星载SAR电离层探测研究综述

计一飞 董臻 张永胜 熊超 毛文飞 王成

计一飞, 董臻, 张永胜, 等. 星载SAR电离层探测研究综述[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24172
引用本文: 计一飞, 董臻, 张永胜, 等. 星载SAR电离层探测研究综述[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24172
JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. Research overview on ionospheric probing based on spaceborne synthetic aperture radars[J]. Journal of Radars, in press. doi: 10.12000/JR24172
Citation: JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. Research overview on ionospheric probing based on spaceborne synthetic aperture radars[J]. Journal of Radars, in press. doi: 10.12000/JR24172

星载SAR电离层探测研究综述

DOI: 10.12000/JR24172
基金项目: 国家自然科学基金(62101568, 62371460, 62471474, 42074225),湖南省自然科学基金(2024JJ4046),博士后创新人才支持计划(BX20230473),湖南省科技创新计划资助-湖湘青年英才(2024RC3122),国防科技大学科研计划项目(ZK21-06)
详细信息
    作者简介:

    计一飞,博士,副教授,主要研究方向为雷达信号处理以及电离层传播效应等

    董 臻,博士,研究员,博士生导师,主要研究方向为SAR系统设计和处理、地面动目标监测和数字波束形成等

    张永胜,博士,正高级工程师,博士生导师,主要研究方向为SAR系统设计及信号处理、电离层传播效应等

    熊 超,博士,教授,博士生导师,主要研究方向为电离层物理、电离层-热层耦合、电离层不规则结构及其对导航信号的影响等

    毛文飞,博士,副研究员,主要研究方向为InSAR电离层误差校正、地理灾害监测等

    王 成,博士,高级工程师,主要研究方向为电离层电波传播、电离层对SAR的影响及电离层探测等

    通讯作者:

    董臻 dongzhen@vip.sina.com

  • 责任主编:禹卫东 Corresponding Editor: YU Weidong
  • 中图分类号: TN957

Research Overview on Ionospheric Probing Based on Spaceborne Synthetic Aperture Radars

Funds: The National Natural Science Foundation of China (62101568, 62371460, 62471474, 42074225), The Hunan Provincial Natural Science Foundation (2024JJ4046), The National Postdoctoral Program of Innovative Talents (BX20230473), The Science and Technology Innovation Program of Hunan Province (2024RC3122), The Scientific Research Program of the National University of Defense Technology (ZK21-06)
More Information
  • 摘要: 星载合成孔径雷达(SAR)受电离层影响会出现回波信号失真、图像质量恶化、干涉/极化测量精度下降等问题,对于工作在L波段和P波段的低波段星载SAR,受电离层影响程度尤为突出。但从另一个角度看,低波段星载SAR能够捕获观测范围内不同空间尺度的电离层结构,其回波和图像数据中蕴藏丰富的电离层信息,为电离层高精度、高分辨探测提供了极大的可能性。该文围绕星载SAR背景电离层电子总量反演、电离层电子密度层析、电离层不规则体探测3个方面,回顾了利用星载SAR进行电离层探测的研究进展,总结归纳了该研究领域技术体系,强调了星载SAR具有绘制电离层局部精细结构和全球电离层态势的潜力,并展望了未来发展方向。

     

  • 图  1  L波段PALSAR, PALSAR-2图像及产品中的电离层现象

    Figure  1.  Ionospheric phenomena in L-band PALSAR and PALSAR-2 images and products

    图  2  基于PALSAR-2全极化图像的FR估计与TEC反演实验[9]

    Figure  2.  Experiments of FR estimation and TEC extraction from PALSAR-2 full-polarimetric images[9]

    图  3  利用FR-TEC转换方法发现极光弧现象

    Figure  3.  Detection of the auroral arc phenomenon based on the FR-TEC conversion method

    图  4  利用MAI反演方位向偏移的实验结果

    Figure  4.  Experimental results of azimuth offset mapping based on MAI

    图  5  基于全极化SAR的CIT原理及实验结果[94,98]

    Figure  5.  The principle and experimental results of CIT based on full-polarimetric SAR[94,98]

    图  6  利用PALSAR-2测量电离层不规则体闪烁参数[111]

    Figure  6.  Measurement of scintillation parameters of ionospheric irregularities using PALSAR-2[111]

    图  7  PALSAR幅度闪烁条纹提取[123]

    Figure  7.  Extraction of amplitude scintillation stripes for PALSAR[123]

    图  8  PALSAR幅度闪烁条纹功率谱估计、拟合及参数测量结果[123]

    Figure  8.  Estimation, fitting and parameter measurement results for amplitude scintillation stripes for PALSAR[123]

    表  1  基于星载SAR反演背景电离层TEC/DTEC的技术体系

    Table  1.   Technology mechanism of background ionospheric TEC/DTEC extraction based on spaceborne SAR

    数据源 反演参数 典型方法 重要结论 参考文献
    回波 TEC 自适应匹配滤波、上下调频
    时延测量
    虽然能够实现TEC的准确测量,但要求在星载SAR场景内布设角反射器或者特定的有源定标器 [2224]
    SLC图像 TEC 距离向多视技术、最大对比度 载频降低、系统带宽增大,信杂噪比增大,TEC估计精度更高。在信杂比低于20 dB的情况下,最大对比度自聚焦方法优于距离向多视技术 [9,2530]
    针对双站SAR或双频SAR系统的
    特制方法
    需要精确的轨道几何以及外部数字高程模型(Digital Elevation Model, DEM)辅助 [3133]
    全极化SAR图像或数据 FR B&B、Freeman等FR估计器 FR估计性能受极化通道幅相不平衡、串扰、噪声影响较大,综合来看B&B估计器的性能最稳健;FR估计精度与载频、带宽无关,加窗处理可提高精度,但会损失空间分辨率;所有FR估计器都存在FR估计值模糊问题,该问题在未来P波段星载SAR系统突显 [9,3447]
    TEC FR-TEC转换 FR-TEC转换精度与载频、地磁场矢量及FR估计精度均有关系,载频越低、纬度越高,TEC反演精度越高,FR-TEC转换在磁赤道附近会失效 [9,44,4850]
    主辅图像 DTEC、方位向偏移、干涉相位误差等 方位向
    偏移估计
    方位向偏移追踪(Azimuth Offset Tracking, AOT) 两种方位向偏移估计方法对中小尺度的电离层空间变化非常敏感,但容易受地表形变、低相干空间缺口等问题的影响,MAI对应的方位向偏移反演精度一倍优于AOT方法,典型ALOS PALSAR参数及中等相干性条件下,MAI对应的DTEC反演精度可优于$ {10^{ - 5}} $TECU [16,5154]
    子孔径干涉(Multiple Aperture Interferometry, MAI) [5561]
    距离向频谱分割
    (Range Spectrum Split, RSS)
    精度与载频、系统带宽有关,适用于电离层空间大尺度结构反演,精度劣于AOT, MAI,典型L波段PALSAR-2 85 MHz带宽参数下精度可达0.01 TECU,易受噪声和低相干区域的影响 [6274]
    主辅图像FR及DTEC反演 类似于FR-TEC转换,精度与载频、地磁场和信噪比有关,只适用于全极化模式,并且在磁赤道附近会失效 [75,76]
    融合方法 核心是建立和求解DTEC观测矩阵方程。将AOT/MAI与RSS融合能够实现电离层DTEC不同空间尺度结构的反演,结合FR反演或IRI可以提供绝对TEC的精细信息 [7782]
    下载: 导出CSV
  • [1] SHIMADA M, ITOH T, MOTOOKA T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010)[J]. Remote Sensing of Environment, 2014, 155: 13–31. doi: 10.1016/j.rse.2014.04.014.
    [2] BANDA F, MANCON S, ALESSANDRO M M, et al. Biomass interferometric calibration processor design[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 7785–7788. doi: 10.1109/IGARSS52108.2023.10283343.
    [3] 杨淋, 赵宁, 姚佰栋, 等. 高分辨率星载P波段SAR系统参数设计[J]. 雷达科学与技术, 2017, 15(1): 19–28. doi: 10.3969/j.issn.1672-2337.2017.01.004.

    YANG Lin, ZHAO Ning, YAO Baidong, et al. Parameter design of a high resolution space-borne P-band SAR system[J]. Radar Science and Technology, 2017, 15(1): 19–28. doi: 10.3969/j.issn.1672-2337.2017.01.004.
    [4] HU Cheng, CHEN Zhiyang, LI Yuanhao, et al. Research progress on geosynchronous synthetic aperture radar[J]. Fundamental Research, 2021, 1(3): 346–363. doi: 10.1016/j.fmre.2021.04.008.
    [5] ISHIMARU A, KUGA Y, LIU Jun, et al. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz[J]. Radio Science, 1999, 34(1): 257–268. doi: 10.1029/1998RS900021.
    [6] XU Zhengwen, WU Jian, and WU Zhensen. A survey of ionosphere effects on space-based radar[J]. Waves in Random Media, 2004, 14(2): S189–S273. doi: 10.1088/0959-7174/14/2/008.
    [7] MEYER F. A review of ionospheric effects in low-frequency SAR––signals, correction methods, and performance requirements[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 29–32. doi: 10.1109/IGARSS.2010.5654258.
    [8] MEYER F J. Performance requirements for ionospheric correction of low-frequency SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3694–3702. doi: 10.1109/TGRS.2011.2146786.
    [9] 计一飞. 星载SAR电离层效应影响分析与校正方法研究[D]. [博士论文], 国防科技大学, 2020. doi: 10.27052/d.cnki.gzjgu.2020.000296.

    JI Yifei. Research on influential analysis and correction approaches of ionospheric effects on spaceborne synthetic aperture radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2020. doi: 10.27052/d.cnki.gzjgu.2020.000296.
    [10] HU Cheng, TIAN Ye, YANG Xiaopeng, et al. Background ionosphere effects on geosynchronous SAR focusing: Theoretical analysis and verification based on the BeiDou Navigation Satellite System (BDS)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1143–1162. doi: 10.1109/JSTARS.2015.2475283.
    [11] 李亮, 洪峻, 明峰. 电离层对中高轨SAR影响机理研究[J]. 雷达学报, 2017, 6(6): 619–629. doi: 10.12000/JR17016.

    LI Liang, HONG Jun, and MING Feng. Mechanism study of ionospheric effects on medium-earth-orbit SAR[J]. Journal of Radars, 2017, 6(6): 619–629. doi: 10.12000/JR17016.
    [12] LI Liang, HONG Jun, LIU Guikun, et al. Study about the effects on range imaging for MEOSAR induced by ionospheric irregularity[J]. IET Radar, Sonar & Navigation, 2020, 14(10): 1610–1615. doi: 10.1049/iet-rsn.2020.0167.
    [13] JI Yifei, ZHANG Qilei, ZHANG Yongsheng, et al. L-band geosynchronous SAR imaging degradations imposed by ionospheric irregularities[J]. Science China Information Sciences, 2017, 60(6): 060308. doi: 10.1007/s11432-016-9064-1.
    [14] JI Yifei, ZHANG Yongsheng, DONG Zhen, et al. Impacts of ionospheric irregularities on L-band geosynchronous synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3941–3954. doi: 10.1109/TGRS.2019.2959702.
    [15] 张永胜, 计一飞, 董臻. 时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析[J]. 电子与信息学报, 2021, 43(10): 2781–2789. doi: 10.11999/JEIT200777.

    ZHANG Yongsheng, JI Yifei, and DONG Zhen. Research on background ionospheric impacts imposed by spatio-temporal variations on spaceborne synthetic aperture radar azimuth imaging[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2781–2789. doi: 10.11999/JEIT200777.
    [16] CHEN A C and ZEBKER H A. Reducing ionospheric effects in InSAR data using accurate coregistration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 60–70. doi: 10.1109/TGRS.2012.2236098.
    [17] MEYER F J, PAPATHANASSIOU K, KIM J S, et al. IonoSAR–collaborative research towards understanding and mitigating ionospheric effects in SAR[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 6039–6042. doi: 10.1109/IGARSS.2012.6352230.
    [18] PI Xiaoqing. Ionospheric effects on spaceborne synthetic aperture radar and a new capability of imaging the ionosphere from space[J]. Space Weather, 2015, 13(11): 737–741. doi: 10.1002/2015SW001281.
    [19] MEYER F J, BAMLER R, JAKOWSKI N, et al. The potential of low-frequency SAR systems for mapping ionospheric TEC distributionse[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 560–564. doi: 10.1109/LGRS.2006.882148.
    [20] MEYER F J, CHOTOO K, CHOTOO S D, et al. The influence of equatorial scintillation on L-band SAR image quality and phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 869–880. doi: 10.1109/TGRS.2015.2468573.
    [21] JI Yifei, ZHANG Yongsheng, ZHANG Qilei, et al. Comments on “The influence of equatorial scintillation on L-Band SAR image quality and phase”[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7300–7301. doi: 10.1109/TGRS.2019.2912450.
    [22] JEHLE M, FREY O, SMALL D, et al. Measurement of ionospheric TEC in spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2460–2468. doi: 10.1109/TGRS.2010.2040621.
    [23] 李亮, 洪峻, 明峰, 等. 一种基于有源定标器的电离层对星载SAR定标影响校正方法[J]. 电子与信息学报, 2012, 34(5): 1096–1101. doi: 10.3724/SP.J.1146.2011.00978.

    LI Liang, HONG Jun, MING Feng, et al. An approach for ionospheric effects correction on spaceborne SAR calibration based on active radar calibrator[J]. Journal of Electronics & Information Technology, 2012, 34(5): 1096–1101. doi: 10.3724/SP.J.1146.2011.00978.
    [24] 李亮, 洪峻, 明峰. 一种基于星载SAR编码有源定标器的电离层TEC测量方法[J]. 中国科学: 信息科学, 2014, 44(4): 511–526. doi: 10.1360/N112013-00056.

    LI Liang, HONG Jun, and MING Feng. An approach for measuring ionospheric TEC based on coded active radar calibrator of spaceborne SAR[J]. SCIENTIA SINICA Informationis, 2014, 44(4): 511–526. doi: 10.1360/N112013-00056.
    [25] BELCHER D P. Theoretical limits on SAR imposed by the ionosphere[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 435–448. doi: 10.1049/iet-rsn:20070188.
    [26] 赵宁, 谈璐璐, 张永胜, 等. 星载P波段SAR电离层效应的双频校正方法[J]. 雷达科学与技术, 2013, 11(3): 255–261. doi: 10.3969/j.issn.1672-2337.2013.03.006.

    ZHAO Ning, TAN Lulu, ZHANG Yongsheng, et al. A double frequency measurement and correction method for ionospheric effects in space-borne P-band SAR[J]. Radar Science and Technology, 2013, 11(3): 255–261. doi: 10.3969/j.issn.1672-2337.2013.03.006.
    [27] YANG Lin, XING Mengdao, and SUN Guangcai. Ionosphere correction algorithm for spaceborne SAR imaging[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 993–1000. doi: 10.21629/JSEE.2016.05.07.
    [28] WANG Cheng, ZHANG Min, XU Zhengwen, et al. TEC retrieval from spaceborne SAR data and its applications[J]. Journal of Geophysical Research: Space Physics, 2014, 119(10): 8648–8659. doi: 10.1002/2014JA020078.
    [29] LI Zhuo and ZAN Yinkai. Performance analysis of autofocus algorithms for compensating ionospheric dispersion effect on spaceborne low-frequency SAR focusing[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 331–335. doi: 10.1109/LGRS.2020.2970720.
    [30] HIRANO H, ISOGUCHI O, MOTOHKA T, et al. Estimation of ionospheric TEC from ALOS-2 PALSAR-2 split-band data[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 1861–1864. doi: 10.1109/IGARSS52108.2023.10282622.
    [31] LIN Haoyu, DENG Yunkai, ZHANG Heng, et al. Estimating and removing ionospheric effects for L-band spaceborne bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5219816. doi: 10.1109/TGRS.2021.3137860.
    [32] SMITH E M and TSYNKOV S V. Dual carrier probing for spaceborne SAR imaging[J]. SIAM Journal on Imaging Sciences, 2011, 4(2): 501–542. doi: 10.1137/10078325X.
    [33] GILMAN M, SMITH E, and TSYNKOV S. Reduction of ionospheric distortions for spaceborne synthetic aperture radar with the help of image registration[J]. Inverse Problems, 2013, 29(5): 054005. doi: 10.1088/0266-5611/29/5/054005.
    [34] BICKEL S H and BATES R H T. Effects of magneto-ionic propagation on the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1089–1091. doi: 10.1109/PROC.1965.4097.
    [35] FREEMAN A. Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1617–1624. doi: 10.1109/TGRS.2004.830161.
    [36] QI Renyuan and JIN Yaqiu. Analysis of the effects of Faraday rotation on spaceborne polarimetric SAR observations at P-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1115–1122. doi: 10.1109/TGRS.2007.892583.
    [37] CHEN Jie and QUEGAN S. Improved estimators of faraday rotation in spaceborne polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 846–850. doi: 10.1109/LGRS.2010.2047002.
    [38] LI Li, ZHANG Yongsheng, DONG Zhen, et al. New Faraday rotation estimators based on polarimetric covariance matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 133–137. doi: 10.1109/LGRS.2013.2250478.
    [39] WANG Cheng, LIU Lu, CHEN Liang, et al. Improved TEC retrieval based on spaceborne PolSAR data[J]. Radio Science, 2017, 52(3): 288–304. doi: 10.1002/2016RS006116.
    [40] JEHLE M, RUEGG M, ZUBERBUHLER L, et al. Measurement of ionospheric Faraday rotation in simulated and real spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1512–1523. doi: 10.1109/TGRS.2008.2004710.
    [41] MEYER F J and NICOLL J B. Prediction, detection, and correction of Faraday rotation in full-polarimetric L-Band SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3076–3086. doi: 10.1109/TGRS.2008.2003002.
    [42] ROGERS N C and QUEGAN S. The accuracy of Faraday rotation estimation in satellite synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4799–4807. doi: 10.1109/TGRS.2013.2284635.
    [43] QUEGAN S and LOMAS M R. The impact of system effects on estimates of Faraday rotation from synthetic aperture radar measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4284–4298. doi: 10.1109/TGRS.2015.2395076.
    [44] JI Yifei, ZHANG Yongsheng, ZHANG Qilei, et al. Retrieval of ionospheric Faraday rotation angle in low-frequency polarimetric SAR data[J]. IEEE Access, 2019, 7(1): 3181–3193. doi: 10.1109/ACCESS.2018.2888928.
    [45] WANG Xun, ZHANG Yunhua, and LI Dong. Estimation of ionospheric Faraday rotation over ocean areas using L-band spaceborne PolSAR data[J]. International Journal of Remote Sensing, 2024, 45(9): 3054–3074. doi: 10.1080/01431161.2024.2339206.
    [46] LI Jinhui, JI Yifei, ZHANG Yongsheng, et al. A novel strategy of ambiguity correction for the improved faraday rotation estimator in linearly full-polarimetric SAR data[J]. Sensors, 2018, 18(4): 1158. doi: 10.3390/s18041158.
    [47] 张永胜, 于春锐, 计一飞, 等. 一种基于频域解模糊的星载P波段全极化SAR法拉第旋转效应校正方法[J]. 电子学报, 2023, 51(3): 585–592. doi: 10.12263/DZXB.20210698.

    ZHANG Yongsheng, YU Chunrui, JI Yifei, et al. A correction method of the Faraday rotation effect based on the frequency-domain ambiguity-resolving in spaceborne P-band full-polarimetric SAR[J]. Acta Electronica Sinica, 2023, 51(3): 585–592. doi: 10.12263/DZXB.20210698.
    [48] MEYER F J, NICOLL J, and BRISTOW B. Mapping aurora activity with SAR––a case study[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 2009: IV-1–IV-4. doi: 10.1109/IGARSS.2009.5417610.
    [49] PI Xiaoqing, FREEMAN A, CHAPMAN B, et al. Imaging ionospheric inhomogeneities using spaceborne synthetic aperture radar[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A4): A04303. doi: 10.1029/2010JA016267.
    [50] KIM J S and PAPATHANASSIOU K P. TEC and ionospheric height estimation by means of azimuth subaperture analysis in quad-polarimetric spaceborne SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6279–6290. doi: 10.1109/JSTARS.2021.3085130.
    [51] WEGMULLER U, WERNER C, STROZZI T, et al. Ionospheric electron concentration effects on SAR and INSAR[C]. 2006 IEEE International Geoscience and Remote Sensing Symposium, Denver, USA, 2006: 3731–3734. doi: 10.1109/IGARSS.2006.956.
    [52] GRAY A L, MATTAR K E, and SOFKO G. Influence of ionospheric electron density fluctuations on satellite radar interferometry[J]. Geophysical Research Letters, 2000, 27(10): 1451–1454. doi: 10.1029/2000GL000016.
    [53] CHEN Jingyi and ZEBKER H A. Ionospheric artifacts in simultaneous L-band InSAR and GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1227–1239. doi: 10.1109/TGRS.2011.2164805.
    [54] RAUCOULES D and DE MICHELE M. Assessing ionospheric influence on L-band SAR data: Implications on coseismic displacement measurements of the 2008 Sichuan earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 286–290. doi: 10.1109/LGRS.2009.2033317.
    [55] WEGMULLER U, STROZZI T, and WERNER C. Ionospheric path delay estimation using split-beam interferometry[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3631–3634. doi: 10.1109/IGARSS.2012.6350630.
    [56] HU Jun, LI Zhiwei, ZHANG Lei, et al. Correcting ionospheric effects and monitoring two-dimensional displacement fields with multiple-aperture InSAR technology with application to the Yushu earthquake[J]. Science China Earth Sciences, 2012, 55(12): 1961–1971. doi: 10.1007/s11430-012-4509-x.
    [57] LIU Zhen, JUNG H S, and LU Zhong. Joint correction of ionosphere noise and orbital error in L-band SAR interferometry of interseismic deformation in southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3421–3427. doi: 10.1109/TGRS.2013.2272791.
    [58] JUNG H S, LEE D T, LU Zhong, et al. Ionospheric correction of SAR interferograms by multiple-aperture interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3191–3199. doi: 10.1109/TGRS.2012.2218660.
    [59] JUNG H S and LEE W J. An improvement of ionospheric phase correction by multiple-aperture interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4952–4960. doi: 10.1109/TGRS.2015.2413948.
    [60] ZHANG Bochen, DING Xiaoli, ZHU Wu, et al. Mitigating ionospheric artifacts in coseismic interferogram based on offset field derived from ALOS-PALSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3050–3059. doi: 10.1109/JSTARS.2016.2533441.
    [61] MAO Wenfei, WANG Xiaowen, LIU Guoxiang, et al. Ionospheric phase delay correction for time series multiple-aperture InSAR constrained by polynomial deformation model[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4006605. doi: 10.1109/LGRS.2023.3281343.
    [62] ROSEN P A, HENSLEY S, and CHEN C. Measurement and mitigation of the ionosphere in L-band Interferometric SAR data[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 1459–1463. doi: 10.1109/RADAR.2010.5494385.
    [63] BRCIC R, PARIZZI A, EINEDER M, et al. Estimation and compensation of ionospheric delay for SAR interferometry[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 2908–2911. doi: 10.1109/IGARSS.2010.5652231.
    [64] BRCIC R, PARIZZI A, EINEDER M, et al. Ionospheric effects in SAR interferometry: An analysis and comparison of methods for their estimation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 1497–1500. doi: 10.1109/IGARSS.2011.6049351.
    [65] GOMBA G, PARIZZI A, DE ZAN F, et al. Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1446–1461. doi: 10.1109/TGRS.2015.2481079.
    [66] ZHANG Bochen, WANG Chisheng, DING Xiaoli, et al. Correction of ionospheric artifacts in SAR data: Application to fault slip inversion of 2009 southern Sumatra earthquake[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1327–1331. doi: 10.1109/LGRS.2018.2844686.
    [67] ZHANG Bochen, DING Xiaoli, AMELUNG F, et al. Impact of ionosphere on InSAR observation and coseismic slip inversion: Improved slip model for the 2010 Maule, Chile, earthquake[J]. Remote Sensing of Environment, 2021, 267: 112733. doi: 10.1016/j.rse.2021.112733.
    [68] ROSEN P, LAVALLE M, PI Xiaoqing, et al. Techniques and tools for estimating ionospheric effects in interferometric and polarimetric SAR data[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 1501–1504. doi: 10.1109/IGARSS.2011.6049352.
    [69] LIANG Cunren, LIU Zhen, FIELDING E J, et al. InSAR time series analysis of L-band wide-swath SAR data acquired by ALOS-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4492–4506. doi: 10.1109/TGRS.2018.2821150.
    [70] GOMBA G, GONZALEZ F R, and DE ZAN F D. Ionospheric phase screen compensation for the Sentinel-1 TOPS and ALOS-2 ScanSAR modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 223–235. doi: 10.1109/TGRS.2016.2604461.
    [71] KUSK A, ANDERSEN J K, and BONCORI J P M. Burst overlap coregistration for Sentinel-1 TOPS DInSAR ice velocity measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010905. doi: 10.1109/LGRS.2021.3062905.
    [72] LIAO Heming, MEYER F J, SCHEUCHL B, et al. Ionospheric correction of InSAR data for accurate ice velocity measurement at polar regions[J]. Remote Sensing of Environment, 2018, 209: 166–180. doi: 10.1016/j.rse.2018.02.048.
    [73] MAO Wenfei, WANG Xiaowen, LIU Guoxiang, et al. Time series InSAR ionospheric delay estimation, correction, and ground deformation monitoring with reformulating range split-spectrum interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5213118. doi: 10.1109/TGRS.2023.3298919.
    [74] ZHANG Bochen, DING Xiaoli, ZHU Wu, et al. An asymmetric split-spectrum method for estimating the ionospheric artifacts in InSAR data[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 517–520. doi: 10.1109/IGARSS.2018.8518936.
    [75] ZHU Wu, DING Xiaoli, JUNG H S, et al. Mitigation of ionospheric phase delay error for SAR interferometry: An application of FR-based and azimuth offset methods[J]. Remote Sensing Letters, 2017, 8(1): 58–67. doi: 10.1080/2150704X.2016.1235808.
    [76] ZHU W, JUNG H S, and CHEN Jingyuan. Synthetic aperture radar interferometry (InSAR) ionospheric correction based on Faraday rotation: Two case studies[J]. Applied Sciences, 2019, 9(18): 3871. doi: 10.3390/app9183871.
    [77] GOMBA G and DE ZAN F D. Bayesian data combination for the estimation of ionospheric effects in SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6582–6593. doi: 10.1109/TGRS.2017.2730438.
    [78] MAO Wenfei, LIU Guoxiang, WANG Xiaowen, et al. An InSAR ionospheric correction method based on variance component estimation with integration of MAI and RSS measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1423–1433. doi: 10.1109/JSTARS.2020.3045267.
    [79] MAO Wenfei, WANG Xiaowen, LIU Guoxiang, et al. Estimation and compensation of ionospheric phase delay for multi-aperture InSAR: An azimuth split-spectrum interferometry approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5209414. doi: 10.1109/TGRS.2021.3095272.
    [80] KIM J S. Development of ionosphere estimation techniques for the correction of SAR data[D]. [Ph.D. dissertation], ETH Zurich, 2013.
    [81] ZHANG Bochen, ZHU Wu, DING Xiaoli, et al. A review of methods for mitigating ionospheric artifacts in differential SAR interferometry[J]. Geodesy and Geodynamics, 2022, 13(2): 160–169. doi: 10.1016/j.geog.2021.12.001.
    [82] MAO Wenfei, MA Peifeng, and TANG Jun. Mapping high spatial resolution ionospheric total electron content by integrating Time Series InSAR with International Reference Ionosphere model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 214: 153–166. doi: 10.1016/j.isprsjprs.2024.06.003.
    [83] KIM J S, SATO H, and PAPATHANASSIOU K. Validation of ionospheric mapping by means of SAR through ground based radar measurements[C]. 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–6.
    [84] KIM J S and PAPATHANASSIOU K. Polar ionosphere irregularity structure and dynamics by means of X-band space-borne synthetic aperture radar[C]. 13th European Conference on Synthetic Aperture Radar, online, 2021: 1–4.
    [85] KIM J S and PAPATHANASSIOU K. SAR observation of ionosphere using range/azimuth sub-bands[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, German, 2014: 1–4.
    [86] WANG Cheng, GUO Wulong, ZHAO Haisheng, et al. Improving the topside profile of ionosonde with TEC retrieved from spaceborne polarimetric SAR[J]. Sensors, 2019, 19(3): 516. doi: 10.3390/s19030516.
    [87] GUO Wulong, WANG Cheng, ZHAO Haisheng, et al. Ionospheric sounding based on spaceborne PolSAR in P-band[J]. Atmosphere, 2022, 13(4): 524. doi: 10.3390/atmos13040524.
    [88] ZHU Wu, CHEN Jingyuan, ZHANG Qin, et al. Mapping of high-spatial-resolution three-dimensional electron density by combing of full-polarimetric SAR and IRI model[J]. Frontiers in Earth Science, 2020, 8: 181. doi: 10.3389/feart.2020.00181.
    [89] ZHU Wu, CHEN Jingyuan, SUN Quan, et al. Reconstructing of high-spatial-resolution three-dimensional electron density by ingesting SAR-derived VTEC into IRI model[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4508305. doi: 10.1109/LGRS.2022.3178242.
    [90] GANGULY S, WICKWAR V, and GOODMAN J M. New generation topside sounder[J]. Radio Science, 2001, 36(5): 1167–1179. doi: 10.1029/1999RS002415.
    [91] LI Zhuo, CHEN Jie, and LI Chunsheng. Spaceborne SIMO-SAR for three-dimensional ionospheric irregularity sounding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2830–2846. doi: 10.1109/TAES.2014.120214.
    [92] LI Lianlin and LI Fang. Ionosphere tomography based on spaceborne SAR[J]. Advances in Space Research, 2008, 42(7): 1187–1193. doi: 10.1016/j.asr.2007.11.022.
    [93] HU Cheng, TIAN Ye, DONG Xichao, et al. Computerized ionospheric tomography based on geosynchronous SAR[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 2686–2705. doi: 10.1002/2016JA023542.
    [94] WANG Cheng, CHEN Liang, LIU Lu, et al. Robust computerized ionospheric tomography based on spaceborne polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(9): 4022–4031. doi: 10.1109/JSTARS.2017.2703098.
    [95] WANG Cheng, CHEN Liang, ZHAO Haisheng, et al. Ionospheric reconstructions using Faraday rotation in spaceborne polarimetric SAR data[J]. Remote Sensing, 2017, 9(11): 1169. doi: 10.3390/rs9111169.
    [96] WANG Cheng, GUO Wulong, ZHANG Qinghe, et al. 3-D computerized ionospheric tomography with GPS, SAR, and ionosonde[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5210109. doi: 10.1109/TGRS.2023.3285744.
    [97] WANG Cheng, ZHAO Haisheng, WANG Liming, et al. GPS-based ionospheric tomography from the combination of PolSAR and E-CHAIM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5205714. doi: 10.1109/TGRS.2024.3367420.
    [98] WANG Cheng, WANG Liming, ZHAO Haisheng, et al. Ionospheric electron density reconstruction based on space-borne SAR in Alaska regions[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4011805. doi: 10.1109/LGRS.2024.3412799.
    [99] BELCHER D P and CANNON P S. Amplitude scintillation effects on SAR[J]. IET Radar, Sonar & Navigation, 2014, 8(6): 658–666. doi: 10.1049/iet-rsn.2013.0168.
    [100] JI Yifei, ZHANG Qilei, ZHANG Yongsheng, et al. Spaceborne P-band SAR imaging degradation by anisotropic ionospheric irregularities: A comprehensive numerical study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5516–5526. doi: 10.1109/TGRS.2020.2966710.
    [101] TANG Feixiang, JI Yifei, ZHANG Yongsheng, et al. Drifting ionospheric scintillation simulation for L-band geosynchronous SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 842–854. doi: 10.1109/JSTARS.2023.3330752.
    [102] EICHEL P H, GHIGLIA D C, and JAKOWATZ C V. Speckle processing method for synthetic-aperture-radar phase correction[J]. Optics Letters, 1989, 14(1): 1–3. doi: 10.1364/OL.14.000001.
    [103] QUEGAN S, GREEN J, ZANDONA-SCHNEIDER R, et al. Quantifying and correcting ionospheric effects on P-band SAR images[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: II-541–II-544. doi: 10.1109/IGARSS.2008.4779048.
    [104] LI Zhuo, QUEGAN S, CHEN Jie, et al. Performance analysis of phase gradient autofocus for compensating ionospheric phase scintillation in BIOMASS P-band SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(6): 1367–1371. doi: 10.1109/LGRS.2015.2402833.
    [105] ZENG Hongcheng, YANG Wei, WANG Pengbo, et al. A modified PGA for spaceborne SAR scintillation compensation based on the weighted maximum likelihood estimator and data division[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3938–3947. doi: 10.1109/JSTARS.2022.3175263.
    [106] WANG Rui, HU Cheng, LI Yuanhao, et al. Joint amplitude-phase compensation for ionospheric scintillation in GEO SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3454–3465. doi: 10.1109/TGRS.2017.2672078.
    [107] YU Lei, ZHANG Yongsheng, ZHANG Qilei, et al. Minimum-entropy autofocusing based on Re-PSO for ionospheric scintillation mitigation in P-band SAR imaging[J]. IEEE Access, 2019, 7: 84580–84590. doi: 10.1109/ACCESS.2019.2924802.
    [108] JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. Extended scintillation phase gradient autofocus in future spaceborne P-band SAR mission[J]. Science China Information Sciences, 2021, 64(11): 212303. doi: 10.1007/s11432-019-2797-4.
    [109] JI Yifei, YU Chunrui, ZHANG Qilei, et al. An ionospheric phase screen projection method of phase gradient autofocus in spaceborne SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4504205. doi: 10.1109/LGRS.2022.3147036.
    [110] JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. An autofocus approach with applications to ionospheric scintillation compensation for spaceborne SAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 989–1004. doi: 10.1109/TAES.2021.3108117.
    [111] JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. Measuring ionospheric scintillation parameters from SAR images using phase gradient autofocus: A case study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5200212. doi: 10.1109/TGRS.2020.3044657.
    [112] KIM J S, PAPATHANASSIOU K P, QUEGAN S, et al. Estimation and correction of scintillation effects on spaceborne P-band SAR images[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 5101–5104. doi: 10.1109/IGARSS.2012.6352463.
    [113] KIM J S, PAPATHANASSIOU K P, SCHEIBER R, et al. Correcting distortion of polarimetric SAR data induced by ionospheric scintillation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6319–6335. doi: 10.1109/TGRS.2015.2431856.
    [114] TANG Feixiang, JI Yifei, DONG Yongsheng, et al. Ionospheric phase scintillation correction based on multi-aperture Faraday rotation estimation in spaceborne P-band full-polarimetric SAR data[J]. Remote Sensing, 2022, 14(22): 5659. doi: 10.3390/rs14225659.
    [115] GRACHEVA V, KIM J S, PRATS-IRAOLA P, et al. Combined estimation of ionospheric effects in SAR images exploiting Faraday rotation and autofocus[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8018705. doi: 10.1109/LGRS.2021.3102597.
    [116] BELCHER D P. Sidelobe prediction in transionospheric SAR imaging radar from the ionospheric turbulence strength CkL[C]. 2008 International Conference on Radar, Adelaide, Australia, 2008: 54–59. doi: 10.1109/RADAR.2008.4653891.
    [117] BELCHER D P, MANNIX C R, and CANNON P S. Measurement of the ionospheric scintillation parameter C kL from SAR images of clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5937–5943. doi: 10.1109/TGRS.2017.2717081.
    [118] MANNIX C R, BELCHER D P, and CANNON P S. Measurement of ionospheric scintillation parameters from SAR images using corner reflectors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6695–6702. doi: 10.1109/TGRS.2017.2727319.
    [119] ROTH A P, HUXTABLE B D, CHOTOO K, et al. Detection and mitigation of ionospheric stripes in PALSAR data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 1621–1624. doi: 10.1109/IGARSS.2012.6351218.
    [120] GAMA F F, WIEDERKEHR N C, and DA CONCEIÇÃO BISPO P. Removal of ionospheric effects from sigma naught images of the ALOS/PALSAR-2 satellite[J]. Remote Sensing, 2022, 14(4): 962. doi: 10.3390/rs14040962.
    [121] MOHANTY S, KHATI U, SINGH G, et al. Correction of amplitude scintillation effect in fully polarimetric SAR coherency matrix data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 184–199. doi: 10.1016/j.isprsjprs.2020.04.005.
    [122] GAN Nan, JI Yifei, TANG Feixiang, et al. Correcting and measuring ionospheric scintillation amplitude stripes in L-band SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4515505. doi: 10.1109/LGRS.2022.3220232.
    [123] JI Yifei, DONG Zhen, ZHANG Yongsheng, et al. Equatorial ionospheric scintillation measurement in advanced land observing satellite (ALOS) phased array-type L-band synthetic aperture radar (PALSAR) observations[J]. Engineering, 2024. doi: 10.1016/j.eng.2024.01.027.
    [124] KIM J S, PAPATHANASSIOU K P, SATO H, et al. Detection and estimation of equatorial spread F scintillations using synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 6713–6725. doi: 10.1109/TGRS.2017.2731943.
    [125] KIM J S, SATO H, and PAPATHANASSIOU K. Estimation of drift of equatorial ionosphere of post sunset-sector by means of low frequency space-borne SAR[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6946–6949. doi: 10.1109/IGARSS.2016.7730812.
    [126] MOHANTY S, SINGH G, CARRANO C S, et al. Ionospheric scintillation observation using space-borne synthetic aperture radar data[J]. Radio Science, 2018, 53(10): 1187–1202. doi: 10.1029/2017RS006424.
    [127] MOHANTY S, CARRANO C S, and SINGH G. Effect of anisotropy on ionospheric scintillations observed by SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6888–6899. doi: 10.1109/TGRS.2019.2909078.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  50
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2024-09-19
  • 网络出版日期:  2024-11-14

目录

    /

    返回文章
    返回