面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计

唐爱民 王书涵 曲文泽

唐爱民, 王书涵, 曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24240
引用本文: 唐爱民, 王书涵, 曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24240
TANG Aimin, WANG Shuhan, and QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars, in press. doi: 10.12000/JR24240
Citation: TANG Aimin, WANG Shuhan, and QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars, in press. doi: 10.12000/JR24240

面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计

DOI: 10.12000/JR24240
详细信息
    作者简介:

    唐爱民,博士,助理研究员,主要研究方向为B5G/6G网络、通信感知一体化技术、全双工通信

    王书涵,硕士生,主要研究方向为通信感知一体化技术

    曲文泽,硕士,研究员,主要研究方向为通信感知一体化技术

    通讯作者:

    唐爱民 tangaiming@sjtu.edu.cn

  • 责任主编:杨杰 Corresponding Editor: YANG Jie

Reference Signal Design in OFDM ISAC for Long-Range and High-Speed UAV Detection

More Information
  • 摘要: 随着低空经济的兴起,无人机的通信和检测问题受到了广泛的关注。该文研究了OFDM通信感知一体化中的感知参考信号设计,用于远距离高速无人机的检测。为了实现无人机在远距离和高速度情况下的不模糊检测,传统的参考信号设计需要较密的感知参考信号布置,从而带来较大的资源开销。此外,基于OFDM波形的远距离检测,还面临码间串扰的挑战。首先,针对远距离检测的问题,该文设计了支持远距离检测且抗码间串扰的感知参考信号模式,可以在较少资源开销下达到系统的最大不模糊检测距离。然后,基于前述参考信号的排布模式,针对高速度检测的问题,该文在基于中国剩余定理消除模糊方法的基础上,引入距离变化率。通过合理的参考信号配置与幽灵目标消除算法,可以在较小的资源开销下,大幅增加不模糊检测速度,且有效避免幽灵目标的产生。上述方法的有效性最后通过仿真进行了验证。仿真结果表明,针对远距离高速目标的检测,相比于传统方法,该文所提的方法可降低72%的参考信号开销。

     

  • 图  1  系统模型示意图

    Figure  1.  Illustration of the system model

    图  2  接收OFDM符号的时间轴

    Figure  2.  The timeline for received OFDM symbols

    图  3  类型1的RS设计示意

    Figure  3.  Illustration of RS design for Type 1

    图  4  类型2的RS设计示意

    Figure  4.  Illustration of RS design for Type 2

    图  5  面向距离模糊问题的RS设计示例

    Figure  5.  Illustration of RS design resolving ambiguity problem in long distance sensing

    图  6  模糊函数

    Figure  6.  Ambiguity function

    图  7  RD谱和可检测范围

    Figure  7.  RD map and detection range

    图  8  基于中国剩余定理的RS设计示意

    Figure  8.  Illustration of RS design based on CRT

    图  9  基于中国剩余定理的多目标模糊速度消除示意

    Figure  9.  Illustration of resolving velocity ambiguity in multi-target scenarios based on CRT

    图  10  不同RS设计对通信开销的影响

    Figure  10.  Impact of different RS designs on communication overhead

    图  11  :不同RS设计对通信数据传输速率的影响

    Figure  11.  Impact of different RS designs on communication data rate

    图  12  本文提出的速度模糊性消除方法在不同参数下的表现

    Figure  12.  Performance of our proposed method for addressing velocity ambiguity under different setups

    图  13  幽灵目标的性能

    Figure  13.  Performance of reducing ghost targets

    1  基于中国剩余定理和距离变化率的目标检测流程

    1.   Target detection procedure based on CRT and range-rate

     输入:两次CPI的RD谱$ {\text{RD}}_{1} $, $ {\text{RD}}_{2} $
     输出:估计的距离-速度对$ ({R}^{i},{V}^{i})\text{,}i=1,2,\cdots,I $
     1. 从$ {\text{RD}}_{1} $获取峰值,记为$ \left({R}_{1}^{i},{V}_{\mathrm{a}1}^{i}\right)\text{,}i=1,2,\cdots I $,根据$ {V}_{\mathrm{a}1}^{i} $和$ {V}_{\mathrm{u}1} $得到第i个目标在第1个CPI的速度可能取值集合$ {\mathbb{S}}_{1}^{i} $
     2. 从$ {\text{RD}}_{2} $获取峰值,记为$ \left({R}_{2}^{j},{V}_{\mathrm{a}2}^{j}\right)\text{,}j=1,2,\cdots,I $,根据$ {V}_{\mathrm{a}2}^{j} $和$ {V}_{\mathrm{u}2} $得到第j个目标在第2个CPI的速度可能取值集合$ {\mathbb{S}}_{2}^{j} $
     3. 通过聚合的方式比较两个CPI获得的所有速度可能取值,即比较集合$ \left\{x\right|x\in {\mathbb{S}}_{1}^{i}\text{,}i=1,2,\cdots I\} $和$ \left\{x|x\in {\mathbb{S}}_{2}^{j}\text{,}j=1,2,\cdots I\right\} $,如果有一致
     或接近的值,记录这个速度和它对应的在两个CPI的距离$ ({V}^{k},{R}_{1}^{k},{R}_{2}^{k})\text{,}k=1,2,\cdots,K(K\ge I) $
     4. 如果$ K > I $,根据$ {\hat{V}}^{k}=\dfrac{{R}_{2}^{k}-{R}_{1}^{k}}{{\Delta }t} $计算第k个目标的距离变化率,如果$ {\hat{V}}^{k},{V}^{k} $相差不超过$ \mathrm{m}\mathrm{i}\mathrm{n}({V}_{\mathrm{u}1},{V}_{\mathrm{u}2}) $,保留$ ({V}^{k},{R}_{1}^{k},{R}_{2}^{k}) $数组;否
     则,抛弃数组
     5. 输出$ ({R}^{k},{V}^{k})=\left(\right({R}_{1}^{k}+{R}_{2}^{k})/2,{V}^{k})\text{,}\;k=1,2,\cdots,I $
    下载: 导出CSV

    表  1  系统仿真物理层参数

    Table  1.   Physical layer parameters for system simulation

    参数 数值 参数 数值
    中心频率 $ {f}_{\mathrm{c}} $ 28 GHz 带宽 B 50 MHz
    子载波间隔 $ {{\Delta }}_{\mathrm{f}} $ 120 kHz 数据持续时长 $ {T}_{\mathrm{d}} $ 8.3 μs
    CP时长$ {T}_{\mathrm{c}\mathrm{p}} $ 0.59 μs 符号持续时长 $ {T}_{\mathrm{s}\mathrm{y}\mathrm{m}} $ 8.9 μs
    子载波个数 $ {N}_{\mathrm{c}} $ 348 OFDM符号个数 $ {N}_{\mathrm{s}} $ 112
    下载: 导出CSV
  • [1] 王宝义. 我国低空经济的技术经济范式分析与发展对策[J]. 中国流通经济, 2024, 38(9): 14–26. doi: 10.14089/j.cnki.cn11-3664/f.2024.09.002.

    WANG Baoyi. The technological and economic paradigm analysis and countermeasures for developing low altitude economy in China[J]. China Business and Market, 2024, 38(9): 14–26. doi: 10.14089/j.cnki.cn11-3664/f.2024.09.002.
    [2] MOHAMMED F, IDRIES A, MOHAMED N, et al. UAVs for smart cities: Opportunities and challenges[C]. 2014 International Conference on Unmanned Aircraft Systems, Orlando, USA, 2014. doi: 10.1109/ICUAS.2014.6842265.
    [3] 张博钧, 刘立平, 曹珺飞, 等. 低空经济产业标准体系规划研究[J]. 信息通信技术与政策, 2024, 50(11): 41–47. doi: 10.12267/j.issn.2096-5931.2024.11.007.

    ZHANG Bojun, LIU Liping, CAO Junfei, et al. Research on the planning of low-altitude economic industry standard system[J]. Information and Communications Technology and Policy, 2024, 50(11): 41–47. doi: 10.12267/j.issn.2096-5931.2024.11.007.
    [4] ZHANG Chen, ZHANG Leyi, ZHU Lipeng, et al. 3D deployment of multiple UAV-mounted base stations for UAV communications[J]. IEEE Transactions on Communications, 2021, 69(4): 2473–2488. doi: 10.1109/TCOMM.2021.3049387.
    [5] MU Junsheng, ZHANG Ronghui, CUI Yuanhao, et al. UAV meets integrated sensing and communication: Challenges and future directions[J]. IEEE Communications Magazine, 2023, 61(5): 62–67. doi: 10.1109/MCOM.008.2200510.
    [6] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [7] ITU. Framework and overall objectives of the future development of IMT for 2030 and beyond[R]. ITU-R M.2160-0, 2023.
    [8] WANG Xinyi, FEI Zesong, ZHANG J A, et al. Constrained utility maximization in dual-functional radar-communication multi-UAV networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2660–2672. doi: 10.1109/TCOMM.2020.3044616.
    [9] MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [10] MENG Kaitao, WU Qingqing, XU Jie, et al. UAV-enabled integrated sensing and communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2024, 31(2): 97–104. doi: 10.1109/MWC.131.2200442.
    [11] EVERS A and JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440–3455. doi: 10.1109/TAES.2015.140622.
    [12] DAN Yangpeng, WAN Xianrong, YI Jianxin, et al. Ambiguity function analysis of Long Term Evolution transmission for passive radar[C]. 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4. doi: 10.1109/ISAPE.2018.8634255.
    [13] CUI Yuanhao, JING Xiaojun, and MU Junsheng. Integrated sensing and communications via 5G NR waveform: Performance analysis[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022: 8747–8751. doi: 10.1109/ICASSP43922.2022.9746355.
    [14] WEI Zhiqing, WANG Yuan, MA Liang, et al. 5G PRS-Based Sensing: A sensing reference signal approach for joint sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3250–3263. doi: 10.1109/TVT.2022.3215159.
    [15] ZHAO Qimin, TANG Aimin, and WANG Xudong. Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 379–392. doi: 10.1109/TGCN.2023.3234392.
    [16] BRAUN K M. OFDM radar algorithms in mobile communication networks[D]. [Ph.D. dissertation], Karlsruher Institut für Technologie, 2014.
    [17] TANG Aimin, LI Songqian, and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1484–1499. doi: 10.1109/JSTSP.2021.3118888.
    [18] WANG Lin, WEI Zhiqing, SU Liyan, et al. Coherent compensation based ISAC signal processing for long-range sensing: (Invited Paper)[C]. 2023 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Singapore, Singapore, 2023: 689–695. doi: 10.23919/WiOpt58741.2023.10349853.
    [19] TANG Aimin, ZHAO Qimin, WANG Xudong, et al. ISI-resistant reference signal design and processing for OFDM integrated communications and long-range radar sensing[J]. IEEE Communications Letters, 2024, 28(6): 1322–1326. doi: 10.1109/LCOMM.2024.3394545.
    [20] RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4194–4197. doi: 10.1109/TGRS.2013.2280190.
    [21] WANG Wenqin. Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 101–105. doi: 10.1109/LGRS.2012.2193870.
    [22] MEI Dongyang, WEI Zhiqing, CHEN Xu, et al. A coprime and periodic pilot design for ISAC system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571182.
    [23] HUANG Zhenxing and ZHENG Wan. Range ambiguity resolution in multiple PRF pulse Doppler radars[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Dallas, USA, 1987: 1786–1789. doi: 10.1109/ICASSP.1987.1169906.
    [24] WANG Chen, YIN Qinye, and CHEN Hongyang. Robust Chinese remainder theorem ranging method based on dual-frequency measurements[J]. IEEE Transactions on Vehicular Technology, 2011, 60(8): 4094–4099. doi: 10.1109/TVT.2011.2167690.
    [25] AGARWAL R C. Number theory in digital signal processing[J]. Proceedings of the IEEE, 1980, 68(10): 1358–1359. doi: 10.1109/PROC.1980.11872.
    [26] BHARADIA D, MCMILIN E, and KATTI S. Full duplex radios[C]. ACM SIGCOMM 2013 conference on SIGCOMM, Hong Kong, China, 2013: 375–386. doi: 10.1145/2486001.2486033.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-03

目录

    /

    返回文章
    返回