优先发表
状态: , 更新:
随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。
随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。
状态: , 更新:
激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的联合标定方法需要借助校准靶标物和人工选点的方式处理,导致其无法在动态的应用场景中使用。该文提出一种ResCalib深度神经网络模型用于解决激光雷达与相机的在线联合标定问题,该方法以激光雷达点云、单目图像和相机内参数矩阵作为输入以实现参数解算,而方法对外部特征物或靶标的依赖度低。ResCalib是一个几何监督深度神经网络,通过实施监督学习使输入图像和点云的几何及光度一致性最大化,利用单次迭代网络,自动估计激光雷达和相机之间的6自由度外参关系。实验表明该文方法能够纠正旋转±10°和平移±0.2 m的错误标定,标定解算结果的旋转分量的平均绝对误差为0.35°,平移分量为0.032 m,且单组标定所需时间为0.018 s,为实现动态环境下的自动化联合标定提供了技术支撑。
激光雷达缺乏纹理色彩信息,相机缺乏深度信息,激光雷达和相机的信息具有高度的互补性,融合二者能获得丰富的观测数据,能提高环境感知的精准度和稳定性。而对两类传感器的外部参数进行精确的联合标定是数据融合的前提。目前,绝大多数的联合标定方法需要借助校准靶标物和人工选点的方式处理,导致其无法在动态的应用场景中使用。该文提出一种ResCalib深度神经网络模型用于解决激光雷达与相机的在线联合标定问题,该方法以激光雷达点云、单目图像和相机内参数矩阵作为输入以实现参数解算,而方法对外部特征物或靶标的依赖度低。ResCalib是一个几何监督深度神经网络,通过实施监督学习使输入图像和点云的几何及光度一致性最大化,利用单次迭代网络,自动估计激光雷达和相机之间的6自由度外参关系。实验表明该文方法能够纠正旋转±10°和平移±0.2 m的错误标定,标定解算结果的旋转分量的平均绝对误差为0.35°,平移分量为0.032 m,且单组标定所需时间为0.018 s,为实现动态环境下的自动化联合标定提供了技术支撑。
状态: , 更新:
集探测与通信功能为一体的探通一体(DFRC)综合电子设备平台通过共享硬件平台和发射波形,有效缓解了平台受限、资源紧张、电磁兼容等问题,因此成为近年来的研究热点。以探测为核心、兼顾有限通信能力的DFRC技术,在未来实战中的预警监视、跟踪制导等典型探测场景中具有巨大的应用前景。该文重点关注在保证基本通信性能基础之上,通过有效调节探测与通信在多域资源利用方面的冲突和矛盾,实现雷达探测性能最优化的信号设计方法。该文首先总结了DFRC系统的性能衡量准则,然后全面地介绍了典型探测场景下DFRC信号设计方法,并深入分析了各信号设计方法存在的问题以及目前的解决方案。在最后对全文做了总结,并对未来的研究方向进行了展望。
集探测与通信功能为一体的探通一体(DFRC)综合电子设备平台通过共享硬件平台和发射波形,有效缓解了平台受限、资源紧张、电磁兼容等问题,因此成为近年来的研究热点。以探测为核心、兼顾有限通信能力的DFRC技术,在未来实战中的预警监视、跟踪制导等典型探测场景中具有巨大的应用前景。该文重点关注在保证基本通信性能基础之上,通过有效调节探测与通信在多域资源利用方面的冲突和矛盾,实现雷达探测性能最优化的信号设计方法。该文首先总结了DFRC系统的性能衡量准则,然后全面地介绍了典型探测场景下DFRC信号设计方法,并深入分析了各信号设计方法存在的问题以及目前的解决方案。在最后对全文做了总结,并对未来的研究方向进行了展望。
状态: , 更新:
现代雷达的探测、跟踪、识别等任务场景越来越复杂。任务类型的多变性,雷达资源的稀缺性和任务执行时间窗口的严格要求,使得雷达任务调度成为一类强NP-Hard问题。然而,现有的调度算法在处理涉及复杂逻辑约束的多雷达协同调度问题时适应性不足,效率不高。因此,基于人工智能(AI)的调度算法正在成为研究热点,但是AI调度算法的效率与问题特征提取是否全面密切相关。如何能快速,全面的提取多雷达协同任务调度问题的共性特征,是提升这类AI调度算法效率的关键。因此,该文提出了基于模型知识融合的图神经网络(MKEGNN)调度算法。该算法首先将雷达任务协同调度问题建模为异构网络图模型,利用模型知识来优化GNN算法训练过程。算法创新在于:通过低复杂度的计算手段,获取模型的关键知识,进而优化GNN模型。在特征提取阶段,引入随机酉矩阵变换,利用任务异构图的随机拉普拉斯矩阵谱特征作为全局特征来强化图神经网络对共性特征的提取能力,弱化特定问题的个性化特征;在参数化决策阶段,利用由问题的引导解和经验解构成的上/下界结构知识从原理上减少决策空间大小,引导网络快速优化,加速决策学习过程的收敛。最后,进行了大量数据仿真实验。结果表明,相比目前的算法,MKEGNN算法对于所有任务集在稳定性和精度方面都有所提升,调度成功率性能提升3%~10%,加权调度成功率提升5%~15%。尤其当处理多雷达协同关系复杂的任务集时,任务调度成功率提升4%以上,算法稳定性和鲁棒性显著增强。
现代雷达的探测、跟踪、识别等任务场景越来越复杂。任务类型的多变性,雷达资源的稀缺性和任务执行时间窗口的严格要求,使得雷达任务调度成为一类强NP-Hard问题。然而,现有的调度算法在处理涉及复杂逻辑约束的多雷达协同调度问题时适应性不足,效率不高。因此,基于人工智能(AI)的调度算法正在成为研究热点,但是AI调度算法的效率与问题特征提取是否全面密切相关。如何能快速,全面的提取多雷达协同任务调度问题的共性特征,是提升这类AI调度算法效率的关键。因此,该文提出了基于模型知识融合的图神经网络(MKEGNN)调度算法。该算法首先将雷达任务协同调度问题建模为异构网络图模型,利用模型知识来优化GNN算法训练过程。算法创新在于:通过低复杂度的计算手段,获取模型的关键知识,进而优化GNN模型。在特征提取阶段,引入随机酉矩阵变换,利用任务异构图的随机拉普拉斯矩阵谱特征作为全局特征来强化图神经网络对共性特征的提取能力,弱化特定问题的个性化特征;在参数化决策阶段,利用由问题的引导解和经验解构成的上/下界结构知识从原理上减少决策空间大小,引导网络快速优化,加速决策学习过程的收敛。最后,进行了大量数据仿真实验。结果表明,相比目前的算法,MKEGNN算法对于所有任务集在稳定性和精度方面都有所提升,调度成功率性能提升3%~10%,加权调度成功率提升5%~15%。尤其当处理多雷达协同关系复杂的任务集时,任务调度成功率提升4%以上,算法稳定性和鲁棒性显著增强。
状态: , 更新:
该文针对雷达通信一体化系统中多站协作感知的问题,提出了一种基于无蜂窝网络架构的智能框架HRT-Net,用于实现准确且资源高效的位置估计。具体而言,该文首先将感知区域划分为多个子区域,并基于深度可分离卷积设计了一个轻量级的区域选择网络,以识别目标所属的子区域,从而减少计算负担并实现广域覆盖。其次,考虑到多站数据差异性的隐式问题,本文设计了一种分通道单维注意力机制,旨在有效聚合多站的感知数据并增强特征的提取和表示能力,从而生成注意力权重图以加权修正原始特征。最后,基于多尺度和多重残差连接设计了一个目标定位网络,该网络能够提取更加全面和深层的特征并实现多级特征融合,进而可靠地将其映射到目标的位置坐标。仿真及实测实验结果表明,相比于现有方法,HRT-Net在较低计算复杂度和存储开销下,能够实现厘米级的目标定位。
该文针对雷达通信一体化系统中多站协作感知的问题,提出了一种基于无蜂窝网络架构的智能框架HRT-Net,用于实现准确且资源高效的位置估计。具体而言,该文首先将感知区域划分为多个子区域,并基于深度可分离卷积设计了一个轻量级的区域选择网络,以识别目标所属的子区域,从而减少计算负担并实现广域覆盖。其次,考虑到多站数据差异性的隐式问题,本文设计了一种分通道单维注意力机制,旨在有效聚合多站的感知数据并增强特征的提取和表示能力,从而生成注意力权重图以加权修正原始特征。最后,基于多尺度和多重残差连接设计了一个目标定位网络,该网络能够提取更加全面和深层的特征并实现多级特征融合,进而可靠地将其映射到目标的位置坐标。仿真及实测实验结果表明,相比于现有方法,HRT-Net在较低计算复杂度和存储开销下,能够实现厘米级的目标定位。
状态: , 更新:
该文针对族群无人机SAR系统的任务分配问题,提出了一种基于低冗余度染色体编码的族群无人机SAR任务分配方法。该方法针对SAR成像任务的特有问题分析了成像性能与成像几何构型之间的内在联系,并据此建立了考虑成像性能的路径函数,将族群无人机SAR任务分配问题建模为广义均衡多旅行商问题;然后,采用冗余度较低的两部分染色体编码方式来表征任务分配方案,提高遗传算法的搜索效率和准确性。针对实际应用中可能发生的意外情况,该文还提出了一种融合了合同网算法和注意力机制的动态任务分配策略,该策略能够根据实际情况灵活调整任务分配方案,确保系统的鲁棒性。仿真实验验证了该文所提方法的有效性。
该文针对族群无人机SAR系统的任务分配问题,提出了一种基于低冗余度染色体编码的族群无人机SAR任务分配方法。该方法针对SAR成像任务的特有问题分析了成像性能与成像几何构型之间的内在联系,并据此建立了考虑成像性能的路径函数,将族群无人机SAR任务分配问题建模为广义均衡多旅行商问题;然后,采用冗余度较低的两部分染色体编码方式来表征任务分配方案,提高遗传算法的搜索效率和准确性。针对实际应用中可能发生的意外情况,该文还提出了一种融合了合同网算法和注意力机制的动态任务分配策略,该策略能够根据实际情况灵活调整任务分配方案,确保系统的鲁棒性。仿真实验验证了该文所提方法的有效性。
状态: , 更新:
米波雷达波束较宽,探测低仰角目标时多径信号严重影响直达信号的显著性,低仰角测角性能较差。针对此问题,该文提出了一种信号级特征博弈的多径抑制与高精度测角方法,构建一组直达信号提取器和直达信号特征检验器,直达信号提取器挖掘出多径信号湮没的直达信号,直达信号特征检验器用于鉴别、分析提取的直达信号的有效性,直达信号提取器和直达信号特征检验器相互博弈、优化,有效实现直达信号增强和多径信号抑制的效果,并利用已有的超分辨算法进行波达方向估计(DOA)。计算机仿真结果表明,所提算法不依赖于严格的目标角度信息,能够有效抑制多径信号,经典的超分辨算法在多种场景下的估计性能显著提升,且较已有的有监督学习模型而言,所提算法对未知的信号参数及多径分布模型具有更好的泛化性。
米波雷达波束较宽,探测低仰角目标时多径信号严重影响直达信号的显著性,低仰角测角性能较差。针对此问题,该文提出了一种信号级特征博弈的多径抑制与高精度测角方法,构建一组直达信号提取器和直达信号特征检验器,直达信号提取器挖掘出多径信号湮没的直达信号,直达信号特征检验器用于鉴别、分析提取的直达信号的有效性,直达信号提取器和直达信号特征检验器相互博弈、优化,有效实现直达信号增强和多径信号抑制的效果,并利用已有的超分辨算法进行波达方向估计(DOA)。计算机仿真结果表明,所提算法不依赖于严格的目标角度信息,能够有效抑制多径信号,经典的超分辨算法在多种场景下的估计性能显著提升,且较已有的有监督学习模型而言,所提算法对未知的信号参数及多径分布模型具有更好的泛化性。
状态: , 更新:
基于深度学习的合成孔径雷达(SAR)图像目标识别技术日趋成熟。然而,受散射特性、噪声干扰等影响,同类目标的SAR成像结果存在差异。面向高精度目标识别需求,该文将目标实体、生存环境及其交互空间中不变性特征的组合抽象为目标本质特征,提出基于图网络与不变性特征感知的SAR图像目标识别方法。该方法用双分支网络处理多视角SAR图像,通过旋转可学习单元对齐双支特征并强化旋转免疫的不变性特征。为实现多粒度本质特征提取,设计目标本体特征强化单元、环境特征采样单元、上下文自适应融合更新单元,并基于图神经网络分析其融合结果,构建本质特征拓扑,输出目标类别向量。该文使用t-SNE方法定性评估算法的类别辨识能力,基于准确率等指标定量分析关键单元及整体网络,采用类激活图可视化方法验证各阶段、各分支网络的不变性特征提取能力。该文所提方法在MSTAR车辆、SAR-ACD飞机、OpenSARShip船只数据集上的平均识别准确率分别达到了98.56%, 94.11%, 86.20%。实验结果表明,该算法具备在SAR图像目标识别任务中目标本质特征提取能力,在多类别目标识别方面展现出较高的稳健性。
基于深度学习的合成孔径雷达(SAR)图像目标识别技术日趋成熟。然而,受散射特性、噪声干扰等影响,同类目标的SAR成像结果存在差异。面向高精度目标识别需求,该文将目标实体、生存环境及其交互空间中不变性特征的组合抽象为目标本质特征,提出基于图网络与不变性特征感知的SAR图像目标识别方法。该方法用双分支网络处理多视角SAR图像,通过旋转可学习单元对齐双支特征并强化旋转免疫的不变性特征。为实现多粒度本质特征提取,设计目标本体特征强化单元、环境特征采样单元、上下文自适应融合更新单元,并基于图神经网络分析其融合结果,构建本质特征拓扑,输出目标类别向量。该文使用t-SNE方法定性评估算法的类别辨识能力,基于准确率等指标定量分析关键单元及整体网络,采用类激活图可视化方法验证各阶段、各分支网络的不变性特征提取能力。该文所提方法在MSTAR车辆、SAR-ACD飞机、OpenSARShip船只数据集上的平均识别准确率分别达到了98.56%, 94.11%, 86.20%。实验结果表明,该算法具备在SAR图像目标识别任务中目标本质特征提取能力,在多类别目标识别方面展现出较高的稳健性。
状态: , 更新:
在进入陌生建筑物之前掌握其内部结构信息,能够为反恐作战、灾害救援、监视管控等多种应用提供支持,具有重要的现实意义和研究价值。为实现建筑布局结构信息获取,该文开展了基于多域联合直达波估计的建筑布局层析成像方法研究。首先,建立了线性近似模型,实现了直达波信号传播时延与未知建筑布局图像之间的映射关系;在此模型基础上,分析了在层析成像模式下直达波信号与多径信号在快时间域、慢时间域与多普勒域中的分布特性,提出了一种基于多域联合的直达波估计算法,实现了多径干扰抑制与直达波信号精确估计;此外,提出了一种总变分约束的投影矩阵自适应修正代数重建算法,提升了有限数据下的建筑布局反演质量;最后,电磁仿真与实测实验结果证明了所提出的建筑布局层析成像方法的有效性,其重建结果的结构相似性指标分别可达到91.2%和81.7%,显著优于现有建筑布局层析成像方法。
在进入陌生建筑物之前掌握其内部结构信息,能够为反恐作战、灾害救援、监视管控等多种应用提供支持,具有重要的现实意义和研究价值。为实现建筑布局结构信息获取,该文开展了基于多域联合直达波估计的建筑布局层析成像方法研究。首先,建立了线性近似模型,实现了直达波信号传播时延与未知建筑布局图像之间的映射关系;在此模型基础上,分析了在层析成像模式下直达波信号与多径信号在快时间域、慢时间域与多普勒域中的分布特性,提出了一种基于多域联合的直达波估计算法,实现了多径干扰抑制与直达波信号精确估计;此外,提出了一种总变分约束的投影矩阵自适应修正代数重建算法,提升了有限数据下的建筑布局反演质量;最后,电磁仿真与实测实验结果证明了所提出的建筑布局层析成像方法的有效性,其重建结果的结构相似性指标分别可达到91.2%和81.7%,显著优于现有建筑布局层析成像方法。
状态: , 更新:
由于侧视和相干成像机制,当高分辨率合成孔径雷达(SAR)图像的成像视角变化较大时,图像间的特征差异会变大,使图像配准难度增加。针对高分辨率多视角SAR图像,传统的配准技术主要面临提取的关键点定位精度不足和匹配精度低的问题。基于上述难点,该文设计了一种端到端的高分辨率多视角SAR图像配准网络。文章主要贡献包括:提出基于局部像素偏移模型的高分辨率SAR图像特征提取方法,该方法提出多样性峰值损失监督训练关键点提取网络中响应权重分配部分,并通过检测像素偏移量来优化关键点坐标;提出基于自适应调整卷积核采样位置的描述符提取方法,利用稀疏交叉熵损失监督训练网络中描述符匹配。实验结果显示,相比于其他配准方法,该文提出的算法针对高分辨率多视角SAR图像配准效果显著,平均误差降低超过65%,正确匹配点对数提高了3~5倍,运行时间平均缩短50%以上。
由于侧视和相干成像机制,当高分辨率合成孔径雷达(SAR)图像的成像视角变化较大时,图像间的特征差异会变大,使图像配准难度增加。针对高分辨率多视角SAR图像,传统的配准技术主要面临提取的关键点定位精度不足和匹配精度低的问题。基于上述难点,该文设计了一种端到端的高分辨率多视角SAR图像配准网络。文章主要贡献包括:提出基于局部像素偏移模型的高分辨率SAR图像特征提取方法,该方法提出多样性峰值损失监督训练关键点提取网络中响应权重分配部分,并通过检测像素偏移量来优化关键点坐标;提出基于自适应调整卷积核采样位置的描述符提取方法,利用稀疏交叉熵损失监督训练网络中描述符匹配。实验结果显示,相比于其他配准方法,该文提出的算法针对高分辨率多视角SAR图像配准效果显著,平均误差降低超过65%,正确匹配点对数提高了3~5倍,运行时间平均缩短50%以上。
状态: , 更新:
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
被动雷达在预警探测和低慢小目标(LSS)检测中具有重要作用。由于被动雷达信号辐射源不可控,目标特性更为复杂,导致检测和识别极其困难。该文构建了被动雷达低慢小探测数据集(LSS-PR-1.0),该数据集包含了直升机、无人机、快艇、客轮4种典型海空目标的雷达回波信号,以及低高海况的海杂波数据,为该领域研究提供了数据支撑。在目标特征提取和分析方面,首先采用奇异值分解海杂波抑制方法,去除海杂波强Bragg峰对目标回波的影响。在此基础上,提出4类10种多域特征提取和分析方法,包括时域特征(相对平均幅度)、频域特征(频谱特征、多普勒瀑布图、距离多普勒特征)、时频域特征、运动特征(航向差、航迹参数、速度变化区间、速度变异系数、加速度)等。基于实测数据对4种海空目标特性进行了对比分析,总结各类目标特性规律,为后续目标识别奠定了基础。
状态: , 更新:
针对复杂电磁环境下雷达干扰增多且靠近强干扰信号的目标信号难以准确估计的问题,该文提出了一种强间歇干扰下基于黎曼平均的稀疏波达方向(DOA)估计方法。首先,在扩展互质阵列接收数据模型下,利用在整个采样周期内目标信号持续活动而强干扰信号间歇性活动的特性,引入黎曼平均对干扰信号进行抑制;然后,将经过处理的数据协方差矩阵向量化,得到虚拟阵列接收数据;最后,在虚拟域中运用稀疏迭代协方差估计(SPICE)算法对稀疏信号进行重构,得到目标信号的DOA估计。仿真结果表明,在信号源数目未知的情况下,该方法可以对角度与强干扰信号紧密相邻的弱目标信号进行高精度的DOA估计。与现有子空间算法和稀疏重构类算法相比,所提算法在较小快拍数和低信噪比下具有更高的估计精度和角度分辨力。
针对复杂电磁环境下雷达干扰增多且靠近强干扰信号的目标信号难以准确估计的问题,该文提出了一种强间歇干扰下基于黎曼平均的稀疏波达方向(DOA)估计方法。首先,在扩展互质阵列接收数据模型下,利用在整个采样周期内目标信号持续活动而强干扰信号间歇性活动的特性,引入黎曼平均对干扰信号进行抑制;然后,将经过处理的数据协方差矩阵向量化,得到虚拟阵列接收数据;最后,在虚拟域中运用稀疏迭代协方差估计(SPICE)算法对稀疏信号进行重构,得到目标信号的DOA估计。仿真结果表明,在信号源数目未知的情况下,该方法可以对角度与强干扰信号紧密相邻的弱目标信号进行高精度的DOA估计。与现有子空间算法和稀疏重构类算法相比,所提算法在较小快拍数和低信噪比下具有更高的估计精度和角度分辨力。
状态: , 更新:
地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高;此外,其输入为单个方位-距离单元杂波,未考虑样本的类内和类间信息,导致模型性能不佳。针对上述问题,该文通过分析相邻方位-距离单元之间的相关性,将地海杂波数据由欧氏空间转换为非欧氏空间中的图数据,引入样本之间的关系,并提出一种基于多通道图卷积神经网络(MC-GCN)的地海杂波分类方法。MC-GCN将图数据由单通道分解为多通道,每个通道只包含一种类型的边和一个权重矩阵,通过约束节点信息聚合的过程,能够有效缓解由异质性造成的节点属性误判。该文选取不同季节、不同时刻、不同探测区域RD图,依据雷达参数、数据特性和样本比例,构建包含12种不同场景的地海杂波原始数据集和36种不同配置的地海杂波稀缺数据集,并对MC-GCN的有效性进行验证。通过与最先进的地海杂波分类方法进行比较,该文所提出的MC-GCN在上述数据集中均表现最优,其分类准确率不低于92%。
地海杂波分类是提升天波超视距雷达目标定位精度的关键技术,其核心是判别距离多普勒(RD)图中每个方位-距离单元背景源自陆地或海洋的过程。基于传统深度学习的地海杂波分类方法需海量高质量且类别均衡的有标签样本,训练时间长,费效比高;此外,其输入为单个方位-距离单元杂波,未考虑样本的类内和类间信息,导致模型性能不佳。针对上述问题,该文通过分析相邻方位-距离单元之间的相关性,将地海杂波数据由欧氏空间转换为非欧氏空间中的图数据,引入样本之间的关系,并提出一种基于多通道图卷积神经网络(MC-GCN)的地海杂波分类方法。MC-GCN将图数据由单通道分解为多通道,每个通道只包含一种类型的边和一个权重矩阵,通过约束节点信息聚合的过程,能够有效缓解由异质性造成的节点属性误判。该文选取不同季节、不同时刻、不同探测区域RD图,依据雷达参数、数据特性和样本比例,构建包含12种不同场景的地海杂波原始数据集和36种不同配置的地海杂波稀缺数据集,并对MC-GCN的有效性进行验证。通过与最先进的地海杂波分类方法进行比较,该文所提出的MC-GCN在上述数据集中均表现最优,其分类准确率不低于92%。
状态: , 更新:
无源干扰物的成像一直是雷达成像/对抗研究中的热点问题,直接影响着雷达目标检测和识别性能。然而,在微波频段下,为达到期望的方位分辨率,通常需要较长的驻留时间来形成单幅图像,这使得无源干扰物难以通过成像直接区分,并缺乏时间维的分辨能力。相比之下,太赫兹频段成像系统在实现相同方位分辨率时所需的合成孔径更短,从而更容易获得低延迟、高分辨、高帧率的成像结果。因此,太赫兹雷达在视频合成孔径雷达(ViSAR)技术中具有重要潜力。首先,对机载太赫兹ViSAR的孔径划分及其成像系统指标进行简要分析。随后,静止无源干扰物以角反阵和伪装网为例,探索它们运动补偿前后的成像结果及成像特性,并首次实验验证了具有上下起伏网格结构的伪装网在太赫兹频段将表现出粗糙特性,展现出该频段下特殊的目标特性。接下来,运动无源干扰物以旋转角反为例,分析了旋转角反成像所形成的压制性成像干扰。考虑到静止场景在相邻子孔径下类似,在完成帧间成像结果图像和幅度校准后,可直接在图像域内基于非相干相减实现旋转角反检测,从而提取感兴趣信号并实施非参数化补偿。目前关于太赫兹频段下对无源干扰物的外场成像实验验证甚少。该研究开展了太赫兹频段公里级机载外场试验,有效验证了太赫兹ViSAR具备对无源干扰物良好的高分辨与高帧率成像能力。
无源干扰物的成像一直是雷达成像/对抗研究中的热点问题,直接影响着雷达目标检测和识别性能。然而,在微波频段下,为达到期望的方位分辨率,通常需要较长的驻留时间来形成单幅图像,这使得无源干扰物难以通过成像直接区分,并缺乏时间维的分辨能力。相比之下,太赫兹频段成像系统在实现相同方位分辨率时所需的合成孔径更短,从而更容易获得低延迟、高分辨、高帧率的成像结果。因此,太赫兹雷达在视频合成孔径雷达(ViSAR)技术中具有重要潜力。首先,对机载太赫兹ViSAR的孔径划分及其成像系统指标进行简要分析。随后,静止无源干扰物以角反阵和伪装网为例,探索它们运动补偿前后的成像结果及成像特性,并首次实验验证了具有上下起伏网格结构的伪装网在太赫兹频段将表现出粗糙特性,展现出该频段下特殊的目标特性。接下来,运动无源干扰物以旋转角反为例,分析了旋转角反成像所形成的压制性成像干扰。考虑到静止场景在相邻子孔径下类似,在完成帧间成像结果图像和幅度校准后,可直接在图像域内基于非相干相减实现旋转角反检测,从而提取感兴趣信号并实施非参数化补偿。目前关于太赫兹频段下对无源干扰物的外场成像实验验证甚少。该研究开展了太赫兹频段公里级机载外场试验,有效验证了太赫兹ViSAR具备对无源干扰物良好的高分辨与高帧率成像能力。
状态: , 更新:
相比于微型单基SAR系统,微型多基SAR系统采用收发分置的灵活构型,具备多角度成像等优势。然而,由于微型多基SAR系统需要采用相互独立的振荡源,相位同步是实现微型多基SAR高精度成像的必要条件。当前双基SAR相位同步方案的研究已相对成熟,但这些方案主要基于脉冲体制SAR系统,针对调频连续波(FMCW)体制微型多基SAR系统的相位同步研究仍较为匮乏。与脉冲体制SAR系统相比,FMCW SAR系统的信号连续发射,脉冲间不存在时间间隙,因此部分脉冲体制SAR的相位同步方案无法直接应用于FMCW SAR系统。为此,该文提出了一种适用于FMCW微型多基SAR相位同步方法,旨在有效解决FMCW SAR系统所面临的相位同步难题。该方法采用广义短时正交波形作为不同雷达平台的相位同步信号,通过脉冲压缩技术提取出雷达平台间的相位误差,进而实现相位同步。与传统线性调频波形相比,广义短时正交(STSO)波形在经过相同的脉冲压缩函数处理后,干扰信号的能量会集中于远离匹配信号峰值的位置,从而提高了相位同步的精度。此外,所提方法还适应了FMCW微型多基SAR系统dechirp接收的特点,并通过地面和数值仿真实验验证,所提方法具有较高的同步精度。
相比于微型单基SAR系统,微型多基SAR系统采用收发分置的灵活构型,具备多角度成像等优势。然而,由于微型多基SAR系统需要采用相互独立的振荡源,相位同步是实现微型多基SAR高精度成像的必要条件。当前双基SAR相位同步方案的研究已相对成熟,但这些方案主要基于脉冲体制SAR系统,针对调频连续波(FMCW)体制微型多基SAR系统的相位同步研究仍较为匮乏。与脉冲体制SAR系统相比,FMCW SAR系统的信号连续发射,脉冲间不存在时间间隙,因此部分脉冲体制SAR的相位同步方案无法直接应用于FMCW SAR系统。为此,该文提出了一种适用于FMCW微型多基SAR相位同步方法,旨在有效解决FMCW SAR系统所面临的相位同步难题。该方法采用广义短时正交波形作为不同雷达平台的相位同步信号,通过脉冲压缩技术提取出雷达平台间的相位误差,进而实现相位同步。与传统线性调频波形相比,广义短时正交(STSO)波形在经过相同的脉冲压缩函数处理后,干扰信号的能量会集中于远离匹配信号峰值的位置,从而提高了相位同步的精度。此外,所提方法还适应了FMCW微型多基SAR系统dechirp接收的特点,并通过地面和数值仿真实验验证,所提方法具有较高的同步精度。
状态: , 更新:
基于雷达传感器网络的目标识别系统在自动目标识别领域得到了广泛的研究,该系统从多个角度对目标进行观测从而可获得稳健的目标识别能力,这也带来了多雷达传感器回波数据间相关信息和差异信息的利用问题。其次,现有研究大都需要大规模标记数据来获得目标的先验知识,考虑到大量未标注数据未被有效使用,该文研究了一种基于多重对比损失(MCL)的雷达传感器网络HRRP无监督目标特征提取方法。该方法通过联合实例级损失、Fisher损失和语义一致损失这三重损失约束,用以寻求多雷达传感器回波间具有一致性和判别性的特征向量并用于后续的识别任务。具体而言,将原始回波数据分别映射到对比损失空间和语义标签空间:在对比损失空间中,利用对比损失对样本的相似性和聚集性进行约束,使不同传感器获取的同一目标不同回波间的相对距离和绝对距离被减小,而不同目标回波样本间的距离被拉大;在语义损失空间中,通过提取到的判别特征对语义标签进行约束,实现语义信息和判别特征一致的目标。在实测民用飞机数据集上进行的实验表明,与最先进的无监督和有监督目标识别算法相比,MCL的识别准确率分别提升了0.4%和1.4%,并且MCL能有效提升多雷达传感器协同时的目标识别性能。
基于雷达传感器网络的目标识别系统在自动目标识别领域得到了广泛的研究,该系统从多个角度对目标进行观测从而可获得稳健的目标识别能力,这也带来了多雷达传感器回波数据间相关信息和差异信息的利用问题。其次,现有研究大都需要大规模标记数据来获得目标的先验知识,考虑到大量未标注数据未被有效使用,该文研究了一种基于多重对比损失(MCL)的雷达传感器网络HRRP无监督目标特征提取方法。该方法通过联合实例级损失、Fisher损失和语义一致损失这三重损失约束,用以寻求多雷达传感器回波间具有一致性和判别性的特征向量并用于后续的识别任务。具体而言,将原始回波数据分别映射到对比损失空间和语义标签空间:在对比损失空间中,利用对比损失对样本的相似性和聚集性进行约束,使不同传感器获取的同一目标不同回波间的相对距离和绝对距离被减小,而不同目标回波样本间的距离被拉大;在语义损失空间中,通过提取到的判别特征对语义标签进行约束,实现语义信息和判别特征一致的目标。在实测民用飞机数据集上进行的实验表明,与最先进的无监督和有监督目标识别算法相比,MCL的识别准确率分别提升了0.4%和1.4%,并且MCL能有效提升多雷达传感器协同时的目标识别性能。
状态: , 更新:
星载合成孔径雷达(SAR)受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测3个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。
星载合成孔径雷达(SAR)受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测3个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。
状态: , 更新:
作为中国新一代天基长波SAR的代表,陆地探测1号01卫星(LT-1A)于2022年1月发射进入太阳同步轨道。LT-1A搭载的长波合成孔径雷达(SAR)工作在L波段,具备单极化、线性双极化、紧缩双极化、全极化等对地观测能力。现有研究主要侧重于LT-1A重轨干涉数据获取能力以及数字高程模型、沉降产品的生产精度评价,对LT-1A的辐射精度、地物极化信息保持能力的研究较为缺乏。该文以热带雨林植被为观测对象,通过不依赖人工定标器的自主定标方法对LT-1A全极化数据辐射误差、极化误差的稳定性进行评价与分析。实验表明:LT-1A传感器的辐射稳定性较好、极化精度优于国际对地观测组织(CEOS)推荐指标。持续对地观测1000 km内归一化雷达截面(NRCS)误差波动小于1 dB (3倍标准差)、5天内重返观测时辐射误差波动小于0.5 dB (3倍标准差);全极化观测模式下系统串扰低于–35 dB甚至达到–40 dB,交叉极化通道不平衡优于0.2 dB与2°,同通道不平衡优于0.5 dB与10°;系统噪声介于–42~–22 dB,平均系统等效热噪声优于–25 dB,热噪声水平随持续对地观测时长的增加有升高。此外,该研究验证了电离层对LT-1A极化数据质量的影响:5°法拉第旋转角造成的图像退化与–20 dB系统串扰带来的影响相当,而3°~20°法拉第旋转角在中、低纬度较为常见,这将带来–21.16~–8.78 dB的极化通道间扰动,即电离层对全极化数据质量的退化相较传感器–40 dB的串扰更为严重。
作为中国新一代天基长波SAR的代表,陆地探测1号01卫星(LT-1A)于2022年1月发射进入太阳同步轨道。LT-1A搭载的长波合成孔径雷达(SAR)工作在L波段,具备单极化、线性双极化、紧缩双极化、全极化等对地观测能力。现有研究主要侧重于LT-1A重轨干涉数据获取能力以及数字高程模型、沉降产品的生产精度评价,对LT-1A的辐射精度、地物极化信息保持能力的研究较为缺乏。该文以热带雨林植被为观测对象,通过不依赖人工定标器的自主定标方法对LT-1A全极化数据辐射误差、极化误差的稳定性进行评价与分析。实验表明:LT-1A传感器的辐射稳定性较好、极化精度优于国际对地观测组织(CEOS)推荐指标。持续对地观测1000 km内归一化雷达截面(NRCS)误差波动小于1 dB (3倍标准差)、5天内重返观测时辐射误差波动小于0.5 dB (3倍标准差);全极化观测模式下系统串扰低于–35 dB甚至达到–40 dB,交叉极化通道不平衡优于0.2 dB与2°,同通道不平衡优于0.5 dB与10°;系统噪声介于–42~–22 dB,平均系统等效热噪声优于–25 dB,热噪声水平随持续对地观测时长的增加有升高。此外,该研究验证了电离层对LT-1A极化数据质量的影响:5°法拉第旋转角造成的图像退化与–20 dB系统串扰带来的影响相当,而3°~20°法拉第旋转角在中、低纬度较为常见,这将带来–21.16~–8.78 dB的极化通道间扰动,即电离层对全极化数据质量的退化相较传感器–40 dB的串扰更为严重。
状态: , 更新:
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。
双基合成孔径雷达(BiSAR)在实现对地面运动目标检测和成像时,需要抑制地面背景杂波。然而由于双基SAR收发分置的空间构型,会导致主瓣杂波出现严重的空时非平稳问题,从而恶化杂波抑制性能。基于稀疏恢复空时自适应处理方法(SR-STAP)虽然可以通过降低样本数量减少非平稳的影响,但是在处理过程中会出现字典离网问题,从而导致空时谱估计效果下降。并且大部分现有的典型SR-STAP方法虽然具有明确的数学关系和可解释性,但在针对复杂、多变场景时,也存在参数设置不恰当、运算复杂等问题。为解决上述一系列问题,该文提出了一种适用于双基SAR空时自适应杂波抑制处理的基于交替方向乘子法(ADMM)的复值神经网络ANM-ADMM-Net。首先,基于原子范数最小化(ANM)构建双基SAR连续空时域下杂波谱的稀疏恢复模型,克服传统离散字典模型下的离网问题;其次,采取ADMM对该双基SAR杂波谱稀疏恢复模型进行快速迭代求解;然后,根据迭代流程和数据流图进行网络化处理,将人工超参数迭代过程转换为网络可学习的ANM-ADMM-Net;再次,设置归一化均方根误差网络损失函数,并利用获取的数据集对网络模型进行训练;最后,利用训练后的ANM-ADMM-Net网络架构对双基SAR回波数据进行快速迭代处理,从而完成双基SAR杂波空时谱的精确估计和高效抑制。该文通过仿真试验和实测数据处理,表明该方法具有更好的杂波抑制性能和更加高效的运算效率。