基于超表面的动态电磁调控技术及应用研究

李玉玺 朱瑞超 随赛 贾宇翔 丁畅 韩亚娟 屈绍波 王甲富

张栩琪, 周彬, 刘海琪, 等. 有限视距多传感器集群目标可扩展跟踪方法[J]. 雷达学报(中英文), 2024, 13(6): 1220–1238. doi: 10.12000/JR24054
引用本文: 李玉玺, 朱瑞超, 随赛, 等. 基于超表面的动态电磁调控技术及应用研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24259
ZHANG Xuqi, ZHOU Bin, LIU Haiqi, et al. A scalable method for group target tracking using multisensor with limited field of views[J]. Journal of Radars, 2024, 13(6): 1220–1238. doi: 10.12000/JR24054
Citation: LI Yuxi, ZHU Ruichao, SUI Sai, et al. Dynamic electromagnetic control technology and its application based on metasurface[J]. Journal of Radars, in press. doi: 10.12000/JR24259

基于超表面的动态电磁调控技术及应用研究

DOI: 10.12000/JR24259 CSTR: 32380.14.JR24259
基金项目: 国家重点研发计划项目(2022YFB3806200),国家自然科学基金(62201609, 62401614, 62401617)
详细信息
    作者简介:

    李玉玺,博士生,主要研究方向为超材料/超表面设计及应用、机器学习、有源编码器件

    朱瑞超,博士,讲师,主要研究方向为超材料/超表面设计及应用、机器学习

    随 赛,博士,副教授,主要研究方向为超表面、频率选择表面、吸波材料

    贾宇翔,博士,讲师,主要研究方向为超表面、欺骗表面等离子体激元、微波理论与技术

    丁 畅,博士,讲师,主要研究方向为超表面、可调微波设备、波束控制天线、SAR信号处理

    韩亚娟,博士,讲师,主要研究方向为超表面、欺骗表面等离子体激元、天线设计

    屈绍波,博士,教授,主要研究方向为材料物理、超材料、电子材料和器件

    王甲富,博士,教授,主要研究方向为超材料/超表面设计及应用、等离子体隐身

    通讯作者:

    朱瑞超 zhuruichao1996@163.com

    王甲富 wangjiafu1981@126.com

  • 责任主编:蒋卫祥 Corresponding Editor: JIANG Weixiang
  • 中图分类号: TN82

Dynamic Electromagnetic Control Technology and its Application Based on Metasurface

Funds: National Key Research and Development Program of China (2022YFB3806200), National Natural Science Foundation of China (62201609, 62401614, 62401617)
More Information
  • 摘要: 电磁超表面是一种新型的人工电磁材料,其在无线通信、信号处理等方面展现出了巨大的优势。电磁超表面通过引入外部激励(机械激励、热激励、电激励、光激励、磁激励等方式)实现了对电磁响应更为灵活的动态控制。基于动态调控的方式,电磁超表面能够实现对电磁波的相位、振幅、极化方式、传播模式等特性的精确控制,从而在不同的应用场景中实现波前调控。该文首先归纳总结了电磁超表面动态调控技术的研究进展;然后,讨论了电磁超表面在全息成像、极化转换、超构透镜、波束调控以及智能系统等领域中的研究现状;最后以调控技术为基石总结展望了电磁超表面的发展模式及未来智能化调控的发展趋势。

     

  • 图  1  基于MEMS的动态调控方法:(a-c)基于静电驱动的超表面结构示意图[8082];(d-e)基于电热驱动的超表面结构示意图[84,85];(f-g)基于压力驱动的超表面结构示意图[86,87];(h-i)基于电磁驱动的超表面结构示意图[88,89]

    Figure  1.  Dynamic control methods based on MEMS: (a-c) Schematic diagram of metasurface based on electrostatic actuation[8082]; (d-e) Schematic diagram of metasurface based on electrothermal actuation[84,85]; (f-g) Schematic diagram of the metasurface based on piezoelectric actuation[86,87]; (h-i) Schematic diagram of metasurface based on electromagnetic actuation[88,89]

    图  2  基于柔性基板的动态调控方法:(a)由嵌在PDMS基板中的介电矩形谐振器组成的可拉伸超表面结构示意图[96];(b)由PDMS和金组成的机械可拉伸超材料结构示意图[97];(c)在可见光频率范围内连续调控波前的机械可重构超表面结构示意图[98];(d)实现全息投影的可重构超表面原理示意图[99];(e)具有极化不敏感特性的机械可拉伸全介电超表面结构示意图[100];(f)基于PI柔性基板的可拉伸超表面结构示意图[101]

    Figure  2.  Dynamic control methods based on flexible substrate: (a) Schematic diagram of stretchable metasurface composed of dielectric rectangular resonators embedded in PDMS substrate[96]; (b) Schematic diagram of mechanically stretchable metamaterial composed of PDMS and gold[97]; (c) Schematic diagram of mechanically reconfigurable metasurface for continuously regulating wavefront in visible light frequency range[98]; (d) Schematic diagram of reconfigurable metasurface for holographic imaging[99]; (e) Schematic diagram of mechanically stretchable all-dielectric metasurface with polarization insensitivity[100]; (f) Schematic diagram of stretchable metasurface based on PI flexible substrate[101]

    图  3  基于折纸的动态调控方法:(a)多功能可重构梯度超表面结构示意图[111];(b)多功能可重构超表面结构示意图[112];(c)在反射器和频率选择吸收器之间相互转换的可编程超材料结构示意图[113];(d)透射率和发射光谱可调的频率选择表面结构示意图[114];(e)带宽可调的可重构吸收器结构示意图[115];(f)可重构极化转换超表面结构示意图[116]

    Figure  3.  Dynamic control methods based on origami: (a) Schematic diagram of multifunctional reconfigurable gradient metasurface[111]; (b) Schematic diagram of multifunctional reconfigurable metasurface[112]; (c) Schematic diagram of programmable metamaterial for mutual conversion between reflector and frequency selective absorber[113]; (d) Schematic diagram of frequency selective surface with adjustable transmittance and emission spectra[114]; (e) Schematic diagram of reconfigurable absorber with adjustable bandwidth[115]; (f) Schematic diagram of reconfigurable polarization conversion metasurface[116]

    图  4  基于相变材料的动态调控方法:(a)基于VO2薄膜的热控吸收超表面结构示意图[117];(b)基于VO2薄膜的可调控太赫兹超材料结构示意图[118];(c)宽带动态全息成像超表面结构示意图[119];(d)由硅基板和GST圆柱阵列组成的可调控太赫兹超材料结构示意图[122];(e)宽带极化转换和吸收相互切换的热控超表面结构示意图[123];(f)基于非对称定向耦合器的超低插入损耗有源偏振器结构示意图[124]

    Figure  4.  Dynamic control methods based on phase change material: (a) Schematic diagram of thermal control absorbing metasurface based on VO2 film; (b) Schematic diagram of tunable terahertz metamaterial based on VO2 film[118]; (c) Schematic diagram of metasurface for broadband dynamic holographic imaging[119]; (d) Schematic diagram of tunable terahertz metamaterial composed of silicon substrate and GST cylindrical array[122]; (e) Schematic diagram of thermal control metasurface with broadband polarization conversion and absorption switching[123]; (f) Schematic diagram of ultra-low insertion loss active polarizer based on asymmetrical directional coupler[124]

    图  5  基于液晶和半导体的动态调控方法:(a)基于液晶的可调控双层超表面原理示意图[125];(b)全介电硅纳米片超表面结构示意图[126];(c)全光控制的液晶超表面结构示意图[127];(d)工作在通信波长范围内的可调控全介电超表面原理示意图[128];(e)基于InSb薄膜的可调控全介电超表面吸收器结构示意图[129];(f)在高掺杂InSb基板上由本征InSb制作而成的谐振结构示意图[130]

    Figure  5.  Dynamic control methods based on liquid crystal and semiconductor: (a) Schematic diagram of tunable dual-layered metasurface based on liquid crystal[125]; (b) Schematic diagram of all-dielectric silicon nanodisk metasurface[126]; (c) Schematic diagram of all-optically controlled liquid-crystal metasurface[127]; (d) Schematic diagram of tunable all-dielectric metasurface operating in the communication wavelength range[128]; (e) Schematic diagram of tunable all-dielectric metasurface absorber based on InSb film[129]; (f) Schematic diagram of resonant structure made of intrinsic InSb film on the highly doped InSb substrate[130]

    图  6  基于电控集总器件的动态调控方法:(a)在频域和空域内具有可重构特性的超表面结构示意图[134];(b)产生各种调频连续波信号的时空编码超表面结构示意图[135];(c)实现反射、透射和吸收的有源超表面结构示意图[136];(d)独立操纵反射幅度和相位的超表面结构示意图[137];(e)实现波束分裂、波束偏转和极化变换的可重构超表面结构示意图[138];(f)可调控多功能超表面结构示意图[140];(g)具有模块化控制电路的双可编程超表面结构示意图[141];(h)加载变容二极管的可调控单双频超表面吸收器结构示意图[142];(i)基于多光谱检测的自适应可重构多波束反射超表面结构示意图[143];(j)在宽带范围内连续独立调控谐振吸收的幅度和频率的可调控超表面结构示意图[144]

    Figure  6.  Dynamic control methods based on electronic control lumped device: (a) Schematic diagram of reconfigurable metasurface in frequency and spatial domains[134]; (b) Schematic diagram of space-time-coding metasurface capable of generating various frequency-modulated continuous waves[135]; (c) Schematic diagram of active metasurface for reflection, transmission and absorption[136]; (d) Schematic diagram of metasurface for independent manipulation of reflection amplitude and phase[137]; (e) Schematic diagram of reconfigurable metasurface for beam splitting, beam deflection and polarization conversion[138]; (f) Schematic diagram of tunable multifunctional metasurface[140]; (g) Schematic diagram of dual-programmable metasurface with modular control circuits[141]; (h) Schematic diagram of single-/dual-band tunable absorber loaded varactor diode[142]; (i) Schematic diagram of adaptive reconfigurable multi-beam reflection metasurface based on multispectral detection[143]; (j): Schematic diagram of active metasurface with continuously and independently regulating the amplitude and frequency of resonant absorption over a broadband range[144]

    图  7  基于电控材料的动态调控方法:(a)在近红外波长范围内连续调制反射相位的动态可调超表面结构示意图[145];(b)基于VO2薄膜的外方环非对称分环谐振器结构示意图[146];(c)基于铟锡氧化物的电控全介电超表面结构示意图[147];(d)基于导电氧化物的异质结构超表面结构示意图[148];(e)基于石墨烯超表面的新型电控红外光调制器结构示意图[149];(f)石墨烯-氧化铝-石墨烯堆叠组成的超材料结构示意图[150];(g)电控混合石墨烯超表面结构示意图[151]

    Figure  7.  Dynamic control methods based on electronic control material: (a) Schematic diagram of dynamically tunable reflectarray metasurface for continuously modulating reflection phase in the near-infrared wavelength range[145]; (b) Schematic diagram of asymmetric splitloop resonator with an outer square loop based on VO2 film[146]; (c) Schematic diagram of tunable all-dielectric metasurface based on indium tin oxide[147]; (d) Schematic diagram of heterostructure metasurface based on conductive oxide[148]; (e) Schematic diagram of novel graphene metasurface-based electrical control infrared light modulator[149]; (f) Schematic diagram of metamaterial composed of graphene-alumina-graphene stacking[150]; (g) Schematic diagram of electronic control hybrid graphene metasurface[151]

    图  8  基于光控材料的动态调控方法:(a)在不同频率上独立实现圆极化波的极化转换和波束偏转的光控超表面结构示意图[152];(b)调制谐振频率、反射相位以及反射幅值的硅基太赫兹超表面调制器结构示意图[153];(c)显著消除光激发载流子的横向扩散的光控超表面原理示意图[154];(d)实现Fabry-Perot纳米腔静态和动态控制的结构示意图[155];(e)基于光激励产生的自由载流子改变氧化锌薄膜介电常数原理示意图[156];(f)基于ZnO的极化调制器结构示意图[157];(g)在2.08 μm波长处具有高质量因子的Berreman型完美吸收器结构示意图[158]

    Figure  8.  Dynamic control methods based on optical control material: (a) Schematic diagram of photo-excited metasurface for circular polarization conversion and anomalous beam deflection at different frequencies independently[152]; (b) Schematic diagram of silicon-based terahertz metasurface modulator for modulating resonance frequency, reflection phase and reflection amplitude[153]; (c) Schematic diagram of light-controlled metasurface that dramatically eliminates the lateral diffusion of the photogenerated carriers[154]; (d) Schematic diagram of the structure for the static and dynamic control of Fabry-Perot nanocavities[155]; (e) Principle diagram of the extraordinarily large permittivity changes in zinc oxide thin films induced by optically generated free carriers[156]; (f) Schematic diagram of polarization modulator based on ZnO[157]; (g) Schematic diagram of high-quality factor Berreman-type perfect absorber at 2.08 μm[158]

    图  9  基于光控集总器件的动态调控方法:(a)在不同频段上实现电磁波传输状态自由切换的光控数字编码超表面结构示意图[159];(b)实现微波隐身、电磁错觉及涡旋波束等电磁功能的数字编码超表面结构示意图[160];(c)由高速光电检测电路与全极化动态超表面组成的光控时域数字编码超表面结构示意图[161];(d)由光敏电阻和电压模块组成的数字编码超表面结构示意图[162];(e)基于紫外传感器的可编程超表面结构示意图[163];(f)集成变容二极管和光敏电阻的光控超表面结构示意图[164];(g)光控可重构微带反射天线结构示意图[165]

    Figure  9.  Dynamic control methods based on optical control lumped device: (a) Schematic diagram of light-controlled digital coding metasurface for realizing free switching of electromagnetic wave transmission state in different frequency bands[159]; (b) Schematic diagram of digital coding metasurface for microwave stealth, electromagnetic illusion and vortex beam[160]; (c) Schematic diagram of light-controlled time-domain digital coding metasurface consisting of a high-speed photoelectric detection circuit and a full-polarization dynamic metasurface[161]; (d) Schematic diagram of digital coding metasurface composed of a photoresistor and a voltage-driven module[162]; (e) Schematic diagram of programmable metasurface based on ultraviolet sensors[163]; (f) Schematic diagram of light-controlled metasurface integrating varactor and photoresistor[164]; (g) Schematic diagram of light-controlled reconfigurable microstrip reflective antenna[165]

    图  10  基于磁激励的动态调控方法:(a)实现Au/Ni/Au纳米棒表面等离子体共振的磁调制的磁控超材料结构示意图[167];(b)由Ni81Fe19/Au多层材料制成的微天线和孔阵列超材料平台结构示意图[168];(c)极化复用全息超表面结构示意图[169];(d)用铁氧体棒链实现非互易波传播结构示意图[170];(e)基于超表面的可调控人造微波黑体结构示意图[171];(f)由超薄柔性金属与Mn-Zn铁氧体组成的二维分裂环谐振器阵列结构示意图[172];(g)由等截面圆管和膜组成的磁可调薄膜型声学超表面结构示意图[173]

    Figure  10.  Dynamic control methods based on magnetic excitation: (a) Schematic diagram of magnetically controlled metamaterial for magnetic modulation of the Au/Ni/Au nanorods surface plasmon resonance[167]; (b) Schematic diagram of microantenna and hole-array metamaterial platforms made of Ni81Fe19/Au multilayers[168]; (c) Schematic diagram of polarization multiplexing holography metasurface[169]; (d) Schematic diagram of structure for the realization of non-reciprocal wave propagation by using a ferrite rod chain[170]; (e) Schematic diagram of tunable artificial microwave blackbodies based on metasurfaces[171]; (f) Schematic diagram of two-dimensional array of split-ring resonators using ultrathin flexible metals bonded with Mn-Zn ferrite patches[172]; (g) Schematic diagram of magnetically tunable film-type acoustic metasurface composed of composed of iso-sectional circular tube and membrane[173]

    图  11  全息成像的实现方法:(a)利用飞秒激光泵浦实现实时全息成像的可重构超表面原理示意图[174];(b)利用VO2相变特性实现了太赫兹波段内多通道全息成像的超表面结构示意图[175];(c)利用镁在加氢/脱氢过程中的分层反应动力实现动态全息成像的超表面结构示意图[176];(d)实现可编程全息成像的1位编码超表面结构及原理示意图[177];(e)在不同检测平面上和工作频率下实现不同全息图像可编程超表面结构示意图[178];(f)利用±1阶谐波对两幅不同的图像进行近场全息重建的2位时空编码超表面结构示意图[179]

    Figure  11.  Implementation methods of holographic imaging: (a) Schematic diagram of reconfigurable metasurface for real-time holographic imaging by femtosecond laser pump[174]; (b) Schematic diagram of multi-channel holographic imaging metasurface in the terahertz band by using properties of vanadium dioxide[175]; (c) Schematic diagram of dynamic metasurface hologram by utilizing hierarchical reaction kinetics of magnesium upon a hydrogenation/dehydrogenation process[176]; (d) Schematic diagram of 1-bit coding metasurface for programmable holographic imaging[177]; (e) Schematic diagram of programmable supersurface for different holographic images on different detecting planes and operating frequencies[178]; (f) Schematic diagram of 2-bit space-time coding metasurface for near-field holographic reconstruction of two different images using ±1st order harmonics[179]

    图  12  极化转换的实现方法:(a)基于微机电系统驱动的可重构超表面结构示意图[180];(b)电控光学超表面原理示意图[181];(c)基于石墨烯超表面的宽带线性极化转换器结构示意图[182];(d)基于全介电硅超表面的高效透射线-圆极化转换器结构示意图[183];(e)由填充VO2的劈开金属圆环和中心棒组成的可调控反射极化转换器结构示意图[184];(f)由蝴蝶形状金属结构、介质基板以及改进的金属偏置线组成的可重构宽带极化转换器结构示意图[185];(g)基于PIN二极管的可重构极化转换超表面结构示意图[186]

    Figure  12.  Implementation methods of polarization conversion: (a) Schematic diagram of reconfigurable metasurface driven by MEMS[180]; (b) Schematic diagram of electronical control optical metasurface[181]; (c) Schematic diagram of broadband linear polarization converter based on graphene metasurface[182]; (d) Schematic diagram of high-efficiency transmission linear to circular polarization converter based on an all-dielectric silicon metasurface[183]; (e) Schematic diagram of tunable reflection polarization converter composed of split metal ring filled with VO2 and central rod[184]; (f) Schematic diagram of reconfigurable broadband polarization converter composed of butterfly-shaped metal structure, dielectric substrate, and improved metal bias line[185]; (g) Schematic diagram of reconfigurable polarization conversion metasurface based on PIN diode[186]

    图  13  超构透镜的实现方法:(a)由雕刻在独立晶体硅膜上的悬浮惠更斯原子组成的光学机械调控超构透镜原理示意图[187];(b)由位于CaF2基板上的GSST惠更斯单元组成的高性能变焦超透镜原理示意图[188];(c)采用金属超表面和单层石墨烯的混合结构的电控超构透镜原理示意图[189];(d)由基于PB相位的金属超表面结构和单层石墨烯组成的电控超构透镜原理示意图[190];(e)具有焦距可调和焦平面可控的双层电极驱动液晶透镜原理示意图[191];(f)工作在可见光波段的电控双焦超构透镜原理示意图[192]

    Figure  13.  Implementation methods of metalens: (a) Schematic diagram of optical-mechanical controlled metalens composed of suspended Huygens atom carved on independent crystal silicon film[187]; (b) Schematic diagram of high-performance zoom metalens composed of GSST Huygens atom on the CaF2 substrate[188]; (c) Schematic diagram of electronically controlled metalens using a hybrid structure of a metallic metasurface and a monolayer graphene[189]; (d) Schematic diagram of electronically controlled metalens composed of a PB phase-based metal metasurface structure and a single layer of graphene[190]; (e) Schematic diagram of double-layer electrode-driven liquid crystal lens with adjustable focal length and controllable focal plane[191]; (f) Schematic diagram of electronically controlled bifocal metalenses operating in the visible light band[192]

    图  14  波束调控的实现方法:(a)基于液晶的硅纳米片介电超表面原理示意图[193];(b)由金属-介电-氧化物结构组成的反射型超表面原理示意图[194];(c)在近红外波段内动态可调超表面结构示意图[195];(d)基于III-V多量子阱的全介电有源超表面原理示意图[196];(e)基于VO2的电控超表面结构示意图[197];(f)基于液晶弹性体基板的太赫兹超表面原理示意图[198];(g)产生携带轨道角动量的会聚和非衍射涡旋光束的金属透镜原理示意图[199];(h)生成4个双模轨道角动量波束的多层透射式数字编码超表面原理示意图[200];(i)利用空时编码超表面动态生成多路涡旋光束原理示意图[201]

    Figure  14.  Implementation methods of beam steering: (a) Schematic diagram of silicon-nanodisk dielectric metasurface based on liquid crystals[193]; (b) Schematic diagram of reflective metasurface composed of metal-dielectric-oxide structures[194]; (c) Schematic diagram of a dynamically tunable metasurface in the near-infrared wavelength band[195]; (d) Schematic diagram of all-dielectric active metasurface based on III-V multiple-quantum-well[196]; (e) Schematic diagram of electronical control metasurface based on VO2[197]; (f) Schematic diagram of terahertz metasurface based on liquid crystal elastomer substrate[198]; (g) Schematic diagram of metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum[199]; (h) Schematic diagram of multilayer transmissive digital coding metasurface for generating dual-mode quad orbital angular momentum beams[200]; (i) Schematic diagram of dynamic generation of multiplexed vortex beams based on space-time-coding metasurface[201]

    图  15  智能系统的实现方法:(a)自适应调控电磁辐射波束的集成三轴陀螺仪的智能超表面结构示意图[202];(b)自适应操纵不同频率入射波的智能超表面结构示意图[203];(c)实现智能目标定位和波束自适应跟踪的信息超表面结构示意图[204];(d)在宽波达方向和宽频带范围内动态改变工作频率的自适应智能路由系统结构示意图[205];(e)基于入射功率信息自动调整电磁功能的智能超表面结构示意图[206];(f)基于深度学习驱动的智能隐身斗篷原理示意图[207];(g)实现呼吸监测和手语识别的基于人工神经网络驱动的智能超表面原理示意图[208]

    Figure  15.  Implementation methods of intelligent system: (a) Schematic diagram of intelligent metasurface with integrated three-axis gyroscope for adaptive control of electromagnetic radiation beam[202]; (b) Schematic diagram of intelligent metasurface Intelligent for adaptive manipulation of incident waves at different frequencies[203]; (c) Schematic diagram of information metasurface for intelligent target positioning and adaptive beam tracking[204]; (d) Schematic diagram of adaptive intelligent routing system for dynamically changing working frequency in wide DOA and broadband range[205]; (e) Schematic diagram of intelligent metasurface Intelligent metasurface with automatic adjustment of electromagnetic function based on incident power information[206]; (f) Schematic diagram of intelligent stealth cloak driven by deep learning[207]; (g) Schematic diagram of intelligent metasurface driven by artificial neural networks for respiratory monitoring and sign language recognition[208]

    表  1  电磁超表面的动态调控方式

    Table  1.   Dynamic control methods of electromagnetic metasurface

    激励方式调控机制典型材料/器件调控速率适用波段
    机械激励通过外部机械力改变超表面结构的
    几何形状或排列方式
    微机电系统,柔性拉伸材料(聚二甲基硅氧烷(PDMS)、
    聚酰亚胺(PI)),折纸材料(聚四氟乙烯(PTFE)、
    聚丙烯(PP))
    毫秒到秒量级微波、太赫兹波段
    热激励通过温度改变材料的折射率、
    电导率等物理性质
    相变材料(二氧化钒(VO2),锗锑碲合金(GST)),液晶,半导体材料(硅(Si)、锑化铟(InSb))秒到分钟量级太赫兹、红外波段
    电激励利用偏置电压控制有源器件的状态集总器件(PIN二极管、变容二极管)纳秒到微秒量级微波、太赫兹、
    可见光波段
    通过电场改变材料的介电常数或导电性氧化物(二氧化钒(VO2)、氧化铟锡(ITO)),石墨烯
    光激励利用光生载流子改变材料特性半导体材料(硅(Si)、III-V族半导体),
    透明导电氧化物(TCO)
    皮秒到纳秒量级微波、近红外、
    可见光波段
    基于光敏器件感光性控制有源器件的状态集总器件(PIN二极管、变容二极管)
    磁激励通过外加磁场改变磁性材料的
    磁导率或磁各向异性
    磁控材料(铁氧体、磁性金属)纳秒到微秒量级微波、太赫兹波段
    下载: 导出CSV

    表  2  4种MEMS驱动方式的特性对比

    Table  2.   Comparison of characteristics of four MEMS actuation methods

    MEMS驱动方式 驱动原理 优点 缺点 应用场景
    静电驱动 利用带电导体间的静电作
    用力来实现驱动
    制作简单、易集成、功耗低、
    速度快、兼容性好
    驱动电压较高,易受环境影响,
    稳定性较差‌
    适用于需要快速响应和
    高集成度的场合
    电热驱动 利用材料通电产生的热膨胀
    效应来实现开关动作
    制作简单、驱动电压低、接触力大、
    开关动作幅度大
    响应速度较慢、功耗较高 适用于需要大驱动力和位移
    且对速度要求不高的场合
    压电驱动 利用压电材料的逆压电
    效应来实现开关动作
    稳定性较强、驱动电压低、功耗低 技术尚未成熟、工艺复杂 适用于需要高稳定性和
    低功耗的场合
    电磁驱动 利用电流产生的磁场力
    来驱动可动构件
    驱动力大、不易受环境影响、
    不易被击穿
    稳定性较差、不易控制 适用于需要大驱动力和
    高稳定性的场合
    下载: 导出CSV

    表  3  热响应材料的变化特性

    Table  3.   Variation characteristics of thermal response materials

    热响应材料 相变温度 变化前状态 变化后状态 特性
    VO2 大约68 °C 绝缘体态 金属态 依赖性
    GST 大约150 °C 非晶体态 晶体态 非易失性
    液晶 不固定 向列相 各向同性相 依赖性
    半导体 导电能力弱 导电能力强 逐渐变化
    下载: 导出CSV
  • [1] ZHANG Xinge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028.
    [2] JIANG Shan, LIU Xuejun, LIU Jianpeng, et al. Flexible metamaterial electronics[J]. Advanced Materials, 2022, 34(52): 2200070. doi: 10.1002/adma.202200070.
    [3] CHEN Tian, PAULY M, and REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390. doi: 10.1038/s41586-020-03123-5.
    [4] YU Peng, BESTEIRO L V, HUANG Yongjun, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995. doi: 10.1002/adom.201800995.
    [5] SHEN Suling, LIU Xudong, SHEN Yaochun, et al. Recent advances in the development of materials for terahertz metamaterial sensing[J]. Advanced Optical Materials, 2022, 10(1): 2101008. doi: 10.1002/adom.202101008.
    [6] MEI Tie, MENG Zhiqiang, ZHAO Kejie, et al. A mechanical metamaterial with reprogrammable logical functions[J]. Nature Communications, 2021, 12(1): 7234. doi: 10.1038/s41467-021-27608-7.
    [7] ZHENG Xiaoyang, ZHANG Xubo, CHEN Tate, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530. doi: 10.1002/adma.202302530.
    [8] CUI Tiejun. Microwave metamaterials[J]. National Science Review, 2018, 5(2): 134–136. doi: 10.1093/nsr/nwx133.
    [9] WANG Yifan, NIU Jiarong, JIN Xin, et al. Molecularly resonant metamaterials for broad-band electromagnetic stealth[J]. Advanced Science, 2023, 10(19): 2301170. doi: 10.1002/advs.202301170.
    [10] KIM J, HAN K, and HAHN J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7(1): 6740. doi: 10.1038/s41598-017-06749-0.
    [11] PADILLA W J and AVERITT R D. Imaging with metamaterials[J]. Nature Reviews Physics, 2022, 4(2): 85–100. doi: 10.1038/s42254-021-00394-3.
    [12] WATTS C M, NADELL C C, MONTOYA J, et al. Frequency-division-multiplexed single-pixel imaging with metamaterials[J]. Optica, 2016, 3(2): 133–138. doi: 10.1364/OPTICA.3.000133.
    [13] LUO Yong, QIN Kewei, KE Hao, et al. Active metamaterial antenna with beam scanning manipulation based on a digitally modulated array factor method[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1198–1203. doi: 10.1109/TAP.2020.3010941.
    [14] PENG Yugui, SHEN Yaxi, GENG Zhiguo, et al. Super-resolution acoustic image montage via a biaxial metamaterial lens[J]. Science Bulletin, 2020, 65(12): 1022–1029. doi: 10.1016/j.scib.2020.03.018.
    [15] LEE G Y, HONG J Y, HWANG S, et al. Metasurface eyepiece for augmented reality[J]. Nature Communications, 2018, 9(1): 4562. doi: 10.1038/s41467-018-07011-5.
    [16] DAI Xuemei, DONG Fengliang, ZHANG Kun, et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing[J]. ACS Photonics, 2021, 8(8): 2294–2303. doi: 10.1021/acsphotonics.1c00411.
    [17] ESFANDIARI M, LALBAKHSH A, SHEHNI P N, et al. Recent and emerging applications of Graphene-based metamaterials in electromagnetics[J]. Materials & Design, 2022, 221: 110920. doi: 10.1016/j.matdes.2022.110920.
    [18] DORRAH A H, RUBIN N A, ZAIDI A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 2021, 15(4): 287–296. doi: 10.1038/s41566-020-00750-2.
    [19] QIU Tianshuo, SHI Xin, WANG Jiafu, et al. Deep learning: A rapid and efficient route to automatic metasurface design[J]. Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128.
    [20] WANG Hailin, ZHANG Yankai, ZHANG Taiyi, et al. Broadband and programmable amplitude-phase-joint-coding information metasurface[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29431–29440. doi: 10.1021/acsami.2c05907.
    [21] CUI Tiejun. Microwave metamaterials-from passive to digital and programmable controls of electromagnetic waves[J]. Journal of Optics, 2017, 19(8): 084004. doi: 10.1088/2040-8986/aa7009.
    [22] ZHAO Ruizhe, HUANG Lingling, and WANG Yongtian. Recent advances in multi-dimensional metasurfaces holographic technologies[J]. PhotoniX, 2020, 1(1): 20. doi: 10.1186/s43074-020-00020-y.
    [23] ZAHRA S, MA Liang, WANG Wenjiao, et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: A review[J]. Frontiers in Physics, 2021, 8: 593411. doi: 10.3389/fphy.2020.593411.
    [24] LI Jie, ZHENG Chenglong, LI Jitao, et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface[J]. Photonics Research, 2021, 9(10): 1939–1947. doi: 10.1364/PRJ.431019.
    [25] HE An, GUO Xuhan, WANG Ting, et al. Ultracompact fiber-to-chip metamaterial edge coupler[J]. ACS Photonics, 2021, 8(11): 3226–3233. doi: 10.1021/acsphotonics.1c00993.
    [26] ABDOLRAZZAGHI M, DANESHMAND M, and IYER A K. Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(4): 1843–1855. doi: 10.1109/TMTT.2018.2791942.
    [27] HU Jingpei, ZHAO Xiaonan, LIN Yu, et al. All-dielectric metasurface circular dichroism waveplate[J]. Scientific Reports, 2017, 7(1): 41893. doi: 10.1038/srep41893.
    [28] BIBBÒ L, KHAN K, LIU Qiang, et al. Tunable narrowband antireflection optical filter with a metasurface[J]. Photonics Research, 2017, 5(5): 500–506. doi: 10.1364/PRJ.5.000500.
    [29] YUE Wenjing, GAO Song, LEE S S, et al. Highly reflective subtractive color filters capitalizing on a silicon metasurface integrated with nanostructured aluminum mirrors[J]. Laser & Photonics Reviews, 2017, 11(3): 1600285. doi: 10.1002/lpor.201600285.
    [30] TANG Shiwei, LI Xike, PAN Weikang, et al. High-efficiency broadband vortex beam generator based on transmissive metasurface[J]. Optics Express, 2019, 27(4): 4281–4291. doi: 10.1364/OE.27.004281.
    [31] ZHANG Liang, GUO Jie, and DING Tongyu. Ultrathin dual-mode vortex beam generator based on anisotropic coding metasurface[J]. Scientific Reports, 2021, 11(1): 5766. doi: 10.1038/s41598-021-85374-4.
    [32] HE Xunjun, CHEN Guang, GENG Zhaoxin, et al. On-chip dynamic manipulation of terahertz spoof surface wavefronts with reconfigurable metasurfaces[J]. Optics Express, 2025, 33(4): 7927–7941. doi: 10.1364/OE.542534.
    [33] WANG Meng, MA Huifeng, WU Liangwei, et al. Hybrid digital coding metasurface for independent control of propagating surface and spatial waves[J]. Advanced Optical Materials, 2019, 7(13): 1900478. doi: 10.1002/adom.201900478.
    [34] CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422.
    [35] FENG Rui, RATNI B, YI Jianjia, et al. Versatile metasurface platform for electromagnetic wave tailoring[J]. Photonics Research, 2021, 9(9): 1650–1659. doi: 10.1364/PRJ.428853.
    [36] HU Qi, ZHAO Jianmin, CHEN Ke, et al. An intelligent programmable omni-metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. doi: 10.1002/lpor.202100718.
    [37] ZHANG Xinge, SUN Yalun, HUANG Zhixiang, et al. A review of light-controlled programmable metasurfaces for remote microwave control and hybrid signal processing[J]. Engineering Reports, 2023, 5(9): e12658. doi: 10.1002/eng2.12658.
    [38] LI Chong, JIANG Tianxi, HE Qingbo, et al. Smart metasurface shaft for vibration source identification with a single sensor[J]. Journal of Sound and Vibration, 2021, 493: 115836. doi: 10.1016/j.jsv.2020.115836.
    [39] ZHANG Shuang. Intelligent metasurfaces: Digitalized, programmable, and intelligent platforms[J]. Light: Science & Applications, 2022, 11(1): 242. doi: 10.1038/s41377-022-00876-8.
    [40] JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. In situ customized illusion enabled by global metasurface reconstruction[J]. Advanced Functional Materials, 2022, 32(19): 2109331. doi: 10.1002/adfm.202109331.
    [41] PITILAKIS A, TSILIPAKOS O, LIU Fu, et al. A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1440–1454. doi: 10.1109/TAP.2020.3016479.
    [42] MA Yihan, LUO Qi, ZHANG Cheng, et al. Deep learning enables multifunctional metasurfaces design with mutual coupling estimation[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(11): 8443–8451. doi: 10.1109/TAP.2024.3443151.
    [43] HOSSAIN M A, BAHCECI I, and CETINER B A. Parasitic layer-based radiation pattern reconfigurable antenna for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 6444–6452. doi: 10.1109/TAP.2017.2757962.
    [44] JIN Guiping, LI Miaolan, LIU Dan, et al. A simple planar pattern-reconfigurable antenna based on arc dipoles[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1664–1668. doi: 10.1109/LAWP.2018.2862624.
    [45] BRONCKERS L A, ROC’H A, and SMOLDERS A B. A new design method for frequency-reconfigurable antennas using multiple tuning components[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(12): 7285–7295. doi: 10.1109/TAP.2019.2930204.
    [46] IQBAL A, SMIDA A, ABDULRAZAK L F, et al. Low-profile frequency reconfigurable antenna for heterogeneous wireless systems[J]. Electronics, 2019, 8(9): 976. doi: 10.3390/electronics8090976.
    [47] REN Jian, ZHOU Zhao, WEI Zhaohui, et al. Radiation pattern and polarization reconfigurable antenna using dielectric liquid[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8174–8179. doi: 10.1109/TAP.2020.2996811.
    [48] NI Chun, CHEN Mingsheng, ZHANG Zhongxiang, et al. Design of frequency- and polarization-reconfigurable antenna based on the polarization conversion metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 78–81. doi: 10.1109/LAWP.2017.2775444.
    [49] IQBAL A, SMIDA A, MALLAT N K, et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems[J]. Electronics, 2019, 8(4): 407. doi: 10.3390/electronics8040407.
    [50] CHEN Shulin, QIN Peiyuan, LIN Wei, et al. Pattern-reconfigurable antenna with five switchable beams in elevation plane[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3): 454–457. doi: 10.1109/LAWP.2018.2794990.
    [51] CAO Junmei, MA Hongyu, XIE Shuhuan, et al. Highly efficient abnormal reflection via underwater acoustic metagratings[J]. Physical Review Applied, 2024, 21(3): 034015. doi: 10.1103/PhysRevApplied.21.034015.
    [52] FANG Xiang, LUO Jie, WU Zhuang, et al. Reconfigurable coding metamaterial for enhancing RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(11): 8854–8861. doi: 10.1109/TAP.2023.3294752.
    [53] CAI Ziru, WU Cuo, JIANG Jing, et al. Phase-change metasurface for switchable vector vortex beam generation[J]. Optics Express, 2021, 29(26): 42762–42771. doi: 10.1364/OE.444956.
    [54] MA Wei, HOU Maojing, LUO Ruiqi, et al. Topologically-optimized on-chip metamaterials for ultra-short-range light focusing and mode-size conversion[J]. Nanophotonics, 2023, 12(6): 1189–1197. doi: 10.1515/nanoph-2023-0036.
    [55] ZHOU Haoyang, ZHANG Sheng, WANG Shunjia, et al. Optically controlled dielectric metasurfaces for dynamic dual-mode modulation on terahertz waves[J]. Advanced Photonics, 2023, 5(2): 026005. doi: 10.1117/1.AP.5.2.026005.
    [56] ZHANG Shoujun, CHEN Xieyu, LIU Kuan, et al. Nonvolatile reconfigurable terahertz wave modulator[J]. PhotoniX, 2022, 3(1): 7. doi: 10.1186/s43074-022-00053-5.
    [57] POGREBNYAKOV A V, BOSSARD J A, TURPIN J P, et al. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material[J]. Optical Materials Express, 2018, 8(8): 2264–2275. doi: 10.1364/OME.8.002264.
    [58] REN Mengxin, WU Wei, CAI Wei, et al. Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. doi: 10.1038/lsa.2016.254.
    [59] KIM S J, KIM I, CHOI S, et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light[J]. Nanoscale Horizons, 2020, 5(7): 1088–1095. doi: 10.1039/D0NH00139B.
    [60] XU Ziquan, LUO Hao, ZHU Huanzheng, et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting[J]. Nano Letters, 2021, 21(12): 5269–5276. doi: 10.1021/acs.nanolett.1c01396.
    [61] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
    [62] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0.
    [63] WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
    [64] HUANG Lingling, ZHANG Shuang, and ZENTGRAF T. Metasurface holography: From fundamentals to applications[J]. Nanophotonics, 2018, 7(6): 1169–1190. doi: 10.1515/nanoph-2017-0118.
    [65] RIVENSON Y, ZHANG Yibo, GÜNAYDIN H, et al. Phase recovery and holographic image reconstruction using deep learning in neural networks[J]. Light: Science & Applications, 2018, 7(2): 17141. doi: 10.1038/lsa.2017.141.
    [66] ZHU Ruichao, WANG Jiafu, FU Xinmin, et al. Deep-learning-empowered holographic metasurface with simultaneously customized phase and amplitude[J]. ACS Applied Materials & Interfaces, 2022, 14(42): 48303–48310. doi: 10.1021/acsami.2c15362.
    [67] HAN H, PARK S, PARK H, et al. Low spurious, broadband reflection frequency modulation using an active metasurface[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(4): 359–362. doi: 10.1109/LMWC.2021.3127316.
    [68] YANG Heng, HE Yuan, TONG Meisong, et al. A reflection-transmission multifunctional polarization conversion metasurface[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 5099–5109. doi: 10.1109/TAP.2024.3400619.
    [69] LI Weihan, MA Qian, LIU Che, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. doi: 10.1038/s41467-023-36645-3.
    [70] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135.
    [71] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044.
    [72] MA Qian, LIU Che, XIAO Qiang, et al. Information metasurfaces and intelligent metasurfaces[J]. Photonics Insights, 2022, 1(1): R01. doi: 10.3788/PI.2022.R01.
    [73] LI Shangyang, LIU Zhouyang, FU Shilei, et al. Intelligent beamforming via physics-inspired neural networks on programmable metasurface[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4589–4599. doi: 10.1109/TAP.2022.3140891.
    [74] JIA Yuetian, QIAN Chao, FAN Zhixiang, et al. A knowledge-inherited learning for intelligent metasurface design and assembly[J]. Light: Science & Applications, 2023, 12(1): 82. doi: 10.1038/s41377-023-01131-4.
    [75] LIU Guodong, HU Wangsheng, HOU Wenying, et al. Indoor positioning and posture recognition of human body applying integrating-type intelligent metasurfaces based sensing system[J]. Advanced Materials Technologies, 2023, 8(22): 2301006. doi: 10.1002/admt.202301006.
    [76] CHEN Benwen, WANG Xinru, LI Weili, et al. Electrically addressable integrated intelligent terahertz metasurface[J]. Science Advances, 2022, 8(41): eadd1296. doi: 10.1126/sciadv.add1296.
    [77] LI Yuxi, WANG Jiafu, SUI Sai, et al. Simplistic framework of single-pixel-programmable metasurfaces integrated with a capsuled LED array[J]. Photonics Research, 2024, 12(5): 884–894. doi: 10.1364/PRJ.506044.
    [78] REN Zhihao, CHANG Yuhua, MA Yiming, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi: 10.1002/adom.201900653.
    [79] CHANG Yuhua, WEI Jingxuan, and LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049–3070. doi: 10.1515/nanoph-2020-0045.
    [80] PITCHAPPA P, HO C P, CONG Longqing, et al. Reconfigurable digital metamaterial for dynamic switching of terahertz anisotropy[J]. Advanced Optical Materials, 2016, 4(3): 391–398. doi: 10.1002/adom.201500588.
    [81] PITCHAPPA P, MANJAPPA M, HO C P, et al. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices[J]. Applied Physics Letters, 2016, 108(11): 111102. doi: 10.1063/1.4943974.
    [82] YANG Weixu, CHEN Ke, ZHENG Yilin, et al. Angular-adaptive reconfigurable spin-locked metasurface retroreflector[J]. Advanced Science, 2021, 8(21): 2100885. doi: 10.1002/advs.202100885.
    [83] XU Ruijia and LIN Yusheng. Flexible and controllable metadevice using self-assembly MEMS actuator[J]. Nano Letters, 2021, 21(7): 3205–3210. doi: 10.1021/acs.nanolett.1c00391.
    [84] XU Ruijia, XU Xiaocan, YANG Boru, et al. Actively logical modulation of MEMS-based terahertz metamaterial[J]. Photonics Research, 2021, 9(7): 1409–1415. doi: 10.1364/PRJ.420876.
    [85] LALAS A X, KANTARTZIS N V, and TSIBOUKIS T D. Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators[J]. Microsystem Technologies, 2015, 21(10): 2097–2107. doi: 10.1007/s00542-015-2407-9.
    [86] SARAVANA JOTHI N S and HUNT A. Active mechanical metamaterial with embedded piezoelectric actuation[J]. APL Materials, 2022, 10(9): 091117. doi: 10.1063/5.0101420.
    [87] MAVRIDOU M and FERESIDIS A P. Dynamically reconfigurable high impedance and frequency selective metasurfaces using piezoelectric actuators[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5190–5197. doi: 10.1109/TAP.2016.2617372.
    [88] DOERGER S R and HARNETT C K. Force-amplified soft electromagnetic actuators[J]. Actuators, 2018, 7(4): 76. doi: 10.3390/act7040076.
    [89] ZHOU Shengrui, LIANG Chao, MEI Ziqi, et al. Design and implementation of a flexible electromagnetic actuator for tunable terahertz metamaterials[J]. Micromachines, 2024, 15(2): 219. doi: 10.3390/mi15020219.
    [90] MANJAPPA M, PITCHAPPA P, SINGH N, et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies[J]. Nature Communications, 2018, 9(1): 4056. doi: 10.1038/s41467-018-06360-5.
    [91] DENG Yadong, MENG Chao, THRANE P C V, et al. MEMS-integrated metasurfaces for dynamic linear polarizers[J]. Optica, 2024, 11(3): 326–332. doi: 10.1364/OPTICA.515524.
    [92] ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6.
    [93] ROY T, ZHANG Shuyan, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865.
    [94] HAN Zheyi, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems & Nanoengineering, 2020, 6(1): 79. doi: 10.1038/s41378-020-00190-6.
    [95] MENG Chao, THRANE P C V, DING Fei, et al. Dynamic piezoelectric MEMS-based optical metasurfaces[J]. Science Advances, 2021, 7(26): eabg5639. doi: 10.1126/sciadv.abg5639.
    [96] LI Jing, FAN Hongjie, YE Han, et al. Design of multifunctional tunable metasurface assisted by elastic substrate[J]. Nanomaterials, 2022, 12(14): 2387. doi: 10.3390/nano12142387.
    [97] CHEN Fanqi, LIU Xiaojie, TIAN Yanpei, et al. Mechanically stretchable metamaterial with tunable mid-infrared optical properties[J]. Optics Express, 2021, 29(23): 37368–37375. doi: 10.1364/OE.439767.
    [98] EE H S and AGARWAL R. et al. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818–2823. doi: 10.1021/acs.nanolett.6b00618.
    [99] MALEK S C, EE H S, and AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641–3645. doi: 10.1021/acs.nanolett.7b00807.
    [100] ZHANG Chen, JING Jixiang, WU Yunkai, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418–1426. doi: 10.1021/acsnano.9b08228.
    [101] FAN Xuanqian, LI Yuhang, CHEN Sihong, et al. Mechanical terahertz modulation by skin-like ultrathin stretchable metasurface[J]. Small, 2020, 16(37): 2002484. doi: 10.1002/smll.202002484.
    [102] XU Zefeng and LIN Yusheng. A stretchable terahertz parabolic-shaped metamaterial[J]. Advanced Optical Materials, 2019, 7(19): 1900379. doi: 10.1002/adom.201900379.
    [103] LI Binghui, SHI Lintao, and LIN Yusheng. Stretchable and tunable quartered split-ring resonator (QSRR) using terahertz metamaterial[J]. Optics & Laser Technology, 2024, 174: 110692. doi: 10.1016/j.optlastec.2024.110692.
    [104] ZHOU Yunlei, WANG Shaolei, YIN Junyi, et al. Flexible metasurfaces for multifunctional interfaces[J]. ACS Nano, 2024, 18(4): 2685–2707. doi: 10.1021/acsnano.3c09310.
    [105] XU Ruijia and LIN Yusheng. Actively MEMS-based tunable metamaterials for advanced and emerging applications[J]. Electronics, 2022, 11(2): 243. doi: 10.3390/electronics11020243.
    [106] DAS B, YUN H S, PARK N, et al. A transformative metasurface based on zerogap embedded template[J]. Advanced Optical Materials, 2021, 9(11): 2002164. doi: 10.1002/adom.202002164.
    [107] OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7(1): 10929. doi: 10.1038/ncomms10929.
    [108] LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434.
    [109] WANG Zuojia, JING Liqiao, YAO Kan, et al. Origami-based reconfigurable metamaterials for tunable chirality[J]. Advanced Materials, 2017, 29(27): 1700412. doi: 10.1002/adma.201700412.
    [110] Zhu Zhibiao, WANG He, LI Yongfeng, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4558–4568. doi: 10.1109/TAP.2022.3140521.
    [111] ZHENG Yilin, CHEN Ke, YANG Weixu, et al. Kirigami reconfigurable gradient metasurface[J]. Advanced Functional Materials, 2022, 32(5): 2107699. doi: 10.1002/adfm.202107699.
    [112] ZHENG Yilin, WANG Shaojie, DUAN Kun, et al. Chirality-switching and reconfigurable spin-selective wavefront by origami deformation metasurface[J]. Laser & Photonics Reviews, 2024, 18(1): 2300720. doi: 10.1002/lpor.202300720.
    [113] LE D H and LIM S. Four-mode programmable metamaterial using ternary foldable origami[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28554–28561. doi: 10.1021/acsami.9b09301.
    [114] YANG Yunfang, VALLECCHI A, SHAMONINA E, et al. A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems[J]. Scientific Reports, 2023, 13(1): 1219. doi: 10.1038/s41598-022-27291-8.
    [115] CHEN Xiqiao, LI Wei, WU Zhuang, et al. Origami-based microwave absorber with a reconfigurable bandwidth[J]. Optics Letters, 2021, 46(6): 1349–1352. doi: 10.1364/OL.419093.
    [116] ZHU Zhibiao, LI Yongfeng, QIN Zhe, et al. Miura origami based reconfigurable polarization converter for multifunctional control of electromagnetic waves[J]. Photonics Research, 2024, 12(3): 581–586. doi: 10.1364/PRJ.504027.
    [117] WANG Zhongbao, CHEN Qiang, MA Yanli, et al. Design of thermal-switchable absorbing metasurface based on vanadium dioxide[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2302–2306. doi: 10.1109/LAWP.2022.3186802.
    [118] LIU Jianjun and FAN Lanlan. Development of a tunable terahertz absorber based on temperature control[J]. Microwave and Optical Technology Letters, 2020, 62(4): 1681–1685. doi: 10.1002/mop.32211.
    [119] LIU Xingbo, WANG Qiu, ZHANG Xueqian, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175.
    [120] LU Xueguang, DONG Bowen, ZHU Hongfu, et al. Two-channel VO2 memory meta-device for terahertz waves[J]. Nanomaterials, 2021, 11(12): 3409. doi: 10.3390/nano11123409.
    [121] LI Zenglin, WANG Wei, DENG Shaoxuan, et al. Active beam manipulation and convolution operation in VO2-integrated coding terahertz metasurfaces[J]. Optics Letters, 2022, 47(2): 441–444. doi: 10.1364/OL.447377.
    [122] GUO Linyang, MA Xiaohui, CHANG Zhaoqing, et al. Tunable a temperature-dependent GST-based metamaterial absorber for switching and sensing applications[J]. Journal of Materials Research and Technology, 2021, 14: 772–779. doi: 10.1016/j.jmrt.2021.06.080.
    [123] CHEN Jiajia, CHEN Xieyu, LIU Kuan, et al. A thermally switchable bifunctional metasurface for broadband polarization conversion and absorption based on phase-change material[J]. Advanced Photonics Research, 2022, 3(9): 2100369. doi: 10.1002/adpr.202100369.
    [124] SONG Yipeng and XU Peipeng. Design of ultra-low insertion loss active transverse electric-pass polarizer based Ge2Sb2Te5 on silicon waveguide[J]. Optics Communications, 2018, 426: 30–34. doi: 10.1016/j.optcom.2018.05.034.
    [125] ZHANG Shijie, WANG Qi, ZENG Ruimei, et al. Thermal tuning nanoprinting based on liquid crystal tunable dual-layered metasurfaces for optical information encryption[J]. Optics Express, 2024, 32(3): 4639–4649. doi: 10.1364/OE.514603.
    [126] SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano, 2015, 9(4): 4308–4315. doi: 10.1021/acsnano.5b00723.
    [127] SHARMA M and ELLENBOGEN T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser & Photonics Reviews, 2020, 14(11): 2000253. doi: 10.1002/lpor.202000253.
    [128] RAHMANI M, XU Lei, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580.
    [129] YANG Daquan, ZHANG Chao, LI Xiaogang, et al. InSb-enhanced thermally tunable terahertz silicon metasurfaces[J]. IEEE Access, 2019, 7: 95087–95093. doi: 10.1109/ACCESS.2019.2928225.
    [130] IYER P P, PENDHARKAR M, PALMSTRØM C J, et al. Ultrawide thermal free-carrier tuning of dielectric antennas coupled to epsilon-near-zero substrates[J]. Nature Communications, 2017, 8(1): 472. doi: 10.1038/s41467-017-00615-3.
    [131] SHIRMANESH G K, SOKHOYAN R, WU P C, et al. Electro-optically tunable multifunctional metasurfaces[J]. ACS Nano, 2020, 14(6): 6912–6920. doi: 10.1021/acsnano.0c01269.
    [132] LI Jianxiong, YU Ping, ZHANG Shuang, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1): 3574. doi: 10.1038/s41467-020-17390-3.
    [133] LI Yue, LIN Jing, GUO Huijie, et al. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption[J]. Advanced Optical Materials, 2020, 8(6): 1901548. doi: 10.1002/adom.201901548.
    [134] LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467.
    [135] KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi: 10.1038/s41377-022-00973-8.
    [136] SONG Xinyun, YANG Weixu, QU Kai, et al. Switchable metasurface for nearly perfect reflection, transmission, and absorption using PIN diodes[J]. Optics Express, 2021, 29(18): 29320–29328. doi: 10.1364/OE.436261.
    [137] LIAO Jianming, GUO Shaojun, YUAN Liming, et al. Independent manipulation of reflection amplitude and phase by a single-layer reconfigurable metasurface[J]. Advanced Optical Materials, 2022, 10(4): 2101551. doi: 10.1002/adom.202101551.
    [138] HUANG Cheng, ZHANG Changlei, YANG Jianning, et al. Reconfigurable metasurface for multifunctional control of electromagnetic waves[J]. Advanced Optical Materials, 2017, 5(22): 1700485. doi: 10.1002/adom.201700485.
    [139] JEONG H, LE D H, LIM D, et al. Reconfigurable metasurfaces for frequency selective absorption[J]. Advanced Optical Materials, 2020, 8(13): 1902182. doi: 10.1002/adom.201902182.
    [140] PHON R, LEE M, LOR C, et al. Multifunctional reflective metasurface to independently and simultaneously control amplitude and phase with frequency tunability[J]. Advanced Optical Materials, 2023, 11(14): 2202943. doi: 10.1002/adom.202202943.
    [141] ZHANG Xinge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382.
    [142] GHOSH S and SRIVASTAVA K V. Polarization-insensitive single-/dual-band tunable absorber with independent tuning in wide frequency range[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(9): 4903–4908. doi: 10.1109/TAP.2017.2731381.
    [143] ZHU Ruichao, WANG Jiafu, DING Chang, et al. Multi-field-sensing metasurface with robust self-adaptive reconfigurability[J]. Nanophotonics, 2023, 12(7): 1337–1345. doi: 10.1515/nanoph-2023-0050.
    [144] ZHANG Jin, WEI Xingzhan, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265–271. doi: 10.1021/acsphotonics.9b01532.
    [145] KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961–3968. doi: 10.1021/acs.nanolett.9b01246.
    [146] PARK D J, SHIN J H, PARK K H, et al. Electrically controllable THz asymmetric split-loop resonator with an outer square loop based on VO2[J]. Optics Express, 2018, 26(13): 17397–17406. doi: 10.1364/OE.26.017397.
    [147] FOROUZMAND A, SALARY M M, SHIRMANESH G K, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide[J]. Nanophotonics, 2019, 8(3): 415–427. doi: 10.1515/nanoph-2018-0176.
    [148] ZHANG Jinqiannan, YANG Jingyi, SCHELL M, et al. Gate-tunable optical filter based on conducting oxide metasurface heterostructure[J]. Optics Letters, 2019, 44(15): 3653–3656. doi: 10.1364/OL.44.003653.
    [149] LUO Wei, ABBASI S A, ZHU Shaodi, et al. Electrically switchable and tunable infrared light modulator based on functional graphene metasurface[J]. Nanophotonics, 2023, 12(9): 1797–1807. doi: 10.1515/nanoph-2023-0048.
    [150] YAO Wei, TANG Linlong, NONG Jinpeng, et al. Electrically tunable graphene metamaterial with strong broadband absorption[J]. Nanotechnology, 2021, 32(7): 075703. doi: 10.1088/1361-6528/abc44f.
    [151] CAI Ziqiang and LIU Yongmin. Near-infrared reflection modulation through electrical tuning of hybrid graphene metasurfaces[J]. Advanced Optical Materials, 2022, 10(6): 2102135. doi: 10.1002/adom.202102135.
    [152] XU Zhixiang, NI Cheng, CHENG Yongzhi, et al. Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently[J]. Nanomaterials, 2023, 13(12): 1846. doi: 10.3390/nano13121846.
    [153] ZHOU Qiangguo, LI Yongzhen, WU Tuntan, et al. Terahertz metasurface modulators based on photosensitive silicon[J]. Laser & Photonics Reviews, 2023, 17(6): 2200808. doi: 10.1002/lpor.202200808.
    [154] ULLAH A, WANG Y C, YEASMIN S, et al. Reconfigurable photoinduced terahertz wave modulation using hybrid metal-silicon metasurface[J]. Optics Letters, 2022, 47(11): 2750–2753. doi: 10.1364/OL.457573.
    [155] KIM J, CARNEMOLLA E G, DEVAULT C, et al. Dynamic control of nanocavities with tunable metal oxides[J]. Nano Letters, 2018, 18(2): 740–746. doi: 10.1021/acs.nanolett.7b03919.
    [156] SAHA S, DUTTA A, DEVAULT C, et al. Extraordinarily large permittivity modulation in zinc oxide for dynamic nanophotonics[J]. Materials Today, 2021, 43: 27–36. doi: 10.1016/j.mattod.2020.10.023.
    [157] WU Yuhao, CHOWDHURY S N, KANG Lei, et al. Zinc oxide (ZnO) hybrid metasurfaces exhibiting broadly tunable topological properties[J]. Nanophotonics, 2022, 11(17): 3933–3942. doi: 10.1515/nanoph-2022-0115.
    [158] YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi: 10.1038/nphoton.2017.64.
    [159] ZHANG Xinge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718.
    [160] ZHANG Xinge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5.
    [161] ZHANG Xinge, SUN Yalun, ZHU Bingcheng, et al. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001. doi: 10.1117/1.AP.4.2.025001.
    [162] CHEN Lei, NIE Qianfan, RUAN Ying, et al. Light-controllable metasurface for microwave wavefront manipulation[J]. Optics Express, 2020, 28(13): 18742–18749. doi: 10.1364/OE.396802.
    [163] CHEN Lei, YE Fuju, CUO Mu, et al. Ultraviolet-sensing metasurface for programmable electromagnetic scattering field manipulation by combining light control with a microwave field[J]. Optics Express, 2022, 30(11): 19212–19221. doi: 10.1364/OE.454111.
    [164] LI Ruijie, LIU Haixia, XU Peng, et al. Light-controlled metasurface with a controllable range of reflection phase modulation[J]. Journal of Physics D: Applied Physics, 2022, 55(22): 225302. doi: 10.1088/1361-6463/ac5555.
    [165] MIAO Siyu and LIN Fenghan. Light-controlled large-scale wirelessly reconfigurable microstrip reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1613–1622. doi: 10.1109/TAP.2022.3230551.
    [166] HU Yuze, HAO Hao, ZHANG Jun, et al. Anisotropic temporal metasurfaces for tunable ultrafast photoactive switching dynamics[J]. Laser & Photonics Reviews, 2021, 15(10): 2100244. doi: 10.1002/lpor.202100244.
    [167] JUNG I, JANG H J, HAN S, et al. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods[J]. Chemistry of Materials, 2015, 27(24): 8433–8441. doi: 10.1021/acs.chemmater.5b04016.
    [168] ARMELLES G, BERGAMINI L, ZABALA N, et al. Metamaterial platforms for spintronic modulation of mid-infrared response under very weak magnetic field[J]. ACS Photonics, 2018, 5(10): 3956–3961. doi: 10.1021/acsphotonics.8b00866.
    [169] BI Yu, HUANG Lingling, LI Tuo, et al. Active metasurface via magnetic control for tri-channel polarization multiplexing holography[J]. Chinese Optics Letters, 2024, 22(4): 043601. doi: 10.3788/COL202422.043601.
    [170] JU Cheng, WU Ruixin, LI Zhen, et al. Manipulating electromagnetic wave propagating non-reciprocally by a chain of ferriterods[J]. Optics Express, 2017, 25(18): 22096–22103. doi: 10.1364/OE.25.022096.
    [171] GUO Yunsheng, HOU Xiaojuan, LV Xiaolong, et al. Tunable artificial microwave blackbodies based on metasurfaces[J]. Optics Express, 2017, 25(21): 25879–25885. doi: 10.1364/OE.25.025879.
    [172] ZHANG Yihan, WU Gaojian, and HUANG Chengping. Magnetic tuning of metasurfaces using ultrathin flexible metals bonded with ferrite patches[J]. Journal of Lightwave Technology, 2024, 42(9): 3277–3282. doi: 10.1109/JLT.2024.3351887.
    [173] LIU Peng, CHEN Xing, XU Wangdong, et al. Magnetically controlled multifunctional membrane acoustic metasurface[J]. Journal of Applied Physics, 2020, 127(18): 185104. doi: 10.1063/1.5145289.
    [174] GUO Jinying, WANG Teng, ZHAO Huan, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696.
    [175] DU Zhiqiang, HE Canhui, XIN Jinhao, et al. Terahertz dynamic multichannel holograms generated by spin-multiplexing reflective metasurface[J]. Optics Express, 2024, 32(1): 248–259. doi: 10.1364/OE.510046.
    [176] LI Tianyou, WEI Qunshuo, REINEKE B, et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels[J]. Optics Express, 2019, 27(15): 21153–21162. doi: 10.1364/OE.27.021153.
    [177] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [178] FENG Rui, RATNI B, YI Jianjia, et al. Reprogrammable digital holograms and multibit spatial energy modulation using a reflective metasurface[J]. ACS Applied Electronic Materials, 2021, 3(12): 5272–5277. doi: 10.1021/acsaelm.1c00786.
    [179] HU Yuan, CHEN Shaonan, SHI Yan, et al. Space-time coding metasurface for multifunctional holographic imaging[J]. Advanced Materials Technologies, 2024, 9(12): 2302164. doi: 10.1002/admt.202302164.
    [180] ZHANG M, ZHANG W, LIU A Q, et al. Tunable polarization conversion and rotation based on a reconfigurable metasurface[J]. Scientific Reports, 2017, 7(1): 12068. doi: 10.1038/s41598-017-11953-z.
    [181] YU Ping, LI Jianxiong, and LIU Na. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters, 2021, 21(15): 6690–6695. doi: 10.1021/acs.nanolett.1c02318.
    [182] FENG Jinlong, CHEN Xiepeng, WU Linsheng, et al. Broadband electrically tunable linear polarization converter based on a graphene metasurface[J]. Optics Express, 2023, 31(2): 1420–1431. doi: 10.1364/OE.477907.
    [183] HOU Yanzhao, ZHANG Chao, and WANG Chengrui. High-efficiency and tunable terahertz linear-to-circular polarization converters based on all-dielectric metasurfaces[J]. IEEE Access, 2020, 8: 140303–140309. doi: 10.1109/ACCESS.2020.3007838.
    [184] YU Fuyuan, ZHU Jiabing, and SHEN Xiaobo. Tunable and reflective polarization converter based on single-layer vanadium dioxide-integrated metasurface in terahertz region[J]. Optical Materials, 2022, 123: 111745. doi: 10.1016/j.optmat.2021.111745.
    [185] GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636.
    [186] YANG Zhengyi, KOU Na, YU Shixing, et al. Reconfigurable multifunction polarization converter integrated with PIN diode[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(6): 557–560. doi: 10.1109/LMWC.2021.3064039.
    [187] AFRIDI A, GIESELER J, MEYER N, et al. Ultrathin tunable optomechanical metalens[J]. Nano Letters, 2023, 23(7): 2496–2501. doi: 10.1021/acs.nanolett.2c04105.
    [188] SHALAGINOV M Y, AN Sensong, ZHANG Yifei, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9.
    [189] ZHANG Zhaokun, QI Xiangqian, ZHANG Jianfa, et al. Graphene-enabled electrically tunability of metalens in the terahertz range[J]. Optics Express, 2020, 28(19): 28101–28112. doi: 10.1364/OE.401627.
    [190] LIU Weiguang, HU Bin, HUANG Zongduo, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703.
    [191] ZHANG Yongai, LIN Chaofu, LIN Jianpu, et al. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane[J]. Optics Communications, 2018, 412: 114–120. doi: 10.1016/j.optcom.2017.12.008.
    [192] BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science, 2021, 8(21): 2102646. doi: 10.1002/advs.202102646.
    [193] KOMAR A, PANIAGUA-DOMÍNGUEZ P, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable Dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742–1748. doi: 10.1021/acsphotonics.7b01343.
    [194] KIM S I, PARK J, JEONG B G, et al. Two-dimensional beam steering with tunable metasurface in infrared regime[J]. Nanophotonics, 2022, 11(11): 2719–2726. doi: 10.1515/nanoph-2021-0664.
    [195] HUANG Yaowei, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319–5325. doi: 10.1021/acs.nanolett.6b00555.
    [196] WU P C, PALA R A, SHIRMANESH G K, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces[J]. Nature Communications, 2019, 10(1): 3654. doi: 10.1038/s41467-019-11598-8.
    [197] HASHEMI M R M, YANG Shanghua, WANG Tongyu, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6(1): 35439. doi: 10.1038/srep35439.
    [198] ZHUANG Xiaolin, ZHANG Wei, WANG Kemeng, et al. Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface[J]. Light: Science & Applications, 2023, 12(1): 14. doi: 10.1038/s41377-022-01046-6.
    [199] ZHANG Kuang, YUAN Yueyi, ZHANG Dawei, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region[J]. Optics Express, 2018, 26(2): 1351–1360. doi: 10.1364/OE.26.001351.
    [200] LI Sijia, LI Zhouyue, LIU Xiaobin, et al. Transmissive digital coding metasurfaces for polarization-dependent dual-mode quad orbital angular momentum beams[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23690–23700. doi: 10.1021/acsami.3c04082.
    [201] TANG Pengcheng, SI Liming, YUAN Qianqian, et al. Dynamic generation of multiplexed vortex beams by a space-time-coding metasurface[J]. Photonics Research, 2025, 13(1): 225–234. doi: 10.1364/PRJ.543744.
    [202] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8(1): 98. doi: 10.1038/s41377-019-0205-3.
    [203] WANG Haipeng, LI Yunbo, LI He, et al. Intelligent metasurface with frequency recognition for adaptive manipulation of electromagnetic wave[J]. Nanophotonics, 2022, 11(7): 1401–1411. doi: 10.1515/nanoph-2021-0799.
    [204] JIANG Ruizhe, MA Qian, GU Ze, et al. Simultaneously intelligent sensing and beamforming based on an adaptive information metasurface[J]. Advanced Science, 2024, 11(7): 2306181. doi: 10.1002/advs.202306181.
    [205] GAO Chengjing, LAI Tingjun, PENG Liang, et al. Multifunctional intelligent reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2024, 16(41): 55675–55683. doi: 10.1021/acsami.4c09944.
    [206] SHE Ying, JI Chen, HUANG Cheng, et al. Intelligent reconfigurable metasurface for self-adaptively electromagnetic functionality switching[J]. Photonics Research, 2022, 10(3): 769–776. doi: 10.1364/PRJ.450297.
    [207] QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2.
    [208] LI Lianlin, SHUANG Ya, MA Qian, et al. Intelligent metasurface imager and recognizer[J]. Light: Science & Applications, 2019, 8(1): 97. doi: 10.1038/s41377-019-0209-z.
  • 期刊类型引用(2)

    1. 李郝亮,陈思伟. 极化测量误差对人造目标散射解译性能的影响研究. 现代雷达. 2022(01): 1-8 . 百度学术
    2. 贺雨露,代大海,庞礴,邢世其. 基于粒子群优化的极化SAR定标算法. 雷达科学与技术. 2019(04): 401-408 . 百度学术

    其他类型引用(4)

  • 加载中
图(15) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-12-25
  • 修回日期:  2025-03-21

目录

    /

    返回文章
    返回