基于低冗余度染色体编码的族群无人机SAR二维成像任务分配方法

任航 孙稚超 杨建宇 武俊杰

任航, 孙稚超, 杨建宇, 等. 基于低冗余度染色体编码的族群无人机SAR二维成像任务分配方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24218
引用本文: 任航, 孙稚超, 杨建宇, 等. 基于低冗余度染色体编码的族群无人机SAR二维成像任务分配方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR24218
REN Hang, SUN Zhichao, YANG Jianyu, et al. A task allocation method for swarm UAV SAR based on low redundancy chromosome encoding[J]. Journal of Radars, in press. doi: 10.12000/JR24218
Citation: REN Hang, SUN Zhichao, YANG Jianyu, et al. A task allocation method for swarm UAV SAR based on low redundancy chromosome encoding[J]. Journal of Radars, in press. doi: 10.12000/JR24218

基于低冗余度染色体编码的族群无人机SAR二维成像任务分配方法

DOI: 10.12000/JR24218
基金项目: 国家自然科学基金(61901088, 61922023, 62231006, 62471098, 62431008),中央高校基本科研业务费项目(ZYGX2022J005),衢州市财政资助科研项目(2023D042)
详细信息
    作者简介:

    任 航,博士生,研究方向为双多基合成孔径雷达、压缩感知理论、优化理论和算法等

    孙稚超,副教授,研究方向为最优化方法及其应用、双多基合成孔径雷达、星载合成孔径雷达信号处理等

    杨建宇,教授,博士生导师,研究方向为雷达信号处理、合成孔径雷达成像等

    武俊杰,教授,博士生导师,研究方向为合成孔径雷达成像、双多基合成孔径雷达、雷达信号处理等

    通讯作者:

    武俊杰 junjie_wu@uestc.edu.cn

  • 责任主编:丁泽刚 Corresponding Editor: DING Zegang
  • 中图分类号: TN958.3

A Task Allocation Method for Swarm UAV SAR based on Low Redundancy Chromosome Encoding

Funds: The National Natural Science Foundation of China (61901088, 61922023, 62231006, 62471098, 62431008), The Fundamental Research Funds for Central Universities (ZYGX2022J005), The Municipal Government of Quzhou (2023D042)
More Information
  • 摘要: 该文针对族群无人机SAR系统的任务分配问题,提出了一种基于低冗余度染色体编码的族群无人机SAR任务分配方法。该方法针对SAR成像任务的特有问题分析了成像性能与成像几何构型之间的内在联系,并据此建立了考虑成像性能的路径函数,将族群无人机SAR任务分配问题建模为广义均衡多旅行商问题;然后,采用冗余度较低的两部分染色体编码方式来表征任务分配方案,提高遗传算法的搜索效率和准确性。针对实际应用中可能发生的意外情况,该文还提出了一种融合了合同网算法和注意力机制的动态任务分配策略,该策略能够根据实际情况灵活调整任务分配方案,确保系统的鲁棒性。仿真实验验证了该文所提方法的有效性。

     

  • 图  1  族群无人机SAR任务分配场景

    Figure  1.  Scenario of task allocation for swarm UAV SAR

    图  2  几何观测示意图

    Figure  2.  Geometric observation diagram

    图  3  飞行路径示意图

    Figure  3.  Flight path diagram

    图  4  单染色体编码方案示例

    Figure  4.  Example of single chromosome coding scheme

    图  5  双染色体编码方案示例

    Figure  5.  Example of dual chromosome coding scheme

    图  6  两部分染色体编码方案示例

    Figure  6.  Example of two-part chromosome coding scheme

    图  7  两点中央交叉

    Figure  7.  Two-point central crossover

    图  8  反向变异

    Figure  8.  Inverse mutation

    图  9  低冗余度染色体编码算法流程图

    Figure  9.  Flowchart of low redundancy chromosome encoding algorithm

    图  10  引入注意力机制的合同网算法

    Figure  10.  Contract network algorithm incorporating attention mechanism

    图  11  目标分布情况

    Figure  11.  Target distribution

    图  12  任务分配结果

    Figure  12.  Task allocation results

    图  13  本文所提方法各性能指标随迭代次数变化的曲线

    Figure  13.  The curves of the performance indicators of the proposed method changing with the number of iterations

    图  14  单染色体编码法各性能指标随迭代次数变化的曲线

    Figure  14.  The curves of the performance indicators of the single chromosome coding method changing with the number of iterations

    图  15  双染色体编码法各性能指标随迭代次数变化的曲线

    Figure  15.  The curves of the performance indicators of the dual chromosome coding method changing with the number of iterations

    图  16  粒子群算法各性能指标随迭代次数变化的曲线

    Figure  16.  The curves of the performance indicators of the particle swarm optimization algorithm changing with the number of iterations

    图  17  模拟退火算法各性能指标随迭代次数变化的曲线

    Figure  17.  The curves of the performance indicators of simulated annealing algorithm changing with the number of iterations

    图  18  目标点T2的成像结果

    Figure  18.  The imaging results of target point T2

    图  19  目标点T4的成像结果

    Figure  19.  The imaging results of target point T4

    图  20  目标点T8的成像结果

    Figure  20.  The imaging results of target point T8

    图  21  不同成像任务需求下的任务分配结果

    Figure  21.  Task allocation results under different imaging task requirements

    图  22  动态任务分配方案

    Figure  22.  Dynamic task allocation scheme

    表  1  系统参数

    Table  1.   System parameters

    参数 符号 数值
    波长(m) $\lambda $ 0.03
    载波频率(GHz) ${f_{{\mathrm{c}}}}$ 10
    带宽(MHz) ${B_{\rm r}}$ 300
    合成孔径时间(s) ${T_{\rm a}}$ 2
    发射站位置(km) ${P_{\rm T}}$ (0,–35786,35786)
    接收站高度(m) ${H_{\rm R}}$ 3000
    接收站速度(m/s) ${v_{\rm R}}$ 50
    下载: 导出CSV

    表  2  任务执行情况

    Table  2.   Task execution status

    无人机 飞行路径(km) 成像任务数
    UAV 1 159.35 4
    UAV 2 169.75 2
    UAV 3 148.85 4
    UAV 1—UAV 3总和 477.95 10
    下载: 导出CSV

    表  3  不同任务分配方法得到方案的性能指标

    Table  3.   Performance indicators of solutions obtained from different task allocation methods

    方法 总飞行路径(km) 最大飞行路径(km) 总分辨面积(m2)
    本文所提方法 477.94 169.75 13.69
    单染色体编码法 493.38 192.69 18.95
    双染色体编码法 576.01 258.31 21.89
    粒子群算法 506.10 181.64 16.00
    模拟退火算法 485.42 181.41 16.79
    下载: 导出CSV

    表  4  各任务分配方法所得成像结果的图像熵

    Table  4.   Image entropy of imaging results obtained by various task allocation methods

    目标点 本文所提方法 单染色体编码法 双染色体编码法
    T2 6.8240 6.1817 6.3874
    T4 5.9558 5.7366 5.6229
    T8 6.1061 5.8762 5.9497
    下载: 导出CSV

    表  5  成像任务需求

    Table  5.   Imaging task requirements

    任务 分辨夹角需求 幅宽需求(m) NESZ需求(dB)
    1 40°~140° 2000 –10
    2 45°~135° 600 –20
    3 40°~140° 1000 –20
    4 60°~120° 2000 –15
    5 60°~120° 1200 –18
    6 45°~135° 1800 –15
    7 80°~100° 1200 –18
    8 40°~140° 2000 –15
    9 80°~100° 600 –22
    10 80°~100° 1000 –20
    下载: 导出CSV
  • [1] 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089.

    WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089.
    [2] 杨小鹏, 马忠杰, 钟世超, 等. 基于遗传算法的无人机载穿墙三维SAR航迹规划方法[J]. 雷达学报(中英文), 2024, 13(4): 731–746. doi: 10.12000/JR24068.

    YANG Xiaopeng, MA Zhongjie, ZHONG Shichao, et al. Trajectory planning method for UAV-through-the-wall 3D SAR based on a genetic algorithm[J]. Journal of Radars, 2024, 13(4): 731–746. doi: 10.12000/JR24068.
    [3] RUNKLE P, NGUYEN L H, MCCLELLAN J H, et al. Multi-aspect target detection for SAR imagery using hidden Markov models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 46–55. doi: 10.1109/36.898664.
    [4] PAPSON S and NARAYANAN R M. Classification via the shadow region in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 969–980. doi: 10.1109/TAES.2012.6178042.
    [5] ZHANG Haichao, NASRABADI N M, ZHANG Yanning, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604.
    [6] SCHREIBER E, HEINZEL A, PEICHL M, et al. Advanced buried object detection by multichannel, UAV/drone carried synthetic aperture radar[C]. 2019 13th European Conference on Antennas and Propagation, Krakow, Poland, 2019: 1–5.
    [7] DING Manlai, DING Chibiao, TANG Li, et al. A W-band 3-D integrated mini-SAR system with high imaging resolution on UAV platform[J]. IEEE Access, 2020, 8: 113601–113609. doi: 10.1109/ACCESS.2020.3003273.
    [8] CHEN Ming, WANG Huibin, CHANG C Y, et al. SIDR: A swarm intelligence-based damage-resilient mechanism for UAV swarm networks[J]. IEEE Access, 2020, 8: 77089–77105. doi: 10.1109/ACCESS.2020.2989614.
    [9] ZHOU Yongkun, RAO Bin, and WANG Wei. UAV swarm intelligence: Recent advances and future trends[J]. IEEE Access, 2020, 8: 183856–183878. doi: 10.1109/ACCESS.2020.3028865.
    [10] WALTERSCHEID I and BRENNER A R. Multistatic and multi-aspect SAR data acquisition to improve image interpretation[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 4194–4197. doi: 10.1109/IGARSS.2013.6723758.
    [11] PETERSON E H, FOTOPOULOS G, SCHMITT A, et al. Registration of multi-frequency SAR imagery using phase correlation methods[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 3708–3711. doi: 10.1109/IGARSS.2011.6050030.
    [12] SUN Zhichao, WU Junjie, PEI Jifang, et al. Inclined geosynchronous spaceborne-airborne bistatic SAR: Performance analysis and mission design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 343–357. doi: 10.1109/TGRS.2015.2457034.
    [13] REN Hang, SUN Zhichao, YANG Jianyu, et al. Swarm UAV SAR for 3-D imaging: System analysis and sensing matrix design[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238316. doi: 10.1109/TGRS.2022.3221775.
    [14] REN Hang, SUN Zhichao, YANG Jianyu, et al. A hybrid resolution enhancement framework for swarm UAV SAR based on cost-effective formation strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5200216. doi: 10.1109/TGRS.2023.3338247.
    [15] 毕文豪, 张梦琦, 高飞, 等. 无人机集群任务分配技术研究综述[J]. 系统工程与电子技术, 2024, 46(3): 922–934. doi: 10.12305/j.issn.1001-506X.2024.03.18.

    BI Wenhao, ZHANG Mengqi, GAO Fei, et al. Review on UAV swarm task allocation technology[J]. Systems Engineering and Electronics, 2024, 46(3): 922–934. doi: 10.12305/j.issn.1001-506X.2024.03.18.
    [16] 袁野, 杨剑, 刘辛雨, 等. 基于任务效用最大化的多雷达协同任务规划算法[J]. 雷达学报, 2023, 12(3): 550–562. doi: 10.12000/JR23013.

    YUAN Ye, YANG Jian, LIU Xinyu, et al. Multiradar collaborative task planning based on task utility maximization[J]. Journal of Radars, 2023, 12(3): 550–562. doi: 10.12000/JR23013.
    [17] 沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35(3): 593–606. doi: 10.7527/S1000-6893.2013.0500.

    SHEN Lincheng, CHEN Jing, and WANG Nan. Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 593–606. doi: 10.7527/S1000-6893.2013.0500.
    [18] WANG Zhu, LIU Li, LONG Teng, et al. Multi-UAV reconnaissance task allocation for heterogeneous targets using an opposition-based genetic algorithm with double-chromosome encoding[J]. Chinese Journal of Aeronautics, 2018, 31(2): 339–350. doi: 10.1016/j.cja.2017.09.005.
    [19] JIA Zhenyue, YU Jianqiao, AI Xiaolin, et al. Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm[J]. Aerospace Science and Technology, 2018, 76: 112–125. doi: 10.1016/j.ast.2018.01.025.
    [20] XU Guangtong, LIU Li, LONG Teng, et al. Cooperative multiple task assignment considering precedence constraints using multi-chromosome encoded genetic algorithm[C]. 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, 2018. doi: 10.2514/6.2018-1859.
    [21] 林君灿, 贾高伟, 侯中喜. 异构UAV编队反雷达作战中任务分配方法[J]. 系统工程与电子技术, 2018, 40(9): 1986–1992. doi: 10.3969/j.issn.1001-506X.2018.09.14.

    LIN Juncan, JIA Gaowei, and HOU Zhongxi. Research on task assignment of heterogeneous UAV formation in the anti-radar combat[J]. Systems Engineering and Electronics, 2018, 40(9): 1986–1992. doi: 10.3969/j.issn.1001-506X.2018.09.14.
    [22] 杜继永, 张凤鸣, 杨骥, 等. 多UCAV协同任务分配模型及粒子群算法求解[J]. 控制与决策, 2012, 27(11): 1751–1755. doi: 10.13195/j.cd.2012.11.154.dujy.005.

    DU Jiyong, ZHANG Fengming, YANG Ji, et al. Cooperative task assignment for multiple UCAV using particle swarm optimization[J]. Control and Decision, 2012, 27(11): 1751–1755. doi: 10.13195/j.cd.2012.11.154.dujy.005.
    [23] LIM W H and ISA N A. Particle swarm optimization with dual-level task allocation[J]. Engineering Applications of Artificial Intelligence, 2015, 38: 88–110. doi: 10.1016/j.engappai.2014.10.022.
    [24] 张大琳, 易伟, 孔令讲. 面向组网雷达干扰任务的多干扰机资源联合优化分配方法[J]. 雷达学报, 2021, 10(4): 595–606. doi: 10.12000/JR21071.

    ZHANG Dalin, YI Wei, and KONG Lingjiang. Optimal joint allocation of multijammer resources for jamming netted radar system[J]. Journal of Radars, 2021, 10(4): 595–606. doi: 10.12000/JR21071.
    [25] CONG Rui, QI Juntong, WU Chong, et al. Multi-UAVs cooperative detection based on improved NSGA-II algorithm[C]. 2020 39th Chinese Control Conference, Shenyang, China, 2020: 1524–1529. doi: 10.23919/CCC50068.2020.9188354.
    [26] ZOU Dexuan, LIU Haikuan, GAO Liqun, et al. An improved differential evolution algorithm for the task assignment problem[J]. Engineering Applications of Artificial Intelligence, 2011, 24(4): 616–624. doi: 10.1016/j.engappai.2010.12.002.
    [27] HUO Lisu, ZHU Jianghan, WU Guohua, et al. A novel simulated annealing based strategy for balanced UAV task assignment and path planning[J]. Sensors, 2020, 20(17): 4769. doi: 10.3390/s20174769.
    [28] 杨玮, 李然, 张堃. 基于变邻域模拟退火算法的多自动导引车任务分配优化[J]. 计算机应用, 2021, 41(10): 3056–3062. doi: 10.11772/j.issn.1001-9081.2020121919.

    YANG Wei, LI Ran, and ZHANG Kun. Task allocation optimization for automated guided vehicles based on variable neighborhood simulated annealing algorithm[J]. Journal of Computer Applications, 2021, 41(10): 3056–3062. doi: 10.11772/j.issn.1001-9081.2020121919.
    [29] SUN Zhichao, REN Hang, SUN Huarui, et al. Terminal trajectory planning for synthetic aperture radar imaging guidance based on chronological iterative search framework[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 3065–3078. doi: 10.1109/TCYB.2022.3231974.
    [30] SUN Zhichao, WU Junjie, YEN G G, et al. Performance analysis and system implementation for energy-efficient passive UAV radar imaging system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 9938–9955. doi: 10.1109/TVT.2023.3260876.
    [31] SUN Zhichao, YEN G G, WU Junjie, et al. Mission planning for energy-efficient passive UAV radar imaging system based on substage division collaborative search[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 275–288. doi: 10.1109/TCYB.2021.3090662.
    [32] HU Cheng, CHEN Zhiyang, DONG Xichao, et al. Multistatic geosynchronous SAR resolution analysis and grating lobe suppression based on array spatial ambiguity function[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6020–6038. doi: 10.1109/TGRS.2020.2969573.
    [33] 王朝辉, 徐瑞, 李朝玉, 等. 加权负载均衡合同网大规模星座任务分配方法[J]. 航天控制, 2023, 41(4): 59–66. doi: 10.16804/j.cnki.issn1006-3242.2023.04.010.

    WANG Zhaohui, XU Rui, LI Zhaoyu, et al. Large-scale constellation task allocation method through weighted load balancing contract network[J]. Aerospace Control, 2023, 41(4): 59–66. doi: 10.16804/j.cnki.issn1006-3242.2023.04.010.
    [34] 陈杰, 黄志祥, 夏润繁, 等. 大规模多类SAR目标检测数据集-1.0[J/OL]. 雷达学报, 2022. https://radars.ac.cn/web/data/getData?dataType=MSAR.

    CHEN Jie, HUANG Zhixiang, XIA Runfan, et al. Large-scale multi-class SAR image target detection dataset-1.0[J/OL]. Journal of Radars, 2022. https://radars.ac.cn/web/data/getData?dataType=MSAR.
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  27
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-06
  • 修回日期:  2024-12-26

目录

    /

    返回文章
    返回