面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计

唐爱民 王书涵 曲文泽

王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119-131. doi: 10.12000/JR16039
引用本文: 唐爱民, 王书涵, 曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24240
Wang Xuesong. Status and Prospects of Radar Polarimetry Techniques[J]. Journal of Radars, 2016, 5(2): 119-131. doi: 10.12000/JR16039
Citation: TANG Aimin, WANG Shuhan, and QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars, in press. doi: 10.12000/JR24240

面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计

DOI: 10.12000/JR24240
详细信息
    作者简介:

    唐爱民,博士,助理研究员,主要研究方向为B5G/6G网络、通信感知一体化技术、全双工通信

    王书涵,硕士生,主要研究方向为通信感知一体化技术

    曲文泽,硕士,研究员,主要研究方向为通信感知一体化技术

    通讯作者:

    唐爱民 tangaiming@sjtu.edu.cn

  • 责任主编:杨杰 Corresponding Editor: YANG Jie
  • 中图分类号: TN92

Reference Signal Design in OFDM ISAC for Long-range and High-speed UAV Detection

More Information
  • 摘要: 随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。

     

  • 图  1  系统模型示意图

    Figure  1.  Illustration of the system model

    图  2  接收OFDM符号的时间轴

    Figure  2.  The timeline for received OFDM symbols

    图  3  类型1的RS设计示意

    Figure  3.  Illustration of RS design for type 1

    图  4  类型2的RS设计示意

    Figure  4.  Illustration of RS design for type 2

    图  5  面向距离模糊问题的RS设计示例

    Figure  5.  Illustration of RS design resolving ambiguity problem in long distance sensing

    图  6  模糊函数

    Figure  6.  Ambiguity function

    图  7  RD谱和可检测范围

    Figure  7.  RD map and detection range

    图  8  基于中国剩余定理的RS设计示意

    Figure  8.  Illustration of RS design based on CRT

    图  9  基于中国剩余定理的多目标模糊速度消除示意

    Figure  9.  Illustration of resolving velocity ambiguity in multi-target scenarios based on CRT

    图  10  不同RS设计对通信开销的影响

    Figure  10.  Impact of different RS designs on communication overhead

    图  11  不同RS设计对通信数据传输速率的影响

    Figure  11.  Impact of different RS designs on communication data rate

    图  12  本文提出的速度模糊性消除方法在不同参数下的表现

    Figure  12.  Performance of our proposed method for addressing velocity ambiguity under different setups

    图  13  幽灵目标的性能

    Figure  13.  Performance of reducing ghost targets

    1  基于中国剩余定理和距离变化率的目标检测流程

    1.   Target detection procedure based on CRT and range-rate

     输入:两次CPI的RD谱RD1, RD2
     输出:估计的距离-速度对(Ri,Vi),i=1,2,,I
     1. 从RD1获取峰值,记为(Ri1,Via1),i=1,2,,I,根据Via1Vu1得到第i个目标在第1个CPI的速度可能取值集合Si1
     2. 从RD2获取峰值,记为(Rj2,Vja2),j=1,2,,I,根据Vja2Vu2得到第j个目标在第2个CPI的速度可能取值集合Sj2
     3. 通过聚合的方式比较两个CPI获得的所有速度可能取值,即比较集合{x|xSi1,i=1,2,,I}{x|xSj2,j=1,2,,I},如果有一
     致或接近的值,记录这个速度和它对应的在两个CPI的距离(Vk,Rk1,Rk2),k=1,2,,K(KI)
     4. 如果K>I,根据ˆVk=Rk2Rk1Δt计算第k个目标的距离变化率,如果ˆVk,Vk相差不超过min(Vu1,Vu2),保留(Vk,Rk1,Rk2)数组;否
     则,抛弃数组
     5. 输出(Rk,Vk)=((Rk1+Rk2)/2,Vk),k=1,2,,I
    下载: 导出CSV

    表  1  系统仿真物理层参数

    Table  1.   Physical layer parameters for system simulation

    参数 数值 参数 数值
    中心频率fc 28 GHz 带宽B 50 MHz
    子载波间隔Δf 120 kHz 数据持续时长Td 8.3 μs
    CP时长Tcp 0.59 μs 符号持续时长Tsym 8.9 μs
    子载波个数Nc 348 OFDM符号个数Ns 112
    下载: 导出CSV
  • [1] 王宝义. 我国低空经济的技术经济范式分析与发展对策[J]. 中国流通经济, 2024, 38(9): 14–26. doi: 10.14089/j.cnki.cn11-3664/f.2024.09.002.

    WANG Baoyi. The technological and economic paradigm analysis and countermeasures for developing low altitude economy in China[J]. China Business and Market, 2024, 38(9): 14–26. doi: 10.14089/j.cnki.cn11-3664/f.2024.09.002.
    [2] MOHAMMED F, IDRIES A, MOHAMED N, et al. UAVs for smart cities: Opportunities and challenges[C]. 2014 International Conference on Unmanned Aircraft Systems, Orlando, USA, 2014. doi: 10.1109/ICUAS.2014.6842265.
    [3] 张博钧, 刘立平, 曹珺飞, 等. 低空经济产业标准体系规划研究[J]. 信息通信技术与政策, 2024, 50(11): 41–47. doi: 10.12267/j.issn.2096-5931.2024.11.007.

    ZHANG Bojun, LIU Liping, CAO Junfei, et al. Research on the planning of low-altitude economic industry standard system[J]. Information and Communications Technology and Policy, 2024, 50(11): 41–47. doi: 10.12267/j.issn.2096-5931.2024.11.007.
    [4] ZHANG Chen, ZHANG Leyi, ZHU Lipeng, et al. 3D deployment of multiple UAV-mounted base stations for UAV communications[J]. IEEE Transactions on Communications, 2021, 69(4): 2473–2488. doi: 10.1109/TCOMM.2021.3049387.
    [5] MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: Challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62–67. doi: 10.1109/MCOM.008.2200510.
    [6] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [7] ITU. Framework and overall objectives of the future development of IMT for 2030 and beyond[R]. ITU-R M.2160-0, 2023.
    [8] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Constrained utility maximization in dual-functional radar-communication multi-UAV networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2660–2672. doi: 10.1109/TCOMM.2020.3044616.
    [9] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [10] MENG Kaitao, WU Qingqing, XU Jie, et al. UAV-enabled integrated sensing and communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2024, 31(2): 97–104. doi: 10.1109/MWC.131.2200442.
    [11] EVERS A and JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440–3455. doi: 10.1109/TAES.2015.140622.
    [12] DAN Yangpeng, WAN Xianrong, YI Jianxin, et al. Ambiguity function analysis of long term evolution transmission for passive radar[C]. 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4. doi: 10.1109/ISAPE.2018.8634255.
    [13] CUI Yuanhao, JING Xiaojun, and MU Junsheng. Integrated sensing and communications via 5G NR waveform: Performance analysis[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022: 8747–8751. doi: 10.1109/ICASSP43922.2022.9746355.
    [14] WEI Zhiqing, WANG Yuan, MA Liang, et al. 5G PRS-based sensing: A sensing reference signal approach for joint sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3250–3263. doi: 10.1109/TVT.2022.3215159.
    [15] ZHAO Qimin, TANG Aimin, and WANG Xudong. Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 379–392. doi: 10.1109/TGCN.2023.3234392.
    [16] BRAUN K M. OFDM radar algorithms in mobile communication networks[D]. [Ph.D. dissertation], Karlsruher Institut für Technologie, 2014.
    [17] TANG Aimin, LI Songqian, and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1484–1499. doi: 10.1109/JSTSP.2021.3118888.
    [18] WANG Lin, WEI Zhiqing, SU Liyan, et al. Coherent compensation based ISAC signal processing for long-range sensing: (Invited Paper)[C]. 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Singapore, Singapore, 2023: 689–695. doi: 10.23919/WiOpt58741.2023.10349853.
    [19] TANG Aimin, ZHAO Qimin, WANG Xudong, et al. ISI-resistant reference signal design and processing for OFDM integrated communications and long-range radar sensing[J]. IEEE Communications Letters, 2024, 28(6): 1322–1326. doi: 10.1109/LCOMM.2024.3394545.
    [20] RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4194–4197. doi: 10.1109/TGRS.2013.2280190.
    [21] WANG Wenqin. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 101–105. doi: 10.1109/LGRS.2012.2193870.
    [22] MEI Dongyang, WEI Zhiqing, CHEN Xu, et al. A coprime and periodic pilot design for ISAC system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571182.
    [23] HUANG Zhenxing and ZHENG Wan. Range ambiguity resolution in multiple PRF pulse Doppler radars[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, USA, 1987: 1786–1789. doi: 10.1109/ICASSP.1987.1169906.
    [24] WANG Chen, YIN Qinye, and CHEN Hongyang. Robust Chinese remainder theorem ranging method based on dual-frequency measurements[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 4094–4099. doi: 10.1109/TVT.2011.2167690.
    [25] AGARWAL R C. Number theory in digital signal processing[J]. Proceedings of the IEEE, 1980, 68(10): 1358–1359. doi: 10.1109/PROC.1980.11872.
    [26] BHARADIA D, MCMILIN E, and KATTI S. Full duplex radios[C]. ACM SIGCOMM 2013 conference on SIGCOMM, Hong Kong, China, 2013: 375–386. doi: 10.1145/2486001.2486033.
  • 期刊类型引用(4)

    1. 王进,冷祥光,孙忠镇,马晓杰,杨阳,计科峰. 复杂运动舰船目标SAR成像空/时变散焦特性研究. 系统工程与电子技术. 2024(07): 2237-2255 . 百度学术
    2. 曹晔,闫海鹏,张剑琦,师亚辉,张振华. 高动态条件下舰船目标SAR成像算法研究. 遥测遥控. 2019(04): 40-48 . 百度学术
    3. 魏翔飞,王小青,种劲松. 一种基于局域中心频率的SAR图像舰船方位向速度估计方法. 电子与信息学报. 2018(09): 2242-2249 . 百度学术
    4. 杨传安,齐向阳,李宁. 一种基于参数估计的运动舰船SAR成像方法. 国外电子测量技术. 2017(05): 30-36 . 百度学术

    其他类型引用(5)

  • 加载中
图(13) / 表(2)
计量
  • 文章访问数: 224
  • HTML全文浏览量: 46
  • PDF下载量: 47
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-12-03
  • 修回日期:  2025-01-22
  • 网络出版日期:  2025-02-25

目录

    /

    返回文章
    返回