Research Progress on Dual Function Radar and Communication Signal Design and its Application in Typical Detection Scenarios
-
摘要: 集探测与通信功能为一体的探通一体(DFRC)综合电子设备平台通过共享硬件平台和发射波形,有效缓解了平台受限、资源紧张、电磁兼容等问题,因此成为近年来的研究热点。以探测为核心、兼顾有限通信能力的DFRC技术,在未来实战中的预警监视、跟踪制导等典型探测场景中具有巨大的应用前景。该文重点关注在保证基本通信性能基础之上,通过有效调节探测与通信在多域资源利用方面的冲突和矛盾,实现雷达探测性能最优化的信号设计方法。该文首先总结了DFRC系统的性能衡量准则,然后全面地介绍了典型探测场景下DFRC信号设计方法,并深入分析了各信号设计方法存在的问题以及目前的解决方案。在最后对全文做了总结,并对未来的研究方向进行了展望。Abstract: DuaL Function Radar and Communication (DFRC)–integrated electronic equipment platform, which combines detection and communication functions, effectively addresses issues such as platform limitations, resource constraints, and electromagnetic compatibility by sharing hardware platforms and transmitting waveforms. Therefore, it has become a research hotspot in recent years. The DFRC technology, centered on detection functionality and incorporating limited communication capabilities, has remarkable application prospects in typical detection scenarios, such as early warning and surveillance and tracking guidance under future combat conditions. This paper focuses on using the signal design method to optimize radar detection performance by effectively adjusting the trade-off between detection and communication in multi-domain resource utilization by guaranteeing a minimum communication performance. First, the performance measurement criteria of DFRC systems were summarized. Then, the paper provides a comprehensive introduction to the DFRC signal design methods under typical detection scenarios and a thorough analysis of the problems and current solutions of each signal design method. Finally, a summary and future research directions are outlined.
-
表 1 简单场景下DFRC波形存在的主要问题及解决方案总结
Table 1. Summary of major problems and solutions for DFRC waveforms in simple scenarios
具体指标 所需条件 主要矛盾 目前解决方案 探测威力 发射波形满足恒包络条件 恒包络约束限制了通信系统的自由度 将恒包络或低PAR作为信号优化约束条件[49,50,110,112] 频谱扩展程度 波形相位连续 采用传统产生相位跳变的信息调制方式会
使得主瓣之外的功率谱衰减速度较慢采用相位连续的通信波形[21−23,47,48,68,69];
采用相位变化幅度较小的调制方式[27−30,38]
修改调制码元的取值和分布位置[64,65];模糊函数特性 模糊函数具有良好的
旁瓣特性通信信息的随机特性导致
距离旁瓣幅度波动加窗反卷积技术[64];
基于模糊函数特性优化发射信号[49,50,84,107,108];天线方向图特性 发射功率尽量集中在天线方向图主瓣;波束指向性强 通信用户通常与目标处于不同的方位,
波束主瓣对应的探测功率被分割最大化主瓣探测功率或约束旁瓣通信用户
的功率[111,112];
基于天线方向图模板匹配[109,110,113]CRB CRB尽量小 通信速率与CRB相互制约 发射信号具有确定的样本协方差矩阵[41] 表 2 复杂场景下的DFRC信号设计研究进展总结
Table 2. Summary of research progress on DFRC signal design in complex scenarios
复杂场景 需考虑的因素 目前存在的问题总结 可能的解决方案 杂波 杂波参数的获取
非均匀时变杂波
非平稳杂波1.考虑的复杂环境不全面; 1.应根据实际的复杂地理环境、目标特性以及
电子干扰特性等进行DFRC信号设计;起伏目标
慢起伏目标
快起伏目标2.DFRC系统性能大部分情况下高度依赖于场景先验信息 [54,55,77,82]; 2.在信号设计过程中考虑先验信息的误差,
设计鲁棒的发射信号[86,92,93,125];
多目标多目标检测性能
多目标参数估计性能
密集多目标分离3.DFRC信号设计对探测性能随内嵌通信信息的不同而出现起伏的问题考虑较少[56,116,]; 3.可采用将通信信息变化考虑在内的性能指标 [8,42]、设计对传输信息变化不敏感的信号和快速生成
发射信号的方法等;电子对抗 干扰参数的获取
典型有源/无源干扰
分布式雷达探测体制4.DFRC信号优化设计对模糊函数特性关注较
少[54−56,77,82,86,93,116−126]。
5.对动态环境下的波形自适应与动态调整方面关注较少。4.可在优化模型中引入模糊函数特性[79];
5.引入认知技术、机器学习工具[82]等。表 3 DFRC信号设计中常用优化算法总结
Table 3. Summary of commonly used optimization algorithms in DFRC signal design
优化算法 可适用的问题 算法原理 算法主要优势 CD 可分解的多维优化
问题[51,117]每次优化迭代只沿单一维度搜索,得到当前维度的极小值之后再循环沿其他维度搜索,最终得到目标函数的收敛值。 1.可用于处理大规模问题;
2.对于可分离的问题,通常具有较快的收敛速度。SDR 非凸的QCQP优化问题[56,93,116,121] 通过放宽非凸约束,将原问题松弛为半正定规划问题,进而获取原问题的近似解。 1.将非凸问题转化为凸优化问题,并利用成熟的算法(如内点法)可在多项式时间内得到最优解。 MM 复杂非凸目标函数
的优化问题[56,59]用易于求解的上界函数替代复杂的目标函数,通过优化上界函数来完成对原始目标函数的优化求解。 1.适用性广泛,可以处理各种类型的目标函数;
2.通常具有较好的收敛性。ADMM 约束条件复杂且非凸的优化问题[55,56,59] 将原始优化问题分解成若干个相对简单的子问题,再将子问题的解结合起来得到原始问题的最优解。 1.适用范围较广且通常具有较快的收敛速度;
2.可通过并行实现减少对大规模问题处理时的复杂度。 -
[1] ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329. [2] FENG Zhiyong, FANG Zixi, WEI Zhiqing, et al. Joint radar and communication: A survey[J]. China Communications, 2020, 17(1): 1–27. doi: 10.23919/JCC.2020.01.001. [3] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976. [4] ZHANG J A, LIU Fan, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295–1315. doi: 10.1109/JSTSP.2021.3113120. [5] WILD T, BRAUN V, and VISWANATHAN H. Joint design of communication and sensing for beyond 5G and 6G systems[J]. IEEE Access, 2021, 9: 30845–30857. doi: 10.1109/ACCESS.2021.3059488. [6] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632. [7] 马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146.MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146. [8] LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173. [9] MEALEY R M. A method for calculating error probabilities in a radar communication system[J]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37–42. doi: 10.1109/TSET.1963.4337601. [10] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485. [11] BROUSSEAU R, SANDERS A, HUFFMAN D R, et al. An open system architecture for integrated RF systems[C]. 16th DASC. AIAA/IEEE Digital Avionics Systems Conference. Reflections to the Future, Irvine, USA, 1997: 5.1–1. doi: 10.1109/DASC.1997.635082. [12] DARPA. Shared spectrum access for radar and communications (SSPARC)[EB/OL]. https://www.federalgrantswire.com/shared-spectrum-access-for-radar-and-communications-ssparc-darpa-baa-13-24.html#.X40Vavk6s7M, 2013. [13] HASSANIEN A, HIMED B, and RIGLING B D. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1721–1725. doi: 10.1109/RADAR.2017.7944485. [14] EEDARA I P, HASSANIEN A, and AMIN M G. Performance analysis of dual-function multiple-input multiple-output radar-communications using frequency hopping waveforms and phase shift keying signalling[J]. IET Radar, Sonar & Navigation, 2021, 15(4): 402–418. doi: 10.1049/rsn2.12043. [15] EEDARA I P, AMIN M G, and HASSANIEN A. Controlling clutter modulation in frequency hopping MIMO dual-function radar communication systems[C]. 2020 IEEE International Radar Conference, Washington, USA, 2020: 466–471. doi: 10.1109/RADAR42522.2020.9114840. [16] EEDARA I P and AMIN M G. Dual function FH MIMO radar system with DPSK signal embedding[C]. 27th European Signal Processing Conference, A Coruna, Spain, 2019: 1–5. doi: 10.23919/EUSIPCO.2019.8902743. [17] EEDARA I P, AMIN M G, HOORFAR A, et al. Dual-function frequency-hopping MIMO radar system with CSK signaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1501–1513. doi: 10.1109/TAES.2021.3139445. [18] BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909. [19] ABOUTANIOS E, BAXTER W, and ZHANG Y D. Improved implementation of the frequency hopped code selection DFRC scheme[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 2023: 1–6. doi: 10.1109/RadarConf2351548.2023.10149725. [20] BAXTER W, ABOUTANIOS E, and HASSANIEN A. Ambiguity function analysis of the frequency-hopped code selection scheme[C]. 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 2023: 1–6. doi: 10.1109/RADAR54928.2023.10371075. [21] SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 2017: 1498–1503. doi: 10.1109/RADAR.2017.7944444. [22] SAHIN C, METCALF J G, and BLUNT S D. Filter design to address range sidelobe modulation in transmit-encoded radar-embedded communications[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 2017: 1509–1514. doi: 10.1109/RADAR.2017.7944446. [23] SAHIN C, METCALF J G, and BLUNT S D. Characterization of range sidelobe modulation arising from radar-embedded communications[C]. International Conference on Radar Systems, Belfast, UK, 2017: 1–6. doi: 10.1049/cp.2017.0372. [24] LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692. [25] LIU Fan, MASOUROS C, LI A, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045. [26] TEMIZ M, HORNE C, PETERS N J, et al. An experimental study of radar-centric transmission for integrated sensing and communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(7): 3203–3216. doi: 10.1109/TMTT.2023.3234309. [27] ZHANG Zhiping, NOWAK M J, WICKS M, et al. Bio-inspired RF steganography via linear chirp radar signals[J]. IEEE Communications Magazine, 2016, 54(6): 82–86. doi: 10.1109/MCOM.2016.7497771. [28] NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236. [29] NOWAK M J, ZHANG Zhiping, QU Yang, et al. Co-designed radar-communication using linear frequency modulation waveform[C]. MILCOM 2016 - 2016 IEEE Military Communications Conference, Baltimore, USA, 2016: 918–923. doi: 10.1109/MILCOM.2016.7795447. [30] NOWAK M J, ZHANG Zhiping, LOMONTE L, et al. Mixed-modulated linear frequency modulated radar-communications[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 313–320. doi: 10.1049/iet-rsn.2016.0249. [31] HU Yanmo, WU Kai, ZHANG J A, et al. Performance bounds and optimization for CSI-ratio-based Bi-static Doppler sensing in ISAC systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 17461–17477. doi: 10.1109/TWC.2024.3453902. [32] ZHANG J A, WU Kai, HUANG Xiaojing, et al. Integration of radar sensing into communications with asynchronous transceivers[J]. IEEE Communications Magazine, 2022, 60(11): 106–112. doi: 10.1109/MCOM.003.2200096. [33] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Frequency-hopping MIMO radar-based communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2022, 37(4): 42–54. doi: 10.1109/MAES.2021.3081176. [34] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Waveform design and accurate channel estimation for frequency-hopping MIMO radar-based communications[J]. IEEE Transactions on Communications, 2021, 69(2): 1244–1258. doi: 10.1109/TCOMM.2020.3034357. [35] WU Kai, ZHANG J A, NI Zhitong, HUANG Xiaojing, et al. Joint communications and sensing employing optimized MIMO-OFDM signals[J]. IEEE Internet of Things Journal, 2024, 11(6): 10368–10383. doi: 10.1109/JIOT.2023.3327989. [36] LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. doi: 10.1109/RADAR.2016.8059539. [37] 刘永军, 廖桂生, 杨志伟, 等. 一种超分辨OFDM雷达通信一体化设计方法[J]. 电子与信息学报, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320.LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics & Information Technology, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320. [38] GU Yabin, ZHANG Linrang, ZHOU Yu, et al. Embedding communication symbols into radar waveform with orthogonal FM scheme[J]. IEEE Sensors Journal, 2018, 18(21): 8709–8719. doi: 10.1109/JSEN.2018.2868542. [39] 王诏丰. 雷达通信一体化波形设计与处理方法研究[D]. [博士论文], 西安电子科技大学, 2018.WANG Zhaofeng. Research on waveform design and signal processing method for integration of radar and communication[D]. [Ph.D. dissertation], Xidian University, 2018. [40] 吴文华. 基于MIMO的雷达通信一体化波形设计方法研究[D]. [博士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.000038.WU Wenhua. Study on integrated radar and communications waveform design method based on MIMO[D]. [Ph.D. dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.000038. [41] 熊一枫, 刘凡, 袁伟杰, 等. 通信感知一体化的信息理论极限[J]. 中国科学: 信息科学, 2023, 53(11): 2057–2086. doi: 10.1360/SSI-2023-0056.XIONG Yifeng, LIU Fan, YUAN Weijie, et al. Information-theoretic limits of integrated sensing and communications[J]. Scientia Sinica Informationis, 2023, 53(11): 2057–2086. doi: 10.1360/SSI-2023-0056. [42] XIONG Yifeng, LIU Fan, CUI Yuanhao, et al. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels[J]. IEEE Transactions on Information Theory, 2023, 69(9): 5723–5751. doi: 10.1109/TIT.2023.3284449. [43] LIU Fan, ZHENG Le, CUI Yuanhao, et al. Seventy years of radar and communications: The road from separation to integration[J]. IEEE Signal Processing Magazine, 2023, 40(5): 106–121. doi: 10.1109/MSP.2023.3272881. [44] LU Shihang, LIU Fan, and HANZO L. The degrees-of-freedom in monostatic ISAC channels: NLoS exploitation vs. reduction[J]. IEEE Transactions on Vehicular Technology, 2023, 72(2): 2643–2648. doi: 10.1109/TVT.2022.3210307. [45] LU Shihang, MENG Xiao, DU Zhen, et al. On the performance gain of integrated sensing and communications: A subspace correlation perspective[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 2735–2740. doi: 10.1109/ICC45041.2023.10279428. [46] XIONG Yifeng, LIU Fan, WAN Kai, et al. From torch to projector: Fundamental tradeoff of integrated sensing and communications[J]. IEEE BITS the Information Theory Magazine, 2024: 1–13. doi: 10.1109/MBITS.2024.3376638. [47] CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving (ICCP), Chengdu, China, 2011: 177–181. doi: 10.1109/ICCPS.2011.6092272. [48] 陈兴波, 王小谟, 曹晨, 等. 雷达通信综合化波形设计技术分析[J]. 现代雷达, 2013, 35(12): 56–59,63. doi: 10.16592/j.cnki.1004-7859.2013.12.016.CHEN Xingbo, WANG Xiaomo, CAO Chen, et al. Techniques analysis of radar-communication integrating waveform[J]. Modern Radar, 2013, 35(12): 56–59,63. doi: 10.16592/j.cnki.1004-7859.2013.12.016. [49] YANG Jing, TAN Youshan, YU Xianxiang, et al. Waveform design for watermark framework based DFRC system with application on joint SAR imaging and communication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200214. doi: 10.1109/TGRS.2022.3232528. [50] YANG Jing, CUI Guolong, YU Xianxiang, et al. Dual-use signal design for radar and communication via ambiguity function sidelobe control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9781–9794. doi: 10.1109/TVT.2020.3002773. [51] YAO Xue, YANG Jing, XIONG Kui, et al. Integrated signal design for MIMO DFRC with intrapulse index modulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1490–1504. doi: 10.1109/TAES.2023.3339118. [52] CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644. [53] 余显祥, 姚雪, 杨婧, 等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报, 2023, 12(2): 247–261. doi: 10.12000/JR23015.YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015. [54] 吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105.WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105. [55] WU Wenjun, TANG Bo, and WANG Xuyang. Constant-modulus waveform design for dual-function radar-communication systems in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4005–4017. doi: 10.1109/TAES.2023.3234927. [56] WANG Xuyang, TANG Bo, WU Wenjun, et al. Relative entropy-based waveform optimization for Rician target detection with dual-function radar communication systems[J]. IEEE Sensors Journal, 2023, 23(10): 10718–10730. doi: 10.1109/JSEN.2023.3264458. [57] LI Da, TANG Bo, and XUE Lei. Waveform design for MIMO DFRC systems: Finer sensing and safer communications[J]. IEEE Transactions on Signal Processing, 2024, 72: 4509–4524. doi: 10.1109/TSP.2024.3470219. [58] 唐波, 汤俊, 胡元奎. 基于MIMO阵列的综合射频系统技术研究[J]. 信息对抗技术, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006.TANG Bo, TANG Jun, and HU Yuankui. Multifunction radio frequency systems based on MIMO array[J]. Information Countermeasure Technology, 2022, 1(1): 62–72. doi: 10.12399/j.issn.2097-163x.2022.01.006. [59] TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315. [60] 唐波, 吴文俊, 史英春, 等. 基于MIMO阵列的综合射频系统鲁棒波形设计算法研究[J]. 电子与信息学报, 2023, 45(11): 3918–3926. doi: 10.11999/JEIT220969.TANG Bo, WU Wenjun, SHI Yingchun, et al. Robust waveform design based on MIMO multi-function radio frequency systems under angle uncertainties[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3918–3926. doi: 10.11999/JEIT220969. [61] 施龙飞, 全源, 范金涛, 等. 通信化雷达探测技术[J]. 雷达学报, 2020, 9(6): 1056–1063. doi: 10.12000/JR20088.SHI Longfei, QUAN Yuan, FAN Jintao, et al. Communicational radar detection technology[J]. Journal of Radars, 2020, 9(6): 1056–1063. doi: 10.12000/JR20088. [62] 全源. 通信化雷达波形设计与信号处理研究[D]. [硕士论文], 国防科技大学, 2020. doi: 10.27052/d.cnki.gzjgu.2020.000865.QUAN Yuan. Research on communicational radar waveform design and signal processing[D]. [Master dissertation], National University of Defense Technology, 2020. doi: 10.27052/d.cnki.gzjgu.2020.000865. [63] 关一夫, 施龙飞, 刘甲磊, 等. 多假目标场景下的信息提取方法、装置及设备[P]. 中国, 202211537856.3, 2023.GUAN Yifu, SHI Longfei, LIU Jialei, et al. Information extraction method, device and equipment in multi-false-target scene[P]. CN, 202211537856.3, 2023. [64] 刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2015. [65] LIU Zhipeng, CHEN Xingbo, WANG Xiaomo, et al. Communication analysis of integrated waveform based on LFM and MSK[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–5. doi: 10.1049/cp.2015.1017. [66] 杨瑞娟, 陈小民, 李晓柏, 等. 雷达通信一体化共享信号技术研究[J]. 空军预警学院学报, 2013, 27(1): 39–43.YANG Ruijuan, CHEN Xiaomin, LI Xiaobai, et al. Study of signal sharing technologies for integration of radar and communication systems[J]. Journal of Air & Space Early Warning Research, 2013, 27(1): 39–43. [67] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567.LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation Chirp signal[J]. Journal of Electronics & Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567. [68] 杨云飞, 马晓岩, 杨瑞娟, 等. CPM-LFM雷达通信一体化共享信号探测性能研究[J]. 空军预警学院学报, 2017, 31(3): 157–161. doi: 10.3969/j.issn.2095-5839.2017.03.001.YANG Yunfei, MA Xiaoyan, YANG Ruijuan, et al. Research on detection performance of radar communication integrated shared signal based on CPM-LFM[J]. Journal of Air & Space Early Warning Research, 2017, 31(3): 157–161. doi: 10.3969/j.issn.2095-5839.2017.03.001. [69] 杨云飞, 杨瑞娟, 古秦弋. CPM-LFM 雷达通信一体化共享信号解调处理与仿真[J]. 空军预警学院学报, 2017, 31(4): 243–247. doi: 10.3969/j.issn.2095-5839.2017.04.002.YANG Yunfei, YANG Ruijuan, and GU Qinyi. Demodulation processing and simulation of CPM-LFM radar-communication integrated shared signal[J]. Journal of Air & Space Early Warning Research, 2017, 31(4): 243–247. doi: 10.3969/j.issn.2095-5839.2017.04.002. [70] XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509. [71] 曾勇, 董珍君, 王蕙质, 等. 面向6G通信感知一体化的固定与可移动天线技术[J]. 信号处理, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001.ZENG Yong, DONG Zhenjun, WANG Huizhi, et al. Fixed and movable antenna technology for 6G integrated sensing and communication[J]. Journal of Signal Processing, 2024, 40(8): 1377–1407. doi: 10.16798/j.issn.1003-0530.2024.08.001. [72] XU Zihan, ZHOU Ziwen, WU Di, et al. Channel knowledge map-enhanced clutter suppression for integrated sensing and communication[C]. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops), Hangzhou, China, 2024: 90–95. doi: 10.1109/ICCCWorkshops62562.2024.10693799. [73] XIAO Zhiqiang, ZENG Yong, WEN Fuxi, et al. Integrated sensing and channel estimation by exploiting dual timescales for delay-Doppler alignment modulation[J]. IEEE Transactions on Wireless Communications, 2024. doi: 10.1109/TWC.2024.3493255. [74] XU Jingran, WANG Huizhi, ZENG Yong, et al. Little pilot is needed for channel estimation with integrated super-resolution sensing and communication[C]. 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10570698. [75] XIAO Zhiqiang, CHENG Shiqi, and ZENG Yong. Simultaneous multi-beam sweeping for mmWave massive MIMO integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8141–8152. doi: 10.1109/TVT.2024.3350714. [76] DU Zhen, LIU Fan, XIONG Yifeng, et al. Reshaping the ISAC tradeoff under OFDM signaling: A probabilistic constellation shaping approach[J]. IEEE Transactions on Signal Processing, 2024, 72: 4782–4797. doi: 10.1109/TSP.2024.3465499. [77] WEN Cai, HUANG Yan, and DAVIDSON T N. Efficient transceiver design for MIMO dual-function radar-communication systems[J]. IEEE Transactions on Signal Processing, 2023, 71: 1786–1801. doi: 10.1109/TSP.2023.3275274. [78] LIANG Runchen, WEN Cai, and DAVIDSON T N. Robust joint transmit and receive beamformer design for dual-function radar-communication systems[C]. 2023 57th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2023: 452–459. doi: 10.1109/IEEECONF59524.2023.10476960. [79] WEN Cai, HUANG Yan, ZHENG Le, et al. Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding[J]. IEEE Transactions on Signal Processing, 2023, 71: 2130–2145. doi: 10.1109/TSP.2023.3278858. [80] CHEN Yating, WEN Cai, HUANG Yan, et al. CRB optimization for integrated sensing and communication systems using hybrid linear-nonlinear precoding[C]. 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Seoul, Korea, 2024: 365–369. doi: 10.1109/ICASSPW62465.2024.10627273. [81] WEN Cai and DAVIDSON T N. Transceiver design for MIMO-DFRC systems[C]. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096008. [82] ZHAI Weitong, WANG Xiangrong, CAO Xianbin, et al. Reinforcement learning based dual-functional massive MIMO systems for multi-target detection and communications[J]. IEEE Transactions on Signal Processing, 2023, 71: 741–755. doi: 10.1109/TSP.2023.3252885. [83] WANG Xiangrong, ZHAI Weitong, WANG Xianghua, et al. Wideband near-field integrated sensing and communication with sparse transceiver design[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(4): 662–677. doi: 10.1109/JSTSP.2024.3394970. [84] XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888. [85] ZHANG Xuan, WANG Xiangrong, SO H C, et al. Transmit waveform design for integrated wideband MIMO radar and bi-directional communications[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 13482–13497. doi: 10.1109/TVT.2024.3386755. [86] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739. [87] LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1932–1950. doi: 10.1109/JSAC.2022.3155512. [88] LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Transmit beamforming with fixed covariance for integrated MIMO radar and multiuser communications[C]. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, Singapore, 2022: 8732–8736. doi: 10.1109/ICASSP43922.2022.9747403. [89] LIU Xiang, HUANG Tianyao, LIU Yimin, et al. Constant modulus waveform design for joint multiuser MIMO communication and MIMO radar[C]. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 2021: 1–5. doi: 10.1109/WCNCW49093.2021.9420010. [90] CHEN Weijie, LIAO Bin, HUANG Huiping, et al. MIMO-DFRC hybrid beamforming design via transmit pattern optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024. doi: 10.1109/TAES.2024.3469185. [91] CHEN Weijie, DENG Yaling, GUO Chongtao, et al. Transmit beampattern optimization for MIMO-ISAC systems with hybrid beamforming[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 8651–8655. doi: 10.1109/ICASSP48485.2024.10447252. [92] XIONG Xue, LIANG Hao, and LIAO Bin. Robust beamforming for DFRC systems in complex environments[C]. ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, 2024: 8461–8465. doi: 10.1109/ICASSP48485.2024.10446108. [93] LIAO Bin, XIONG Xue, and QUAN Zhi. Robust beamforming design for dual-function radar-communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7508–7516. doi: 10.1109/TVT.2023.3240234. [94] GUO Baoxi, LIANG Junli, TANG Bo, et al. Bistatic MIMO DFRC system waveform design via symbol distance/direction discrimination[J]. IEEE Transactions on Signal Processing, 2023, 71: 3996–4010. doi: 10.1109/TSP.2023.3322815. [95] GUO Baoxi, LIANG Junli, WANG Tao, et al. Transmit hardware impairment aware waveform design for MIMO DFRC[J]. IEEE Transactions on Signal Processing, 2024, 72: 2858–2873. doi: 10.1109/TSP.2024.3404018. [96] LIU Rang, LI Ming, LIU Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918–1931. doi: 10.1109/JSAC.2022.3155501. [97] LU Manwei, LUO Honghao, LIU Rang, et al. Beamforming design for near-field integrated sensing and communications[C]. 2023 IEEE 23rd International Conference on Communication Technology (ICCT), Wuxi, China, 2023: 434–438. doi: 10.1109/ICCT59356.2023.10419546. [98] LIU Rang, LI Ming, LUO Honghao, et al. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions[J]. IEEE Wireless Communications, 2023, 30(1): 50–57. doi: 10.1109/MWC.002.2200206. [99] WANG Yi, ZHANG Qixun, ZHANG J A, et al. Interference characterization and mitigation for multi-beam ISAC systems in vehicular networks[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 14729–14742. doi: 10.1109/TWC.2024.3418519. [100] WEI Zhiqing, YAO Rubing, YUAN Xin, et al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2024. doi: 10.1109/TCCN.2024.3445376. [101] ZHANG J A, HUANG Xiaojing, GUO Y J, et al. Multibeam for joint communication and radar sensing using steerable analog antenna arrays[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 671–685. doi: 10.1109/TVT.2018.2883796. [102] COVER T M and THOMAS J A. Elements of Information Theory[M]. 2nd ed. Hoboken: John Wiley & Sons, Inc., 2006: 380–392. doi: 10.1002/047174882X. [103] OUYANG Chongjun, LIU Yuanwei, YANG Hongwen, et al. Integrated sensing and communications: A mutual information-based framework[J]. IEEE Communications Magazine, 2023, 61(5): 26–32. doi: 10.1109/MCOM.001.2200493. [104] ZHOU Wenxing, ZHANG Ruoyu, CHENG Guangyi, et al. Integrated sensing and communication waveform design: A survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930–1949. doi: 10.1109/OJCOMS.2022.3215683. [105] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648. [106] WANG Xiangrong, HASSANIEN A, and AMIN M G. Dual-function MIMO radar communications system design via sparse array optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1213–1226. doi: 10.1109/TAES.2018.2866038. [107] YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510. [108] 王佳欢, 范平志, 时巧, 等. 一种具有多普勒容忍性的通感一体化波形设计[J]. 雷达学报, 2023, 12(2): 275–286. doi: 10.12000/JR22155.WANG Jiahuan, FAN Pingzhi, SHI Qiao, et al. Doppler resilient integrated sensing and communication waveforms design[J]. Journal of Radars, 2023, 12(2): 275–286. doi: 10.12000/JR22155. [109] AHMED A, ZHANG Y D, and HIMED B. Multi-user dual-function radar-communications exploiting sidelobe control and waveform diversity[C]. 2018 IEEE Radar Conference, Oklahoma, USA, 2018: 698–702. doi: 10.1109/RADAR.2018.8378644. [110] AHMED A, ZHANG Y D, and GU Yujie. Dual-function radar-communications using QAM-based sidelobe modulation[J]. Digital Signal Processing, 2018, 82: 166–174. doi: 10.1016/j.dsp.2018.06.018. [111] GEMECHU A Y, CUI Guolong, YU Xianxiang, et al. Phase-only beampattern synthesis with nulling for linear antenna arrays[C]. 2019 IEEE International Symposium on Phased Array System & Technology, Waltham, USA, 2019: 1–7. doi: 10.1109/PAST43306.2019.9020782. [112] YU Xianxiang, YAO Xue, YANG Jing, et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 2293–2305. doi: 10.1109/TSP.2022.3170687. [113] WU Wenhua, HAN Guojun, CAO Yunhe, et al. MIMO waveform design for dual functions of radar and communication with space-time coding[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1906–1917. doi: 10.1109/JSAC.2022.3155508. [114] HUA Haocheng, HAN T X, and XU Jie. MIMO integrated sensing and communication: CRB-rate tradeoff[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2839–2854. doi: 10.1109/TWC.2023.3303326. [115] Richards M A., 雷达信号处理基础[M]. 2版. 邢孟道, 王彤, 李真芳, 等译. 北京: 电子工业出版社, 2017: 407–433.Richards M A. Fundamentals of Radar Signal Processing[M]. 2nd ed. Tran. XING Mengdao, WANG Tong, LI Zhenfang, et al. Beijing: Publishing House of Electronics Industry, 2017: 407–433. [116] LI Jin, ZHOU Gui, GONG Tantao, et al. A framework for mutual information-based MIMO integrated sensing and communication beamforming design[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8352–8366. doi: 10.1109/TVT.2024.3355899. [117] ZHU Jinkun, LI Wei, WONG K K, et al. Waveform design of DFRC system for target detection in clutter environment[J]. IEEE Signal Processing Letters, 2023, 30: 1517–1521. doi: 10.1109/LSP.2023.3324298. [118] NAM Y, DO H, JEON Y, et al. On the capacity of MISO channels with one-bit ADCs and DACs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(9): 2132–2145. doi: 10.1109/JSAC.2019.2929427. [119] 杨诗兴, 张国鑫, 梁雲飞, 等. 动平台分布式雷达系统动目标低比特数据检测算法[J]. 雷达学报, 2024, 13(3): 584–600. doi: 10.12000/JR23240.YANG Shixing, ZHANG Guoxin, LIANG Yunfei, et al. Moving targets detection with low-bit quantization in distributed radar on moving platforms[J]. Journal of Radars, 2024, 13(3): 584–600. doi: 10.12000/JR23240. [120] WANG Bowen, LI Hongyu, and CHENG Ziyang. Joint transceiver design for massive MIMO DFRC systems with one-bit DACs/ADCs[C]. 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023: 649–654. doi: 10.1109/GCWkshps58843.2023.10465142. [121] ZHAO Zongyao, ZHANG Long, JIANG Rui, et al. Joint Beamforming scheme for ISAC systems via robust Cramér-Rao bound optimization[J]. IEEE Wireless Communications Letters, 2024, 13(3): 889–893. doi: 10.1109/LWC.2024.3349488. [122] REN Zhixiang, PENG Yunfei, SONG Xianxin, et al. Fundamental CRB-rate tradeoff in multi-antenna ISAC systems with information multicasting and multi-target sensing[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 3870–3885. doi: 10.1109/TWC.2023.3312723. [123] NI Yuanhan, WANG Zulin, and HUANG Qin. Joint transceiver beamforming for multi-target single-user joint radar and communication[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2360–2364. doi: 10.1109/LWC.2022.3203386. [124] PRITZKER J, WARD J, and ELDAR Y C. Transmit precoder design approaches for dual-function radar-communication systems[EB/OL]. https://arxiv.org/abs/2203.09571, 2022. [125] ZHANG Yucheng, NI Wanli, WANG Jianquan, et al. Robust transceiver design for covert integrated sensing and communications with imperfect CSI[J]. IEEE Transactions on Communications, 2024. doi: 10.1109/TCOMM.2024.3387869. [126] ZHOU Yu, SHI Qiao, ZHOU Zhengchun, et al. Waveform design for integrated sensing and communication in the presence of DRFM forwarding interference[C]. IET International Radar Conference (IRC 2023), Chongqing, China, 2023: 1316–1321. doi: 10.1049/icp.2024.1277. [127] 冯翔. 复杂场景下认知雷达探测技术研究[D]. [博士论文], 哈尔滨工业大学, 2018.FENG Xiang. Research on technologies of cognitive radar probe in complex background[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2018. [128] LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019. [129] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016. [130] ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113. [131] KERAHROODI M A, AUBRY A, DE MAIO A, et al. A coordinate-descent framework to design low PSL/ISL sequences[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 5942–5956. doi: 10.1109/TSP.2017.2723354. [132] WANG Xinyi, FEI Zesong, LIU Peng, et al. Sensing aided covert communications: Turning interference into allies[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 10726–10739. doi: 10.1109/TWC.2024.3374775. [133] MA Shuai, SHENG Haihong, YANG Ruixin, et al. Covert beamforming design for integrated radar sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 718–731. doi: 10.1109/TWC.2022.3197940. [134] HU Langtao, YANG Rui, WU Lei, et al. RIS-assisted integrated sensing and covert communication design[J]. IEEE Internet of Things Journal, 2024, 11(9): 16505–16516. doi: 10.1109/JIOT.2024.3354247. [135] HU Jingsong, LIN Qingzhuan, YAN Shihao, et al. Covert transmission via integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4441–4446. doi: 10.1109/TVT.2023.3326455. [136] JIA Hanbo, MA Lin, and QIN Danyang. Robust beamforming design for covert integrated sensing and communication in the presence of multiple wardens[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17135–17150. doi: 10.1109/TVT.2024.3425960. [137] CONG Jiayi, YOU Changsheng, LI Jiapeng, et al. Near-field integrated sensing and communication: Opportunities and challenges[J]. IEEE Wireless Communications, 2024, 31(6): 162–169. doi: 10.1109/MWC.002.2400033. [138] LU Haiquan, ZENG Yong, YOU Changsheng, et al. A tutorial on near-field XL-MIMO communications toward 6G[J]. IEEE Communications Surveys & Tutorials, 2024, 26(4): 2213–2257. doi: 10.1109/COMST.2024.3387749. [139] LIU Yuanwei, OUYANG Chongjun, WANG Zhaolin, et al. Near-field communications: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2024. doi: 10.1109/COMST.2024.3475884. [140] ZHAO Jinbo, LU Zhaoming, ZHANG J A, et al. Performance bounds for passive sensing in asynchronous ISAC systems[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 15872–15887. doi: 10.1109/TWC.2024.3434704. [141] YANG Xiaoyu, WEI Zhiqing, XU Jie, et al. Coordinated transmit beamforming for networked ISAC with imperfect CSI and time synchronization[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18019–18035. doi: 10.1109/TWC.2024.3459036. [142] GUO Jia, LIU Yuanwei, and NALLANATHAN A. Multi-user continuous-aperture array communications: How to learn current distribution?[EB/OL]. https://arxiv.org/abs/2408.11230, 2024. [143] ZHAO Boqun, OUYANG Chongjun, ZHANG Xingqi, et al. Continuous aperture array (CAPA)-based wireless communications: Capacity characterization[EB/OL]. https://arxiv.org/abs/2406.15056, 2024. [144] OUYANG Chongjun, WANG Zhaolin, ZHANG Xingqi, et al. Diversity and multiplexing for continuous aperture array (CAPA)-based communications[EB/OL]. https://arxiv.org/abs/2408.13948, 2024. [145] HU Jingzhi, CHEN Zhe, ZHENG Tianyue, et al. HoloFed: Environment-adaptive positioning via multi-band reconfigurable holographic surfaces and federated learning[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(12): 3736–3751. doi: 10.1109/JSAC.2023.3322788. [146] HU Jingzhi, CHEN Zhe, and LUO Jun. Multi-band reconfigurable holographic surface based ISAC systems: Design and optimization[C]. ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023: 2927–2932. doi: 10.1109/ICC45041.2023.10279416.