动态电磁环境下多功能雷达一体化发射资源管理方案

张鹏 严俊坤 高畅 李康 刘宏伟

张鹏, 严俊坤, 高畅, 等. 动态电磁环境下多功能雷达一体化发射资源管理方案[J]. 雷达学报(中英文), 2025, 14(2): 456–469. doi: 10.12000/JR24230
引用本文: 张鹏, 严俊坤, 高畅, 等. 动态电磁环境下多功能雷达一体化发射资源管理方案[J]. 雷达学报(中英文), 2025, 14(2): 456–469. doi: 10.12000/JR24230
ZHANG Peng, YAN Junkun, GAO Chang, et al. Integrated transmission resource management scheme for multifunctional radars in dynamic electromagnetic environments[J]. Journal of Radars, 2025, 14(2): 456–469. doi: 10.12000/JR24230
Citation: ZHANG Peng, YAN Junkun, GAO Chang, et al. Integrated transmission resource management scheme for multifunctional radars in dynamic electromagnetic environments[J]. Journal of Radars, 2025, 14(2): 456–469. doi: 10.12000/JR24230

动态电磁环境下多功能雷达一体化发射资源管理方案

DOI: 10.12000/JR24230 CSTR: 32380.14.JR24230
基金项目: 国家自然科学基金(62471356, 62101350, 62192714),中国航天科工集团第八研究院产学研合作(SAST2023-068)
详细信息
    作者简介:

    张 鹏,博士生,主要研究方向为目标检测与跟踪、资源管理

    严俊坤,教授,主要研究方向为雷达智能信号处理、网络化协同探测

    高 畅,讲师,主要研究方向为网络化雷达协同探测、雷达智能化探测

    李 康,副教授,主要研究方向为雷达智能抗干扰、雷达信号处理、强化学习

    刘宏伟,教授,主要研究方向为雷达目标分类与识别、认知网络、网络协同探测

    通讯作者:

    严俊坤 jkyan@xidian.edu.cn

  • 责任主编:时晨光 Corresponding Editor: SHI Chenguang
  • 中图分类号: TN957.51

Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments

Funds: The National Natural Science Foundation of China (62471356, 62101350, 62192714), Industry University-Research Cooperation of the 8th Research Institute of China Aerospace Science and Technology Corporation (SAST2023-068)
More Information
  • 摘要: 传统多功能雷达仅面向目标特性优化发射资源,在动态电磁环境下面临干扰智能时变、优化模型失配的问题。因此,该文提出一种基于数据驱动的一体化发射资源管理方案,旨在通过对动态干扰信息在线感知与利用提升多功能雷达在动态电磁环境下的多目标跟踪(MTT)性能。该方案首先建立马尔可夫决策过程,数学化描述雷达被敌方截获和干扰的风险。而后将该马尔可夫决策过程感知的干扰信息耦合进MTT精度计算,一体化发射资源管理方法被设计为具有约束动作空间的优化问题。最后提出一种贪婪排序回溯算法对其进行求解。仿真结果表明,所提方法在面向动态干扰环境时不仅可以降低敌方截获概率,还能在被干扰时降低干扰对雷达的影响,改善MTT性能。

     

  • 图  1  不同帧的目标截获与干扰模式

    Figure  1.  Target interception and jamming modes in different frames

    图  2  雷达与目标的空间位置分布

    Figure  2.  Spatial position distribution of radar and targets

    图  3  不同方案的多目标跟踪性能

    Figure  3.  MTT performance of different schemes

    图  4  一体化发射资源管理方案的发射方案以及目标干扰动作

    Figure  4.  Transmit scheme of the integrated transmit resource management scheme and jamming actions of targets

    图  5  抗干扰发射资源管理方案的发射方案以及目标干扰动作

    Figure  5.  Transmit scheme of the anti-jamming transmit resource management scheme and jamming actions of targets

    图  6  不同优化算法的多目标跟踪性能

    Figure  6.  MTT performance of different optimization algorithms

    1  贪婪排序回溯算法流程

    1.   The flow of greedy sort backtracking algorithm

     步骤1 输入在第k帧状态${{\boldsymbol{s}}_k}$、动作空间$\mathcal{A}$。初始化$ \mathcal{D}_{q}=\varnothing $、迭代次数$j = 1$以及动作索引${n_q} = 1$, $\forall q$。
     步骤2 评估每一个目标与动作空间$\mathcal{A}$相关的成本函数:
     ${{\boldsymbol{C}}_q} = \left[ {c({\boldsymbol{s}}_k^q,{{\boldsymbol{a}}_1}), c({\boldsymbol{s}}_k^q,{{\boldsymbol{a}}_2}), \cdots ,c({\boldsymbol{s}}_k^q,{{\boldsymbol{a}}_{{N_\mathcal{A}}}})} \right]$, $ \forall q $
     步骤3 将成本函数${{\boldsymbol{C}}_q}$按升序排序,形成索引${\bf{I}}{{\bf{X}}_q}$:
     $ {{\boldsymbol{C}}_q}({\bf{I}}{{\bf{X}}_q}(1)) \lt{{\boldsymbol{C}}_q}({\bf{I}}{{\bf{X}}_q}(2)) \lt \cdots \lt {{\boldsymbol{C}}_q}({\bf{I}}{{\bf{X}}_q}({N_\mathcal{A}})) $, $\forall q$
     步骤4 当至少存在一个目标的动作索引${n_q}{\text{ \lt }}{N_\mathcal{A}}$,进入步骤5。
     步骤5 形成一个联合发射方案并提取其中的驻留时间信息,进入步骤6。
     ${{\boldsymbol{a}}_j} = \left[ {{\mathcal{A}_1}({\bf{I}}{{\bf{X}}_1}({n_1})),{\mathcal{A}_2}({\bf{I}}{{\bf{X}}_2}({n_2})), \cdots ,{\mathcal{A}_Q}({\bf{I}}{{\bf{X}}_Q}({n_Q}))} \right] \Rightarrow {{\boldsymbol{t}}_j} = \left[ {{t_1},{t_2}, \cdots ,{t_Q}} \right]$
     步骤6 计算联合发射方案${{\boldsymbol{a}}_j}$对应的成本函数$ {{\boldsymbol{c}}_j} = \left[ {{c_j}(1), {c_j}(2), \cdots ,{c_j}(Q)} \right] $:
     $ {c}_{j}\left(q\right)=\left\{\begin{aligned}& {{\boldsymbol{C}}}_{q}({\bf{IX}}_{q}({n}_{q}^{})),\quad{t}_{q}^{} \gt {t}_{\text{min}}\text{ }或者{n}_{q}\text{ \lt }{N}_{\mathcal{A}}\text{ }\\ & +\infty, \quad\qquad\quad \text{ }其他\end{aligned}\right. $
     步骤7 如果$\displaystyle\sum\nolimits_{q = 1}^Q {{t_q}} \le {t_{{\text{total}}}}$,进入到步骤9;否则进入到步骤8。
     步骤8 获得${{\boldsymbol{c}}_j}$中具有最小成本函数的目标索引${\rm{I}}{{\rm{X}}_{\min }}$,将对应的驻留时间方案$ {t_{{\rm{I}}{{\rm{X}}_{{\text{min}}}}}} $存储进$ \mathcal{D}_{\mathrm{IX}_{\mathrm{min}}} $(目标${\rm{I}}{{\rm{X}}_{\min }}$已遍历过的动作,
     $ \left|{\mathcal{D}}_{{\text{IX}}_{\mathrm{min}}}\right|={n}_{{\text{IX}}_{\mathrm{min}}} $)。然后执行$ j = j + 1 $,${n_{{\rm{I}}{{\rm{X}}_{{\text{min}}}}}} = {n_{{\rm{I}}{{\rm{X}}_{{\text{min}}}}}} + 1$,进入到步骤4。
     步骤9 在$ \mathcal{D}_{q} $中回溯寻找具有相同驻留时间参数($ {t}_{q}\in {\mathcal{D}}_{q} $)的最小索引$ {\text{IX}}_{{\mathcal{D}}_{q}} $,同时更新动作索引:
     $ {n}_{q}^{*}=\left\{\begin{array}{llllllllllllll}{\text{IX}}_{{\mathcal{D}}_{q}},& {\text{ IX}}_{{\mathcal{D}}_{q}}\ne \varnothing \text{ }\\ {n}_{q},& 其他\end{array} \right.$
     然后形成最优发射方案$ {\boldsymbol{a}}_k^* = \left[ {{\mathcal{A}_1}({\bf{I}}{{\bf{X}}_1}(n_1^*)),{\mathcal{A}_2}({\bf{I}}{{\bf{X}}_2}(n_2^*)), \cdots ,{\mathcal{A}_Q}({\bf{I}}{{\bf{X}}_Q}(n_Q^*))} \right] $,进入步骤10。
     步骤10 输出最终的发射方案$ {\boldsymbol{a}}_k^* $。
    下载: 导出CSV

    表  1  雷达参数

    Table  1.   Radar parameters

    参数 设定值
    ${G_{{\text{R,R}}}}$ 80 dB
    ${B_{{\text{R,r}}}}$ 1 MHz
    ${\eta _{\text{R}}}$ –141 dBW
    ${B_{{\text{R,r}}}}$ 0.5°
    下载: 导出CSV

    表  2  目标参数

    Table  2.   Target parameters

    目标索引 位置(km) 速度(m/s) ${\bar \sigma _q}$(${{\text{m}}^2}$)
    1 (–8, –10) (10, 20) [9, 6, 3]
    2 (0, 25) (–25, 10) [7, 4, 2]
    3 (15, 12) (–25, 15) [8, 5, 2]
    下载: 导出CSV

    表  3  动态电磁环境参数

    Table  3.   Parameters of dynamic electromagnetic environments

    目标索引 截获模式 $\left[ {B_{{\text{I,lo}}}^q,B_{{\text{I,up}}}^q} \right]$ $G_{{\text{R,I}}}^q$ ${N_{{\text{P,}}q}}$ $B_{{\text{I,min}}}^q$ 干扰策略 ${P_{{\text{J}},q}}$ $G_{{\text{J,R}}}^q$ $B_{{\text{J,k}}}^q$
    1 $ \left[ {0.5,6.5} \right] $ GHz –3 dB 5 0.2 GHz 2 30 W 43 dB 2 MHz
    2 $ \left[ {0.5,3.5} \right] $ GHz 0 dB 7 0.1 GHz 1 30 W 43 dB 2 MHz
    3 $ \left[ {0.5,4.5} \right] $ GHz 14 dB 5 0.3 GHz 1 30 W 43 dB 2 MHz
    下载: 导出CSV

    表  4  不同优化算法运行时间

    Table  4.   Running time of different optimization algorithms

    优化算法 运行时间(s)
    贪婪排序回溯算法 0.00074
    穷举法 0.01790
    分支定界法 0.01660
    下载: 导出CSV
  • [1] MORELANDE M R, KREUCHER C M, and KASTELLA K. A Bayesian approach to multiple target detection and tracking[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1589–1604. doi: 10.1109/TSP.2006.889470.
    [2] BLACKMAN S S. Multiple-Target Tracking with Radar Applications[M]. Dedham: Artech House, 1986: 1–449.
    [3] STONE L D, STREIT R L, CORWIN T L, et al. Bayesian Multiple Target Tracking[M]. 2nd ed. Boston: Artech House, 2014: 107–160.
    [4] HUE C, LE CADRE J P, and PÉREZ P. Sequential Monte Carlo methods for multiple target tracking and data fusion[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 309–325. doi: 10.1109/78.978386.
    [5] WANG Xiangli, YI Wei, XIE Mingchi, et al. A joint beam and dwell time allocation strategy for multiple target tracking based on phase array radar system[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–5. doi: 10.23919/ICIF.2017.8009856.
    [6] 戴金辉, 严俊坤, 王鹏辉, 等. 基于目标容量的网络化雷达功率分配方案[J]. 电子与信息学报, 2021, 43(9): 2688–2694. doi: 10.11999/JEIT200873.

    DAI Jinhui, YAN Junkun, WANG Penghui, et al. Target capacity based power allocation scheme in radar network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2688–2694. doi: 10.11999/JEIT200873.
    [7] YUAN Ye, YI Wei, and KONG Lingjiang. Joint tracking sequence and dwell time allocation for multi-target tracking with phased array radar[J]. Signal Processing, 2022, 192: 108374. doi: 10.1016/j.sigpro.2021.108374.
    [8] NARYKOV A S, KRASNOV O A, and YAROVOY A. Algorithm for resource management of multiple phased array radars for target tracking[C]. 2013 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1258–1264.
    [9] YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519.
    [10] SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston: Artech House, 1999: 1–60.
    [11] SHI Chenguang, WANG Yijie, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2762–2778. doi: 10.1109/TAES.2021.3138869.
    [12] ZHANG Haowei, LIU Weijian, ZHANG Qiliang, et al. Joint resource optimization for a distributed MIMO radar when tracking multiple targets in the presence of deception jamming[J]. Signal Processing, 2022, 200: 108641. doi: 10.1016/j.sigpro.2022.108641.
    [13] AILIYA, YI Wei, and VARSHNEY P K. Adaptation of frequency hopping interval for radar anti-jamming based on reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 12434–12449. doi: 10.1109/TVT.2022.3197425.
    [14] LI Kang, JIU Bo, WANG Penghui, et al. Radar active antagonism through deep reinforcement learning: A way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186: 108130. doi: 10.1016/j.sigpro.2021.108130.
    [15] ZHANG Peng, YAN Junkun, PU Wenqiang, et al. Multi-dimensional resource management scheme for multiple target tracking under dynamic electromagnetic environment[J]. IEEE Transactions on Signal Processing, 2024, 72: 2377–2393. doi: 10.1109/TSP.2024.3390119.
    [16] YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504.
    [17] YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147.
    [18] LI Nengjing and ZHANG Yiting. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110–1120. doi: 10.1109/7.395232.
    [19] VAN TREES H L. Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise[M]. New York: John Wiley & Sons, 2001: 294–307.
    [20] SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008: 313–370.
    [21] SUKHAREVSKY O I, VASILETS V A, and ZALEVSKY G S. Electromagnetic wave scattering by aerial and ground radar objects[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 162–167. DOI: 10.1109/RADAR.2015.7130989.
    [22] BERTSEKAS D P. Reinforcement Learning and Optimal Control[M]. Nashua: Athena Scientific, 2019: 1–40.
    [23] SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 37–58.
    [24] NERI F. Introduction to Electronic Defense Systems[M]. 2nd ed. Henderson: SciTech Publishing, 2006: 259–368.
    [25] STINCO P, GRECO M, GINI F, et al. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20–27. doi: 10.1109/MAES.2016.150193.
    [26] SELVI E, BUEHRER R M, MARTONE A, et al. Reinforcement learning for adaptable bandwidth tracking radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3904–3921. doi: 10.1109/TAES.2020.2987443.
    [27] KOCHENDERFER M J, WHEELER T A, and WRAY K H. Algorithms for Decision Making[M]. Cambridge: MIT Press, 2022: 311–326.
    [28] 严俊坤, 纠博, 刘宏伟, 等. 一种针对多目标跟踪的多基雷达系统聚类与功率联合分配算法[J]. 电子与信息学报, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470.

    YAN Junkun, JIU Bo, LIU Hongwei, et al. Joint cluster and power allocation algorithm for multiple targets tracking in multistatic radar systems[J]. Journal of Electronics & Information Technology, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470.
    [29] LISI F, FORTUNATI S, GRECO M S, et al. Enhancement of a state-of-the-art RL-based detection algorithm for massive MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5925–5931. doi: 10.1109/TAES.2022.3168033.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-19
  • 修回日期:  2025-03-10
  • 网络出版日期:  2025-03-27
  • 刊出日期:  2025-04-28

目录

    /

    返回文章
    返回