体动作识别场景之下,快速且低成本地生成仿真训练数据集,避免当前实测采集数据集的巨大开销。首先利用基元模型将人体建模为35个相互连接的椭球,并从包含人体动作的视频中提取出人体在进行对应动作时各个椭球的运动数据;其次利用简化的射线追踪方法,针对动作中基元模型的每一帧计算对应的信道响应;最后对信道响应进行多普勒分析,获得对应动作的微多普勒时频谱。上述仿真获得的微多普勒时频谱数据集可以用于训练无线动作识别的深度神经网络。该文针对“步行”“跑步”“跌倒”“坐下”这4种常见的人体动作在60 GHz频段上进行了信道仿真及动作识别的测试。实验结果表明,通过仿真训练的深度神经网络在实际无线动作识别中平均识别准确率可以达到73.0%。此外,借助无标签迁移学习,通过少量无标签实测数据的微调,上述准确率可以进一步提高到93.75%。 该文提出了一种利用计算机视觉技术辅助实现包含运动人体散射特征的毫米波无线信道仿真方法。该方法旨在为毫米波无线人体动作识别场景之下,快速且低成本地生成仿真训练数据集,避免当前实测采集数据集的巨大开销。首先利用基元模型将人体建模为35个相互连接的椭球,并从包含人体动作的视频中提取出人体在进行对应动作时各个椭球的运动数据;其次利用简化的射线追踪方法,针对动作中基元模型的每一帧计算对应的信道响应;最后对信道响应进行多普勒分析,获得对应动作的微多普勒时频谱。上述仿真获得的微多普勒时频谱数据集可以用于训练无线动作识别的深度神经网络。该文针对“步行”“跑步”“跌倒”“坐下”这4种常见的人体动作在60 GHz频段上进行了信道仿真及动作识别的测试。实验结果表明,通过仿真训练的深度神经网络在实际无线动作识别中平均识别准确率可以达到73.0%。此外,借助无标签迁移学习,通过少量无标签实测数据的微调,上述准确率可以进一步提高到93.75%。
该文针对光学与雷达传感器融合人体姿态估计研究,基于连续时间微动累积量与姿态增量的物理对应关系,提出了一种单通道超宽带雷达人体姿态增量估计方案。具体来说,通过构造空时分步增量估计网络,采用空域伪3D卷积层与时域膨胀卷积层分步提取空时微动特征,将其映射为时间段内人体姿态增量,结合光学提供的姿态初值,实现人体三维姿态估计。实测数据结果表明,融合姿态估计在原地动作集取得5.38 cm估计误差,并能够实现一段时间行走动作连续姿态估计。与其他雷达姿态估计对比和消融实验证明了该文方法的优势。 该文针对光学与雷达传感器融合人体姿态估计研究,基于连续时间微动累积量与姿态增量的物理对应关系,提出了一种单通道超宽带雷达人体姿态增量估计方案。具体来说,通过构造空时分步增量估计网络,采用空域伪3D卷积层与时域膨胀卷积层分步提取空时微动特征,将其映射为时间段内人体姿态增量,结合光学提供的姿态初值,实现人体三维姿态估计。实测数据结果表明,融合姿态估计在原地动作集取得5.38 cm估计误差,并能够实现一段时间行走动作连续姿态估计。与其他雷达姿态估计对比和消融实验证明了该文方法的优势。
隔墙人体姿态重建和行为识别在智能安防和虚拟现实等领域具有广泛应用前景。然而,现有隔墙人体感知方法通常忽视了对4D时空特征的建模以及墙体对信号的影响,针对这些问题,该文创新性地提出了一种基于4D成像雷达的隔墙人体感知新架构。首先,基于时空分离的分步策略,该文设计了ST2W-AP时空融合网络,解决了由于主流深度学习库缺少4D卷积而无法充分利用多帧3D体素时空域信息的问题,实现了保留3D空域信息的同时利用长序时域信息,大幅提升姿态估计任务和行为识别任务的性能。此外,为抑制墙体对信号的干扰,该文利用深度学习强大的拟合性能和并行输出的特点设计了深度回波域补偿器,降低了传统墙体补偿方法的计算开销。大量的实验结果表明,相比于现有最佳方法,ST2W-AP将平均关节位置误差降低了33.57%,并且将行为识别的F1分数提高了0.51%。 隔墙人体姿态重建和行为识别在智能安防和虚拟现实等领域具有广泛应用前景。然而,现有隔墙人体感知方法通常忽视了对4D时空特征的建模以及墙体对信号的影响,针对这些问题,该文创新性地提出了一种基于4D成像雷达的隔墙人体感知新架构。首先,基于时空分离的分步策略,该文设计了ST2W-AP时空融合网络,解决了由于主流深度学习库缺少4D卷积而无法充分利用多帧3D体素时空域信息的问题,实现了保留3D空域信息的同时利用长序时域信息,大幅提升姿态估计任务和行为识别任务的性能。此外,为抑制墙体对信号的干扰,该文利用深度学习强大的拟合性能和并行输出的特点设计了深度回波域补偿器,降低了传统墙体补偿方法的计算开销。大量的实验结果表明,相比于现有最佳方法,ST2W-AP将平均关节位置误差降低了33.57%,并且将行为识别的F1分数提高了0.51%。
低频超宽带(UWB)雷达因其良好穿透性和分辨率,在人体行为识别领域具有显著的优势。针对现有的动作识别算法运算量大、网络参数多的问题,该文提出了一种基于时空点云的高效且轻量的超宽带雷达人体行为识别方法。首先通过UWB雷达采集人体的四维运动数据,然后采用离散采样的方法将雷达图像转换为点云表示,由于人体行为识别属于时间序列上的分类问题,该文结合PointNet++网络与Transformer网络提出了一种轻量化的时空网络,通过提取并分析四维点云的时空特征,实现了对人体行为的端到端识别。在模型的训练过程中,提出了一种点云数据多阈值融合的方法,进一步提高了模型的泛化性和识别能力。该文根据公开的四维雷达成像数据集对所提方法进行验证,并与现有方法进行了比较。结果表明,所提方法在人体行为识别率达到96.75%,且消耗较少的参数量和运算量,验证了其有效性。 低频超宽带(UWB)雷达因其良好穿透性和分辨率,在人体行为识别领域具有显著的优势。针对现有的动作识别算法运算量大、网络参数多的问题,该文提出了一种基于时空点云的高效且轻量的超宽带雷达人体行为识别方法。首先通过UWB雷达采集人体的四维运动数据,然后采用离散采样的方法将雷达图像转换为点云表示,由于人体行为识别属于时间序列上的分类问题,该文结合PointNet++网络与Transformer网络提出了一种轻量化的时空网络,通过提取并分析四维点云的时空特征,实现了对人体行为的端到端识别。在模型的训练过程中,提出了一种点云数据多阈值融合的方法,进一步提高了模型的泛化性和识别能力。该文根据公开的四维雷达成像数据集对所提方法进行验证,并与现有方法进行了比较。结果表明,所提方法在人体行为识别率达到96.75%,且消耗较少的参数量和运算量,验证了其有效性。
现有的基于雷达传感器的人体动作识别研究主要聚焦于相对雷达径向运动产生的微多普勒特征。当面对非径向,特别是静态姿势或者运动方向与雷达波束中心垂直的切向动作(切向人体姿态)时,传统基于微多普勒的方法无法对径向运动微弱的切向人体姿态进行有效表征,导致识别性能大幅下降。为了解决这一问题,该文提出了一种基于多发多收(MIMO)雷达成像图序列的切向人体姿态识别方法,以高质量成像图序列的形式来表征切向姿态的人体轮廓结构及其动态变化,通过提取图像内的空间特征和图序列间的时序特征,实现对切向人体姿态的准确识别。首先,通过恒虚警检测算法(CFAR)定位人体目标所在距离门,接着,利用慢时滑窗将目标动作划分为帧序列,对每帧数据用傅里叶变换和二维Capon算法估计出切向姿态的距离、俯仰角度和方位角度,得到切向姿态的成像图,将各帧成像图按照时序串联起来,构成切向人体姿态成像图序列;然后,提出了一种改进的多域联合自适应阈值去噪算法,抑制环境杂波,增强人体轮廓和结构特征,改善成像质量;最后,采用了一种基于空时注意力模块的卷积长短期记忆网络模型(ST-ConvLSTM),利用ConvLSTM单元来学习切向人体姿态成像图序列中的多维特征,并结合空时注意力模块来强调成像图内的空间特征和图序列间的时序特征。对比实验的分析结果表明,相比于传统方法,该文所提出的方法在8种典型的切向人体姿态的识别中取得了96.9%的准确率,验证了该方法在切向人体姿态识别上的可行性和优越性。 现有的基于雷达传感器的人体动作识别研究主要聚焦于相对雷达径向运动产生的微多普勒特征。当面对非径向,特别是静态姿势或者运动方向与雷达波束中心垂直的切向动作(切向人体姿态)时,传统基于微多普勒的方法无法对径向运动微弱的切向人体姿态进行有效表征,导致识别性能大幅下降。为了解决这一问题,该文提出了一种基于多发多收(MIMO)雷达成像图序列的切向人体姿态识别方法,以高质量成像图序列的形式来表征切向姿态的人体轮廓结构及其动态变化,通过提取图像内的空间特征和图序列间的时序特征,实现对切向人体姿态的准确识别。首先,通过恒虚警检测算法(CFAR)定位人体目标所在距离门,接着,利用慢时滑窗将目标动作划分为帧序列,对每帧数据用傅里叶变换和二维Capon算法估计出切向姿态的距离、俯仰角度和方位角度,得到切向姿态的成像图,将各帧成像图按照时序串联起来,构成切向人体姿态成像图序列;然后,提出了一种改进的多域联合自适应阈值去噪算法,抑制环境杂波,增强人体轮廓和结构特征,改善成像质量;最后,采用了一种基于空时注意力模块的卷积长短期记忆网络模型(ST-ConvLSTM),利用ConvLSTM单元来学习切向人体姿态成像图序列中的多维特征,并结合空时注意力模块来强调成像图内的空间特征和图序列间的时序特征。对比实验的分析结果表明,相比于传统方法,该文所提出的方法在8种典型的切向人体姿态的识别中取得了96.9%的准确率,验证了该方法在切向人体姿态识别上的可行性和优越性。
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。 双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。
在实际应用中,单传感器的视距、计算资源通常是有限的,多传感器网络的发展和应用为解决具有挑战性的目标跟踪问题提供了更多的可能性。相比于多目标跟踪,集群目标跟踪由于群内目标距离近、协同运动、数目多以及集群分裂合并等因素,会面临更具挑战性的数据关联和计算上的问题,而这些问题在多传感器融合系统中会进一步复杂化。针对有限视距情形下的多传感器集群目标跟踪问题,该文提出了一种可扩展的多传感器集群目标信念传播跟踪方法。该方法在贝叶斯框架下考虑集群结构的不确定性,构建多传感器集群目标联合后验概率密度分解和相应的因子图,以及通过在设计的因子图上运行信念传播算法高效求解数据关联问题。此外,该方法具有计算处理可扩展性,其计算复杂度与传感器数目、集群划分数目和观测数目呈线性关系,与目标数目呈二次关系。最后,仿真实验对比了不同方法关于GOSPA和OSPA(2)的性能,结果表明所提方法能够无缝跟踪集群目标和非群目标、充分利用多传感器信息互补优势、提升跟踪精度。 在实际应用中,单传感器的视距、计算资源通常是有限的,多传感器网络的发展和应用为解决具有挑战性的目标跟踪问题提供了更多的可能性。相比于多目标跟踪,集群目标跟踪由于群内目标距离近、协同运动、数目多以及集群分裂合并等因素,会面临更具挑战性的数据关联和计算上的问题,而这些问题在多传感器融合系统中会进一步复杂化。针对有限视距情形下的多传感器集群目标跟踪问题,该文提出了一种可扩展的多传感器集群目标信念传播跟踪方法。该方法在贝叶斯框架下考虑集群结构的不确定性,构建多传感器集群目标联合后验概率密度分解和相应的因子图,以及通过在设计的因子图上运行信念传播算法高效求解数据关联问题。此外,该方法具有计算处理可扩展性,其计算复杂度与传感器数目、集群划分数目和观测数目呈线性关系,与目标数目呈二次关系。最后,仿真实验对比了不同方法关于GOSPA和OSPA(2)的性能,结果表明所提方法能够无缝跟踪集群目标和非群目标、充分利用多传感器信息互补优势、提升跟踪精度。