基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究

王博弘 申彪 穆文星 刘涛

王博弘, 申彪, 穆文星, 等. 基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24239
引用本文: 王博弘, 申彪, 穆文星, 等. 基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24239
WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, in press. doi: 10.12000/JR24239
Citation: WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, in press. doi: 10.12000/JR24239

基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究

DOI: 10.12000/JR24239 CSTR: 32380.14.JR24239
基金项目: 国家自然科学基金(62171452)
详细信息
    作者简介:

    王博弘,硕士生,主要研究方向为雷达超分辨技术、雷达极化信息处理等

    申 彪,博士生,主要研究方向为极化雷达波形设计、雷达极化抗干扰和雷达极化信息处理等

    穆文星,博士生,主要研究方向为雷达极化信息处理和极化SAR目标检测等

    刘 涛,博士,教授,博士生导师,主要研究方向为雷达极化信息处理、新体制雷达技术及雷达电子战等

    通讯作者:

    刘涛 liutao1018@sina.com

  • 责任主编:郝程鹏 Corresponding Editor: HAO Chengpeng
  • 中图分类号: TN957

Research on Super-resolution Methods for Radar Targets Based on Bat-inspired Spectrogram Correlation and Transformation Models

Funds: The National Natural Science Foundation of China (62171452)
More Information
  • 摘要: 传统雷达分辨能力主要利用模糊函数来进行分析,其极限分辨力一般用瑞利限表征。自然界中蝙蝠具有相当敏锐的听觉系统,学者提出谱相关及变换(SCAT)模型对蝙蝠听觉系统建模,探索了蝙蝠的超分辨原理,为突破雷达目标常规(瑞利)分辨力提供了一个可能的途径。为了进一步提高SCAT模型的分辨性能,通过抑制距离像负半轴和原点处多余的波瓣,改进了基向量解卷积法和基带SCAT (BSCT)两种蝙蝠超分辨模型,同时提出可靠分辨力概念及计算方法,统一了SCAT分辨力与瑞利分辨力的衡量标准,对比验证了可靠分辨力概念的合理性以及改进算法的有效性。仿真与实测实验表明,改进超分辨算法均获得了可观的分辨力提升,其中改进基向量解卷积法性能最佳,将原基向量解卷积法的分辨力提高约2 dB,同时将匹配滤波分辨力提高约5 dB。

     

  • 图  1  目标间距为0.5倍瑞利分辨力时基向量解卷积仿真图

    Figure  1.  Simulation of basis vector deconvolution when the target spacing is 0.5 times the Rayleigh resolution

    图  2  改进BSCT分辨效果

    Figure  2.  Improved BSCT resolution

    图  3  目标间距为0.2倍瑞利分辨力时基向量解卷积仿真图

    Figure  3.  Simulation of basis vector deconvolution with target spacing of 0.2 times the Rayleigh resolution

    图  4  BSCT的分辨效果随两目标相对距离变化

    Figure  4.  The resolution of BSCT varies with relative distance of two targets

    图  5  BSCT的改进算法分辨效果随两目标相对距离变化

    Figure  5.  The resolution effect of the improved BSCT algorithm varies with relative distance of two targets

    图  6  基向量解卷积法的分辨效果随两目标相对距离变化

    Figure  6.  The resolution effect of the basis vector deconvolution method varies with the relative distance of two targets

    图  7  寻找分辨效果最好的K

    Figure  7.  Look for the K value with the best resolution

    图  8  5种处理方式对比图

    Figure  8.  Comparison chart of the five processing methods

    图  9  幅度比和相位差对不同信号处理方式分辨效果的影响

    Figure  9.  The effect of amplitude ratio and phase difference on the resolution of different signal processing methods

    图  10  实验条件

    Figure  10.  Experimental conditions

    图  11  信号采样与数据导入

    Figure  11.  Signal sampling and data importing

    图  12  实验结果

    Figure  12.  Experimental results

    表  1  仿真参数设置

    Table  1.   Simulation parameter settings

    参数 数值
    脉冲脉宽${T_{\text{p}}}$ 10 μs
    脉冲带宽${B_{\text{c}}}$ 40 ${\text{MHz}}$
    耳蜗单元滤波器组数目N 81
    相邻滤波器中心频率差异$\Delta {f_i}$ 0.5 ${\text{MHz}}$
    滤波器阶数 128
    滤波器带通宽度B 1 ${\text{MHz}}$
    下载: 导出CSV

    表  2  不同信号处理方法的对比

    Table  2.   Comparison of different signal processing methods

    信号处理方法 无相位差 有相位差 幅度差异对分辨的影响
    分辨力 可靠分辨力 分辨力 可靠分辨力
    匹配滤波处理 ${1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ 与相位差有关,等幅反相时为无穷小 与相位差有关,大于瑞利分辨力 幅度差越大,分辨效果越差
    BSCT $ < {1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ $ < {1 / {{B_{\text{c}}}}}$ ${1 / {{B_{\text{c}}}}}$ 无影响
    改进BSCT $ < {{0.7} / {{B_{\text{c}}}}}$ ${{0.7} / {{B_{\text{c}}}}}$ $ < {{0.7} / {{B_{\text{c}}}}}$ ${{0.7} / {{B_{\text{c}}}}}$ 无影响
    基向量解卷积 $ < {{0.5} / {{B_{\text{c}}}}}$ ${{0.5} / {{B_{\text{c}}}}}$ 效果变差 无影响
    改进基向量解卷积 $ < {{0.31} / {{B_{\text{c}}}}} $ $ {{0.31} / {{B_{\text{c}}}}} $ 效果变差 无影响
    下载: 导出CSV

    表  3  实测雷达参数

    Table  3.   Measured radar parameters

    参数 数值
    脉冲脉宽${T_{\text{p}}}$ 1 μs
    脉冲带宽${B_{\text{c}}}$ 100 MHz
    中心频率${f_0}$ 19 GHz
    采样率${f_{\text{s}}}$ 80 GHz
    耳蜗单元滤波器组数目N 81
    相邻滤波器中心频率差异$\Delta {f_i}$ 1.25 MHz
    滤波器阶数 128
    滤波器带通宽度B 2.5 MHz
    下载: 导出CSV
  • [1] 陈岁新. 雷达群目标超分辨技术研究[D]. [硕士论文], 电子科技大学, 2022: 1–5. doi: 10.27005/d.cnki.gdzku.2022.001266.

    CHEN Suixin. Study on super-resolution for radar detection of group targets[D]. [Master dissertation], University of Electronic Science and Technology of China, 2022: 1–5. doi: 10.27005/d.cnki.gdzku.2022.001266.
    [2] FENG Junjie, SUN Yinan, and JI Xiuxia. High-resolution ISAR imaging based on improved sparse signal recovery algorithm[J]. Wireless Communications and Mobile Computing, 2021, 2021: 5541116. doi: 10.1155/2021/5541116.
    [3] 倪晋麟, 储晓彬, 林幼权. 基于去卷积距离超分辨方法的机理及限制条件[J]. 系统工程与电子技术, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.

    NI Jinlin, CHU Xiaobin, and LIN Youquan. The principle and limitation of the range super-resolution algorithms based on deconvolution[J]. Systems Engineering and Electronics, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.
    [4] 王永良. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 18–52, 306–336.

    WANG Yongliang. Spatial Spectrum Estimation Theory and Algorithms[M]. Beijing: Tsinghua University Press, 2004: 18–52, 306–336.
    [5] DING Shanshan, TONG Ningning, ZHANG Yongshun, et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 304–312. doi: 10.1049/iet-rsn.2016.0233.
    [6] 王璟琛. 密集群目标分辨方法研究[D]. [硕士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.001665.

    WANG Jingchen. Research on target discrimination method of dense cluster[D]. [Master dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.001665.
    [7] 陈希信. 基于LFM信号频域去斜和压缩感知的雷达距离超分辨[J]. 现代雷达, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.

    CHEN Xixin. Radar range super-resolution based on LFM frequency dechirp and compressive sensing[J]. Modern Radar, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.
    [8] WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366.
    [9] 康乐, 张群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.

    KANG Le, ZHANG Qun, LI Taoyong, et al. Imaging method of downward-looking three-dimensional synthetic aperture radar based on bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.
    [10] SIMMONS J A, FERRAGAMO M, MOSS C F, et al. Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation[J]. Journal of Comparative Physiology A, 1990, 167(5): 589–616. doi: 10.1007/BF00192654.
    [11] SIMMONS J A, SAILLANT P A, WOTTON J M, et al. Composition of biosonar images for target recognition by echolocating bats[J]. Neural Networks, 1995, 8(7/8): 1239–1261. doi: 10.1016/0893-6080(95)00059-3.
    [12] SCHMIDT S. Perception of structured phantom targets in the echolocating bat, Megaderma lyra[J]. The Journal of the Acoustical Society of America, 1992, 91(4): 2203–2223. doi: 10.1121/1.403654.
    [13] 杨琳. 镫骨、耳蜗及其Corti器的建模与生物力学研究[D]. [博士论文], 复旦大学, 2009: 17–34. doi: 10.7666/d.y1970550.

    YANG Lin. Modeling and biomechanical analysis of the stapes, cochlea and organ of Corti[D]. [Ph.D. dissertation], Fudan University, 2009: 17–34. doi: 10.7666/d.y1970550.
    [14] CHI T, RU Powen, and SHAMMA S A. Multiresolution spectrotemporal analysis of complex sounds[J]. The Journal of the Acoustical Society of America, 2005, 118(2): 887–906. doi: 10.1121/1.1945807.
    [15] 秦晓瑜. 基于听觉仿生的听觉谱生成方法研究[D]. [硕士论文], 东北师范大学, 2013: 1–18.

    QIN Xiaoyu. Study on the generation method of auditory spectrum based on auditory bionics[D]. [Master dissertation], Northeast Normal University, 2013: 1–18.
    [16] SAILLANT P A, SIMMONS J A, DEAR S P, et al. A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 1993, 94(5): 2691–2712. doi: 10.1121/1.407353.
    [17] MATSUO I, KUNUGIYAMA K, and YANO M. An echolocation model for range discrimination of multiple closely spaced objects: Transformation of spectrogram into the reflected intensity distribution[J]. The Journal of the Acoustical Society of America, 2004, 115(2): 920–928. doi: 10.1121/1.1642626.
    [18] MATSUO I and YANO M. An echolocation model for the restoration of an acoustic image from a single-emission echo[J]. The Journal of the Acoustical Society of America, 2004, 116(6): 3782–3788. doi: 10.1121/1.1811411.
    [19] WIEGREBE L. An autocorrelation model of bat sonar[J]. Biological Cybernetics, 2008, 98(6): 587–595. doi: 10.1007/s00422-008-0216-2.
    [20] PEREMANS H and HALLAM J. The spectrogram correlation and transformation receiver, revisited[J]. The Journal of the Acoustical Society of America, 1998, 104(2): 1101–1110. doi: 10.1121/1.423326.
    [21] SIMON R, KNÖRNSCHILD M, TSCHAPKA M, et al. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range[J]. Frontiers in Physiology, 2014, 5: 64. doi: 10.3389/fphys.2014.00064.
    [22] PARK M and ALLEN R. Pattern-matching analysis of fine echo delays by the spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 2010, 128(3): 1490–1500. doi: 10.1121/1.3466844.
    [23] SIMMONS J A, SAILLANT P A, FERRAGAMO M J, et al. Auditory Computations for Biosonar Target Imaging in Bats[M]. HAWKINS H L, MCMULLEN T A, POPPER A N, et al. Auditory Computation. New York: Springer, 1996: 401–468. doi: 10.1007/978-1-4612-4070-9_9.
    [24] GEORGIEV K, BALLERI A, STOVE A, et al. Baseband version of the bat-inspired spectrogram correlation and transformation receiver[C]. 2016 IEEE Radar Conference, Philadelphia, PA, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485152.
    [25] GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired two target resolution at radio frequencies[C]. 2017 IEEE Radar Conference, Seattle, WA, USA, 2017: 436–440. doi: 10.1109/RADAR.2017.7944242.
    [26] GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired processing of radar target echoes[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1402–1409. doi: 10.1049/iet-rsn.2018.5241.
    [27] 成彬彬. 自适应雷达波形的仿生处理研究[D]. [博士论文], 清华大学, 2009.

    CHENG Binbin. Research on bionic processing for auto-adaptive radar waveform[D]. [Ph.D. dissertation], Tsinghua University, 2009.
    [28] 苏梦娜, 梁红, 杨长生. 基于SCAT模型的水下多目标高分辨仿生成像方法[J]. 水下无人系统学报, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.

    SU Mengna, LIANG Hong, and YANG Changsheng. Bionic imaging of underwater multiple targets with high resolution based on SCAT model[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.
    [29] CHEN Ming, BATES M E, and SIMMONS J A. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17288–17295. doi: 10.1073/pnas.2001105117.
    [30] CHEN Ming, HARO S, SIMMONS A M, et al. A comprehensive computational model of animal biosonar signal processing[J]. PLOS Computational Biology, 2021, 17(2): e1008677. doi: 10.1371/journal.pcbi.1008677.
    [31] BALLERI A, GRIFFITHS H, and BAKER C. Biologically-Inspired Radar and Sonar: Lessons from Nature[M]. Edison: SciTech Publishing, 2017: 1–81.
    [32] 丁鹭飞, 耿富禄, 陈建春. 雷达原理[M]. 6版. 北京: 电子工业出版社, 2020: 210–211, 348–360.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles[M]. 6th ed. Beijing: Publishing House of Electronics Industry, 2020: 210–211, 348–360.
    [33] 王罗胜斌, 王雪松, 徐振海. 雷达极化域调控超分辨的原理与方法[J]. 中国科学: 信息科学, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.

    WANG Luoshengbin, WANG Xuesong, and XU Zhenhai. Principle and approach to polarization modulation for radar super-resolution[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.
    [34] WANG Luoshengbin, XU Zhenhai, DONG Wei, et al. A scheme of polarimetric superresolution for multitarget detection and localization[J]. IEEE Signal Processing Letters, 2021, 28: 439–443. doi: 10.1109/LSP.2021.3058007.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-01
  • 修回日期:  2025-02-19
  • 网络出版日期:  2025-03-17

目录

    /

    返回文章
    返回