引用排行

(被引数据来源于全网,每月更新)
1
星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。 星载合成孔径雷达(SAR)以卫星等空间飞行器为运动平台,具有全天时、全天候、全球观测能力,已成为一种不可或缺的对地观测手段。当前,我国星载SAR已实现分辨率从米级到亚米级、系统体制从正侧视条带向方位扫描聚束、从单通道向多通道、极化方式从单一极化到全极化的技术跨越。随着技术的不断进步,未来星载SAR将在体制、概念、技术、模式等方面取得突破,包括高分辨率宽幅成像、多基地、轻小型化、智能化等,从而不断拓展星载SAR的观测维度,实现多维度信息获取。该文将围绕星载SAR的技术发展趋势展开论述。
2
海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。 海杂波背景下的雷达目标检测对民用和军事都有着重要的意义。随着海面目标的小型化和隐身化,海面慢速、漂浮小目标已经成为了雷达警戒的重点对象。关于此类小目标的检测一直以来都是海杂波背景下目标检测中的难题。通常,漂浮小目标的雷达散射横截面积(RCS)微弱,并且运动速度慢,常常在时域和频域均存在“超杂波检测”的困难。传统目标检测方法对漂浮小目标的检测存在明显的性能瓶颈。对于海面漂浮小目标的检测,采用高多普勒和高距离分辨体制(“双高”体制)是从雷达体制上解决这个问题的有效途径。在双高体制下,雷达接收的目标回波提供了更多的可用信息。然而,如何将这些更加精细化的信息转化为探测性能的提升,一直以来都是雷达届关注的难点,相关科研成果也一直在不断地推陈出新。近些年,在双高雷达体制下,学者们提出了多种基于特征的目标检测方法,作为对海智能检测的人工特征工程阶段,这些方法缓解了仅依靠能量信息较难检测小目标的困难局面,极大程度地改善了对漂浮小目标的检测性能。为了更好地让相关雷达从业者了解该领域这些年的发展和未来的趋势,该文首先总结了对海检测的难点和常用的目标检测方法,然后分析了特征检测的原理和通用框架以及国内外几种典型的基于特征的检测方法,最后对特征检测方法发展趋势进行了展望。
3
我国西部山区滑坡灾害频发,具有强隐蔽性、高突发性、强破坏性等特点,对灾害隐患点进行早期识别是最为有效的防灾减灾措施。西部山区多为高山峡谷区域且范围辽阔,人不易至甚至人不能至,传统的人工排查早期识别方法较难实施。合成孔径雷达干涉测量技术(InSAR)作为新兴雷达遥感测量手段,可以高效准确地对高山峡谷区域进行滑坡灾害隐患早期识别。该文基于欧洲空间局(ESA)的哨兵一号(Sentinel-1)SAR遥感数据,利用时间序列InSAR技术对雅砻江流域雅江县-木里县段的高山峡谷区域进行了滑坡灾害隐患广域早期识别,成功探测到8处隐患区域。并结合滑坡隐患历史资料与光学影像遥感解译对识别结果进行了验证与分析,对灾害点风险等级进行了评定。并探讨了几何畸变因素对高山峡谷区域InSAR技术滑坡灾害隐患广域早期识别的影响。该案例可为当地的防灾减灾提供有力的数据与技术支持,并为高山峡谷区的滑坡灾害隐患早期识别提供思路与参考。 我国西部山区滑坡灾害频发,具有强隐蔽性、高突发性、强破坏性等特点,对灾害隐患点进行早期识别是最为有效的防灾减灾措施。西部山区多为高山峡谷区域且范围辽阔,人不易至甚至人不能至,传统的人工排查早期识别方法较难实施。合成孔径雷达干涉测量技术(InSAR)作为新兴雷达遥感测量手段,可以高效准确地对高山峡谷区域进行滑坡灾害隐患早期识别。该文基于欧洲空间局(ESA)的哨兵一号(Sentinel-1)SAR遥感数据,利用时间序列InSAR技术对雅砻江流域雅江县-木里县段的高山峡谷区域进行了滑坡灾害隐患广域早期识别,成功探测到8处隐患区域。并结合滑坡隐患历史资料与光学影像遥感解译对识别结果进行了验证与分析,对灾害点风险等级进行了评定。并探讨了几何畸变因素对高山峡谷区域InSAR技术滑坡灾害隐患广域早期识别的影响。该案例可为当地的防灾减灾提供有力的数据与技术支持,并为高山峡谷区的滑坡灾害隐患早期识别提供思路与参考。
4
飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。 飞鸟和无人机(UAVs)是典型的“低慢小”目标,具有低可观测性,对两者的有效监视和识别成为保障空中航路安全、城市安保等需求迫切需要解决的难题。飞鸟和无人机目标类型多、飞行高度低、机动性强、雷达散射截面积小,加之探测环境复杂,给目标探测带来极大困扰,已成为世界性难题。因此迫切需要研发“看得见(检测能力强)、辨得明(识别概率高)”的无人机、飞鸟等“低慢小”目标监视手段和技术,实现目标的精细化描述和识别。该文集中对近年来复杂场景下旋翼无人机和飞鸟目标检测与识别技术的研究进展进行了归纳总结,介绍了飞鸟和无人机探测的主要手段,从回波建模和微动特性认知、泛探模式下机动特征增强与提取、分布式多视角特征融合、运动轨迹差异、深度学习智能分类等方面给出了检测和识别的有效途径。最后,该文总结了现有研究存在的问题,对未来复杂场景下飞鸟和无人机目标检测与识别技术的发展进行了展望。
5
SAR作为一种主动式微波成像传感器,以其全天时、全天候、作用距离远等独特的技术优势,成为当前对地观测的主要手段之一,在军事和民用领域发挥着十分重要的作用。随着SAR遥感技术的发展,高分辨率、高质量的SAR图像不断产生,仅依靠人工手段对感兴趣的目标进行检测、识别费时费力,因此亟需发展SAR自动目标识别(ATR)技术。典型的SAR ATR系统主要包括检测、鉴别、分类/识别3个阶段,其中,检测和鉴别阶段是整个SAR ATR系统的基础,是国内外雷达界一直开展的SAR应用基础研究之一。针对单通道SAR图像,简单场景下目标检测与鉴别已经取得了不错的结果;而在复杂场景下,杂波散射强度相对高、杂波背景非均匀和目标散射强度相对弱、分布密集等情况,使得SAR目标检测和鉴别依然是一个难点。该文对近十年左右复杂场景下单通道SAR目标检测及鉴别方法的研究进展进行了归纳总结,并分析了各类方法的特点及存在的问题,展望了未来复杂场景下单通道SAR目标检测与鉴别方法的发展趋势。 SAR作为一种主动式微波成像传感器,以其全天时、全天候、作用距离远等独特的技术优势,成为当前对地观测的主要手段之一,在军事和民用领域发挥着十分重要的作用。随着SAR遥感技术的发展,高分辨率、高质量的SAR图像不断产生,仅依靠人工手段对感兴趣的目标进行检测、识别费时费力,因此亟需发展SAR自动目标识别(ATR)技术。典型的SAR ATR系统主要包括检测、鉴别、分类/识别3个阶段,其中,检测和鉴别阶段是整个SAR ATR系统的基础,是国内外雷达界一直开展的SAR应用基础研究之一。针对单通道SAR图像,简单场景下目标检测与鉴别已经取得了不错的结果;而在复杂场景下,杂波散射强度相对高、杂波背景非均匀和目标散射强度相对弱、分布密集等情况,使得SAR目标检测和鉴别依然是一个难点。该文对近十年左右复杂场景下单通道SAR目标检测及鉴别方法的研究进展进行了归纳总结,并分析了各类方法的特点及存在的问题,展望了未来复杂场景下单通道SAR目标检测与鉴别方法的发展趋势。
6
合成孔径雷达(SAR)是一种全天候、全天时、具备高分辨率的成像设备,被广泛应用于对敌侦察,为战场决策提供及时可靠的情报支持。如何压制和扰乱SAR设备的成像侦察,实现对高价值目标和要地的有效防护,已成为当前电子对抗领域的研究热难点之一。该文探讨了SAR干扰的技术进展和发展趋势,首先详细梳理了SAR干扰技术的发展脉络,然后结合仿真实验对比分析了典型SAR干扰样式的优缺点,最后总结了现有SAR干扰技术存在的不足,并指出其未来发展趋势,可为专家学者提供一定的参考。 合成孔径雷达(SAR)是一种全天候、全天时、具备高分辨率的成像设备,被广泛应用于对敌侦察,为战场决策提供及时可靠的情报支持。如何压制和扰乱SAR设备的成像侦察,实现对高价值目标和要地的有效防护,已成为当前电子对抗领域的研究热难点之一。该文探讨了SAR干扰的技术进展和发展趋势,首先详细梳理了SAR干扰技术的发展脉络,然后结合仿真实验对比分析了典型SAR干扰样式的优缺点,最后总结了现有SAR干扰技术存在的不足,并指出其未来发展趋势,可为专家学者提供一定的参考。
7
近年来,星载InSAR技术在地质灾害监测领域显示出越来越大的应用潜力。该文首先介绍了InSAR形变监测的原理;然后系统性回顾了InSAR技术的发展,分析了差分InSAR、时序InSAR等方法的技术特点和适用范围;进而从地质灾害监测应用的角度分析了InSAR技术在地震、滑坡、水利工程、地面沉降等领域的应用现状和发展趋势;最后总结了当前地灾监测应用中InSAR技术在大气效应校正、复杂地区形变信息获取、多维形变信息获取中的关键问题,以期服务于地质灾害动态监测与防治工作。从当前InSAR技术在地质灾害监测的应用来看,该技术正处在广泛的业务应用阶段,随着未来星载SAR卫星系统的发展和行业的驱动,必将发展成为一项成熟的高精度对地观测技术,对地质灾害监测产生巨大的影响。 近年来,星载InSAR技术在地质灾害监测领域显示出越来越大的应用潜力。该文首先介绍了InSAR形变监测的原理;然后系统性回顾了InSAR技术的发展,分析了差分InSAR、时序InSAR等方法的技术特点和适用范围;进而从地质灾害监测应用的角度分析了InSAR技术在地震、滑坡、水利工程、地面沉降等领域的应用现状和发展趋势;最后总结了当前地灾监测应用中InSAR技术在大气效应校正、复杂地区形变信息获取、多维形变信息获取中的关键问题,以期服务于地质灾害动态监测与防治工作。从当前InSAR技术在地质灾害监测的应用来看,该技术正处在广泛的业务应用阶段,随着未来星载SAR卫星系统的发展和行业的驱动,必将发展成为一项成熟的高精度对地观测技术,对地质灾害监测产生巨大的影响。
8
该文从新体制被动雷达的功能和性能优势出发,首先简要回顾了被动雷达长达80余年的研究历程;然后较为全面地介绍了相关关键技术的研究进展,包括参考信号重构、多径杂波抑制、目标检测、目标跟踪、被动雷达成像等方面;在此基础上,从系统结构、技术参数、性能指标等方面分别展示了国外(尤其是欧洲相关国家)典型被动雷达实验系统的最新研究成果,接着重点介绍了武汉大学基于多照射源的被动雷达(MIPAR)系统的研发情况,给出了不同频段(HF/VHF/UHF/L) MIPAR系统的目标探测结果,展示了MIPAR系统在远程预警及近距离高精度监视等方面的应用潜力;最后从多照射源集成化、系统配置网络化、信息处理智能化等方面总结了被动雷达的发展趋势。 该文从新体制被动雷达的功能和性能优势出发,首先简要回顾了被动雷达长达80余年的研究历程;然后较为全面地介绍了相关关键技术的研究进展,包括参考信号重构、多径杂波抑制、目标检测、目标跟踪、被动雷达成像等方面;在此基础上,从系统结构、技术参数、性能指标等方面分别展示了国外(尤其是欧洲相关国家)典型被动雷达实验系统的最新研究成果,接着重点介绍了武汉大学基于多照射源的被动雷达(MIPAR)系统的研发情况,给出了不同频段(HF/VHF/UHF/L) MIPAR系统的目标探测结果,展示了MIPAR系统在远程预警及近距离高精度监视等方面的应用潜力;最后从多照射源集成化、系统配置网络化、信息处理智能化等方面总结了被动雷达的发展趋势。
9
合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。 合成孔径雷达(SAR)得益于其全天时全天候、高分辨率的工作模式,在最近几十年吸引了全球雷达学者的目光。作为一种有源雷达系统,合成孔径雷达高分辨成像过程中会受多样式复杂多变的强电磁干扰影响,从而严重影响合成孔径雷达最终的高分辨成像结果,因此,如何有效对抗复杂电磁干扰是合成孔径雷达探测感知的难点和重点之一。该文针对不同的干扰样式、干扰来源、干扰散射机理、雷达天线配置、目标特性等合成孔径雷达抗干扰及高分辨成像的关键要素和主要思路进行了总结梳理,并依照干扰对抗算法的本质,对近些年代表性的合成孔径雷达对抗压制干扰和欺骗干扰算法的文献进行介绍和归纳,旨在为以后的研究提供一定的参考。
10

极化合成孔径雷达(SAR)能够获取目标的全极化信息,在对地观测、灾害评估、侦察监视等民用和军用领域得到广泛应用。国内主要高校、中科院、工业部门和用户单位在该领域开展了卓有成效的工作,取得一大批标志性研究成果。该文简要综述了极化SAR成像解译识别领域的主要研究进展。在解译层面,主要介绍了极化目标分解和极化旋转域解译等理论方法的研究进展。在应用层面,结合研究团队的工作,探讨了上述理论方法在舰船检测、地物分类和建筑物损毁评估等领域的应用成效。最后,对极化SAR目标解译识别技术的研究进行了展望。

极化合成孔径雷达(SAR)能够获取目标的全极化信息,在对地观测、灾害评估、侦察监视等民用和军用领域得到广泛应用。国内主要高校、中科院、工业部门和用户单位在该领域开展了卓有成效的工作,取得一大批标志性研究成果。该文简要综述了极化SAR成像解译识别领域的主要研究进展。在解译层面,主要介绍了极化目标分解和极化旋转域解译等理论方法的研究进展。在应用层面,结合研究团队的工作,探讨了上述理论方法在舰船检测、地物分类和建筑物损毁评估等领域的应用成效。最后,对极化SAR目标解译识别技术的研究进行了展望。

11
辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。 辐射源个体识别是一种仅通过信号的外部特征测量手段,提取辐射源指纹特征,从而识别发射给定信号的特定辐射源个体的技术。近年来,辐射源个体识别技术相关理论与实践应用不断完善,指纹特征提取方法的研究取得了较大的进展。该文在分析国内外大量学术研究成果的基础上,从指纹特征的内在逻辑出发提出了一种新的特征框架。该框架根据不同特征对辐射源指纹的描述特性以及相互之间的关联,将指纹特征划分为直接测量特征和降维变换特征两大类共3个层次,并系统性地梳理了辐射源指纹特征提取方法的研究现状。最后,该文对辐射源指纹特征提取的几个潜在研究方向进行了分析和展望, 希望对辐射源个体识别的研究和应用有所裨益。
12
视频合成孔径雷达(SAR)技术将观测场景的动态信息以视频方式呈现出来,其高帧率成像特性有利于实现对地面机动目标的实时探测。视频SAR信号处理关键技术主要包括高帧率成像处理算法和运动目标检测技术等。该文对视频SAR成像处理进行了探讨,给出了两种典型视频SAR成像处理仿真数据结果,详细分析了视频SAR阴影形成机理和对动目标检测性能的影响,并将基于机器学习的视频SAR阴影目标检测技术与经典处理方法在实际数据上进行了验证对比。 视频合成孔径雷达(SAR)技术将观测场景的动态信息以视频方式呈现出来,其高帧率成像特性有利于实现对地面机动目标的实时探测。视频SAR信号处理关键技术主要包括高帧率成像处理算法和运动目标检测技术等。该文对视频SAR成像处理进行了探讨,给出了两种典型视频SAR成像处理仿真数据结果,详细分析了视频SAR阴影形成机理和对动目标检测性能的影响,并将基于机器学习的视频SAR阴影目标检测技术与经典处理方法在实际数据上进行了验证对比。
13
合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。 合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。
14
强海杂波与海面目标的复杂特性使得海面目标回波微弱,有效的海杂波抑制和稳健快速的目标检测是雷达对海上目标探测需考虑的重要因素。然而,现有的海面目标检测算法对于复杂环境下的目标检测性能有限,环境和目标特性适应性差。该文设计了一种杂波抑制和目标检测融合网络(INet),通过层归一化-传递和连接方法提取关键目标特征,采用注意力网络抑制杂波和增强目标,构建跨阶段局部残差网络保证检测网络的轻量化和准确性。基于导航雷达在多种观测条件下采集的回波数据,构建了海面目标雷达图像数据集;通过模型的预训练和平面位置显示器(PPI)图像的帧间积累对INet进行了优化,得到了Optimized INet(O-INet)模型。经过多种天气条件下实测数据测试和验证,并与YOLOv3, YOLOv4,双参数CFAR和二维CA-CFAR对比后证明,所提方法在提高检测概率、降低虚警率和复杂条件下的强泛化能力有显著优势。 强海杂波与海面目标的复杂特性使得海面目标回波微弱,有效的海杂波抑制和稳健快速的目标检测是雷达对海上目标探测需考虑的重要因素。然而,现有的海面目标检测算法对于复杂环境下的目标检测性能有限,环境和目标特性适应性差。该文设计了一种杂波抑制和目标检测融合网络(INet),通过层归一化-传递和连接方法提取关键目标特征,采用注意力网络抑制杂波和增强目标,构建跨阶段局部残差网络保证检测网络的轻量化和准确性。基于导航雷达在多种观测条件下采集的回波数据,构建了海面目标雷达图像数据集;通过模型的预训练和平面位置显示器(PPI)图像的帧间积累对INet进行了优化,得到了Optimized INet(O-INet)模型。经过多种天气条件下实测数据测试和验证,并与YOLOv3, YOLOv4,双参数CFAR和二维CA-CFAR对比后证明,所提方法在提高检测概率、降低虚警率和复杂条件下的强泛化能力有显著优势。
15
当前,国内外逆合成孔径雷达(ISAR)系统均朝着高载频、大带宽、多极化、分布式、网络化的方向发展,并牵引ISAR成像技术的发展和进步。从ISAR图像的角度来看,ISAR成像的发展变化主要可归纳为精细化成像以提升成像质量和多维度成像以丰富成像信息两个方面。该文首先从雷达回波脉冲压缩、雷达系统失真校正、目标高速运动补偿、距离向自聚焦、平动补偿、转动补偿、图像重构、图像后处理等方面综述雷达精细化成像方法,然后从极化、多频带融合、多站多视角成像、三维成像等方面综述雷达成像维度的扩展,最后从成像建模、复杂场景精细成像、实时成像、成像评价与图像应用等4个方面进行展望分析。 当前,国内外逆合成孔径雷达(ISAR)系统均朝着高载频、大带宽、多极化、分布式、网络化的方向发展,并牵引ISAR成像技术的发展和进步。从ISAR图像的角度来看,ISAR成像的发展变化主要可归纳为精细化成像以提升成像质量和多维度成像以丰富成像信息两个方面。该文首先从雷达回波脉冲压缩、雷达系统失真校正、目标高速运动补偿、距离向自聚焦、平动补偿、转动补偿、图像重构、图像后处理等方面综述雷达精细化成像方法,然后从极化、多频带融合、多站多视角成像、三维成像等方面综述雷达成像维度的扩展,最后从成像建模、复杂场景精细成像、实时成像、成像评价与图像应用等4个方面进行展望分析。
16

通过被动接收辐射源信号并确定其位置的无源定位技术,在电子侦察、搜索救援等领域具有重要价值。传统测向交叉、时差、频差等无源定位技术通常需要两步实现辐射源的定位,第1步通过截获的信号采样估计与辐射源位置有关的定位参数,第2步利用这些定位参数求解辐射源的位置,这种处理方式带来了信息量损失、定位参数关联困难、系统灵敏度需求高等问题。近十几年来,兴起了一种无需估计定位参数,而是直接处理原始采样信号获得辐射源位置估计的直接定位(DPD)技术,其具有适应低信噪比、无需参数关联、鲁棒性强等优势。在对已有直接定位技术进行全面总结基础上,该文归纳了基于不同信息类型的典型直接定位技术、特殊信号直接定位技术、高分辨率高精度直接定位技术、直接定位快速算法以及直接定位模型误差校正技术等已有成果,并对直接定位未来发展方向进行展望。

通过被动接收辐射源信号并确定其位置的无源定位技术,在电子侦察、搜索救援等领域具有重要价值。传统测向交叉、时差、频差等无源定位技术通常需要两步实现辐射源的定位,第1步通过截获的信号采样估计与辐射源位置有关的定位参数,第2步利用这些定位参数求解辐射源的位置,这种处理方式带来了信息量损失、定位参数关联困难、系统灵敏度需求高等问题。近十几年来,兴起了一种无需估计定位参数,而是直接处理原始采样信号获得辐射源位置估计的直接定位(DPD)技术,其具有适应低信噪比、无需参数关联、鲁棒性强等优势。在对已有直接定位技术进行全面总结基础上,该文归纳了基于不同信息类型的典型直接定位技术、特殊信号直接定位技术、高分辨率高精度直接定位技术、直接定位快速算法以及直接定位模型误差校正技术等已有成果,并对直接定位未来发展方向进行展望。

17
目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。 目标检测与识别是高分辨合成孔径雷达(SAR)领域的热点问题。机场上飞机作为一种典型目标,其检测和识别有一定的独特性。该文回顾了SAR图像典型目标检测识别领域技术的发展过程,分析了SAR图像中飞机目标的散射机制及面临的技术难点,阐述了 SAR 飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在的问题,展望了未来的发展趋势。该文认为如何将深度学习与目标电磁散射机理结合、提高网络或模型的泛化能力是提升SAR图像中目标检测识别精度的关键,并给出了一种基于散射信息与深度学习融合的飞机目标检测方法。
18

雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。

雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。

19
雷达海上目标特性综述
关键
2020, 9(4): 674-683.
摘要(5102)
HTML (1899) 1016KB(734)
该文围绕雷达对海上目标探测中的目标特性,简述了主要目标特性和模型,以及在目标特性测量和计算中的主要问题,然后从目标、环境、传感器3个角度,讨论了海上目标探测中一些较为关注的目标特性,说明了海上目标特性的多样性、海上环境的复杂多变性、海上目标与环境的相互耦合作用,以及探测海上目标的主要雷达手段和典型应用背景中目标特性需求;最后介绍了雷达目标特性测试与建模技术,提出了目标特性的多维度描述,初步讨论了一些应用。 该文围绕雷达对海上目标探测中的目标特性,简述了主要目标特性和模型,以及在目标特性测量和计算中的主要问题,然后从目标、环境、传感器3个角度,讨论了海上目标探测中一些较为关注的目标特性,说明了海上目标特性的多样性、海上环境的复杂多变性、海上目标与环境的相互耦合作用,以及探测海上目标的主要雷达手段和典型应用背景中目标特性需求;最后介绍了雷达目标特性测试与建模技术,提出了目标特性的多维度描述,初步讨论了一些应用。
20
由于高分辨海杂波具有复杂的特性以及海面小目标具有多样性,没有精确的简单统计模型可以较好地描述海杂波和目标回波时间序列,这导致目标检测遇到了很多阻碍。为了区分海杂波和目标回波,分别提取它们的特征将检测问题转化为特征空间中的分类问题是一种有效的方法。基于特征的检测可以归结为在特征空间中的一种2元假设检验问题,但是其有两个问题需要解决:一是目标回波数据远少于杂波数据;二是虚警概率不可控。为了解决第1个问题,一种典型小目标的仿真回波产生器被用于产生充足的典型目标回波数据,以辅佐后续检测器的设计。K近邻(K-NN)是一种简单有效的分类方法,但是因为无法精确地控制虚警率而不能直接在目标检测中使用。该文提出一种基于改进K-NN的海面小目标检测方法,可以很好地实现可控虚警。经IPIX雷达数据集验证,所提出的方法在观测时间分别为0.512 s和1.024 s时获得了85.1%和89.2%的检测概率,相比现有的检测器获得了7%和5%的提升,具有良好的检测效果和稳定性。 由于高分辨海杂波具有复杂的特性以及海面小目标具有多样性,没有精确的简单统计模型可以较好地描述海杂波和目标回波时间序列,这导致目标检测遇到了很多阻碍。为了区分海杂波和目标回波,分别提取它们的特征将检测问题转化为特征空间中的分类问题是一种有效的方法。基于特征的检测可以归结为在特征空间中的一种2元假设检验问题,但是其有两个问题需要解决:一是目标回波数据远少于杂波数据;二是虚警概率不可控。为了解决第1个问题,一种典型小目标的仿真回波产生器被用于产生充足的典型目标回波数据,以辅佐后续检测器的设计。K近邻(K-NN)是一种简单有效的分类方法,但是因为无法精确地控制虚警率而不能直接在目标检测中使用。该文提出一种基于改进K-NN的海面小目标检测方法,可以很好地实现可控虚警。经IPIX雷达数据集验证,所提出的方法在观测时间分别为0.512 s和1.024 s时获得了85.1%和89.2%的检测概率,相比现有的检测器获得了7%和5%的提升,具有良好的检测效果和稳定性。
  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 末页
  • 共:4页