雷达海上目标特性综述

关键

关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114
引用本文: 关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114
GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114
Citation: GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114

雷达海上目标特性综述

doi: 10.12000/JR20114
基金项目: 国家自然科学基金(61871391, 61871392, 61931021),山东省重点研发计划(2019JZZY010415)
详细信息
    作者简介:

    关 键(1968–),男,辽宁锦州人,教授,博士生导师。研究方向为海上目标探测、雷达海杂波特性和弱目标检测。新世纪百千万人才工程国家级人选,曾获国家科技进步二等奖1项、省部级一等奖4项。E-mail: guanjian_68@163.com

    通讯作者:

    关键 guanjian_68@163.com

  • 责任主编:许述文 Corresponding Editor: XU Shuwen
  • 中图分类号: TN95

Summary of Marine Radar Target Characteristics

Funds: The National Natural Science Foundation of China (61871391, 61871392, 61931021), The Key Research and Development Program of Shandong Province (2019JZZY010415)
More Information
  • 摘要: 该文围绕雷达对海上目标探测中的目标特性,简述了主要目标特性和模型,以及在目标特性测量和计算中的主要问题,然后从目标、环境、传感器3个角度,讨论了海上目标探测中一些较为关注的目标特性,说明了海上目标特性的多样性、海上环境的复杂多变性、海上目标与环境的相互耦合作用,以及探测海上目标的主要雷达手段和典型应用背景中目标特性需求;最后介绍了雷达目标特性测试与建模技术,提出了目标特性的多维度描述,初步讨论了一些应用。

     

  • 图  1  不同雷达频率下测得的一艘大型海军辅助舰水平极化RCS[5](径向标度,以1 m2的分贝数为单位)

    Figure  1.  RCS of a huge naval supplementary ship in horizontal polarization for different frequency[5] (unit of radial scale is dB of 1 m2)

    图  2  舰船一维距离像

    Figure  2.  One-dimensional range profile of a ship

    图  3  舰船SAR图像

    Figure  3.  SAR image of a ship

    图  4  粗糙海面电磁散射示意图[14]

    Figure  4.  Sketch map of electromagnetic scattering from rough sea surface[14]

    图  5  舰船六自由度示意图[14]

    Figure  5.  Sketch map of a ship in 6 free degrees[14]

    图  6  海面目标多径反射示意图[14]

    Figure  6.  Sketch map of multipath reflection of target and sea surface[14]

    图  7  典型驱逐舰沿±45°方位角平均的HH极化RCS随天顶角的变化曲线[5]

    Figure  7.  RCS curves of a typical destroyer in ±45° horizontal degrees and HH polarization, horizontal ordinate is complementary angle of pitching angle[5]

  • [1] 林春生, 龚沈光. 舰船物理场[M]. 北京: 兵器工业出版社, 2007.

    LIN Chunsheng and GONG Shenguang. Ship’s Physical Field[M]. Beijing: Ordnance Industry Press, 2007.
    [2] KNOTT E F. Radar Cross Section[M]. Dedham: Artech House, 1985.
    [3] MARCUM J. A statistical theory of target detection by pulsed radar[J]. IRE Transactions on Information Theory, 1960, 6(2): 59–267. doi: 10.1109/TIT.1960.1057560
    [4] SWERLING P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(2): 269–308. doi: 10.1109/TIT.1960.1057561
    [5] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005.

    HUANG Peikang, YIN Hongcheng, and XU Xiaojian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [6] 庄钊文, 袁乃昌, 莫锦军, 等. 军用目标雷达散射截面预估与测量[M]. 北京: 科学出版社, 2007.

    ZHUANG Zhaowen, YUAN Naichang, MO Jinjun, et al. Estimation and Measurement of Radar Cross Section Area of Military Targets[M]. Beijing: Science Press, 2007.
    [7] 陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7–17.

    CHEN Weishi and LI Jing. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7–17.
    [8] 杨屹, 程虹, 王青. 高耐波隐身船型设计[J]. 舰船科学技术, 2010, 32(9): 3–7, 15. doi: 10.3404/j.issn.1672-7649.2010.09.001

    YANG Yi, CHENG Hong, and WANG Qing. Research on high sea-keeping and stealth of naval ships[J]. Ship Science and Technology, 2010, 32(9): 3–7, 15. doi: 10.3404/j.issn.1672-7649.2010.09.001
    [9] 梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18): 27–39.

    MEI Zhonglei, ZHANG Li, and CUI Tiejun. Recent advances on metamaterials[J]. Science &Technology Review, 2016, 34(18): 27–39.
    [10] 王德纯. 雷达目标微观特性测量技术[J]. 中国电子科学研究院学报, 2007, 2(5): 439–444. doi: 10.3969/j.issn.1673-5692.2007.05.001

    WANG Dechun. Micro-characteristics measuring techniques for radar-target[J]. Journal of China Academy of Electronics and Information Technology, 2007, 2(5): 439–444. doi: 10.3969/j.issn.1673-5692.2007.05.001
    [11] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21.
    [12] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123–134. doi: 10.3724/SP.J.1300.2013.20102

    CHEN Xiaolong, GUAN Jian, and HE You. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123–134. doi: 10.3724/SP.J.1300.2013.20102
    [13] 文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1985.

    WEN Shengchang and YU Zhouwen. Sea Wave Theory and Calculation Principle[M]. Beijing: Science Press, 1985.
    [14] 许小剑, 李晓飞, 刁桂杰, 等. 时变海面雷达目标散射现象学模型[M]. 北京: 国防工业出版社, 2013.

    XU Xiaojian, LI Xiaofei, DIAO Guijie, et al. Radar Phenomenological Models for Ships on Time-Evolving Sea Surface[M]. Beijing: National Defense Industry Press, 2013.
    [15] 张金鹏, 张玉石, 李清亮, 等. 基于不同散射机制特征的海杂波时变多普勒谱模型[J]. 物理学报, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612

    ZHANG Jinpeng, ZHANG Yushi, LI Qingliang, et al. A time-varying Doppler spectrum model of radar sea clutter based on different scattering mechanisms[J]. Acta Physica Sinica, 2018, 67(3): 034101. doi: 10.7498/aps.67.20171612
    [16] 丁昊, 刘宁波, 董云龙, 等. 雷达海杂波测量试验回顾与展望[J]. 雷达学报, 2019, 8(3): 281–302. doi: 10.12000/JR19006

    DING Hao, LIU Ningbo, DONG Yunlong, et al. Overview and prospects of radar sea clutter measurement experiments[J]. Journal of Radars, 2019, 8(3): 281–302. doi: 10.12000/JR19006
    [17] 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
    [18] 黄勇, 陈小龙, 关键. 实测海尖峰特性分析及抑制方法[J]. 雷达学报, 2015, 4(3): 334–342. doi: 10.12000/JR14108

    HUANG Yong, CHEN Xiaolong, and GUAN Jian. Property analysis and suppression method of real measured sea spikes[J]. Journal of Radars, 2015, 4(3): 334–342. doi: 10.12000/JR14108
    [19] LONG M W. Radar Reflectivity of Land and Sea[M]. 3rd ed. Boston: Artech House, 2001.
    [20] 察豪, 史建伟, 张萍. 蒸发波导条件下雷达探测距离的估计方法[J]. 现代雷达, 2006, 28(9): 5–7. doi: 10.3969/j.issn.1004-7859.2006.09.002

    CHA Hao, SHI Jianwei, and ZHANG Ping. Calculation of radar detection range in condition of evaporation duct[J]. Modern Radar, 2006, 28(9): 5–7. doi: 10.3969/j.issn.1004-7859.2006.09.002
    [21] 李文兴, 卢长新, 宫建斌. 粗糙海面舰船目标RCS研究[J]. 雷达科学与技术, 2015, 13(5): 496–500. doi: 10.3969/j.issn.1672-2337.2015.05.009

    LI Wenxing, LU Changxin, and GONG Jianbin. Research on ship RCS based on rough sea[J]. Radar Science and Technology, 2015, 13(5): 496–500. doi: 10.3969/j.issn.1672-2337.2015.05.009
    [22] JAMIL K and BURKHOLDER R J. Radar scattering from a rolling target floating on a time-evolving rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3330–3337. doi: 10.1109/TGRS.2006.880631
    [23] 徐丰, 金亚秋. 计算粗糙海面与大型舰船复合散射的双向解析射线追踪法[J]. 自然科学进展, 2008, 18(7): 814–825.

    XU Feng and JIN Yaqiu. Two way analytical ray tracing method for complex scattering from rough sea surface and large ship[J]. Progress in Natural Science, 2008, 18(7): 814–825.
    [24] DONG Chunzhu, WANG Chao, WEI Xiao, et al. EM scattering from complex targets above a slightly rough surface[C]. Progress in Electromagnetic Research Symposium, Beijing, China, 2007: 685–688.
    [25] 许小剑, 姜丹, 李晓飞. 时变海面舰船目标动态雷达特征信号模型[J]. 系统工程与电子技术, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09

    XU Xiaojian, JIANG Dan, and LI Xiaofei. Modeling of dynamic radar signatures for ships on time-varying sea surface[J]. Systems Engineering and Electronics, 2011, 33(1): 42–47. doi: 10.3969/j.issn.1001-506X.2011.01.09
    [26] 赵晔. 海面与舰船目标电磁散射的建模方法研究[D]. [博士论文], 西安电子科技大学, 2016.

    ZHAO Ye. Study on modeling method of EM scattering from sea surface and ship target[D]. [Ph. D. dissertation], Xidian University, 2018.
    [27] 李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068

    LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
    [28] 种劲松. 合成孔径雷达图像舰船目标检测算法与应用研究[D]. [博士论文], 中国科学院研究生院(电子学研究所), 2002.

    CHONG Jinsong. A study on the algorithm of ship target detection in SAR imagery and its applications[D]. [Ph. D. dissertation], Institute of Electrics, Chinese Academy of Sciences, 2002.
    [29] 孙荣庆. 海面舰船尾迹电磁散射研究[D]. [博士论文], 西安电子科技大学, 2013.

    SUN Rongqing. Research on electromagnetic scattering from ship Weaks[D]. [Ph. D. dissertation], Xidian University, 2013.
    [30] 张效慈, 张军. 潜艇内波波迹-航空猎潜的新对象[J]. 船舶力学, 2007, 11(4): 508–513. doi: 10.3969/j.issn.1007-7294.2007.04.003

    ZHANG Xiaoci and ZHANG Jun. Internal wave wake of submarine—A new target of aerial submarine hunting[J]. Journal of Ship Mechanics, 2007, 11(4): 508–513. doi: 10.3969/j.issn.1007-7294.2007.04.003
    [31] 陈标, 朱海荣. 机载超低频雷达探测海洋内波[J]. 海洋技术学报, 2014, 33(1): 50–55.

    CHEN Biao and ZHU Hairong. The method of detecting ocean internal waves through airborne ultra low frequency radar[J]. Ocean Technology, 2014, 33(1): 50–55.
    [32] 潘雪莉. 机载环视SAR海面特性和舰船目标检测算法研究[D]. [博士论文], 西安电子科技大学, 2018.

    PAN Xueli. Research on sea surface property and ship target detection method in airborne circular scanning SAR[D]. [Ph. D. dissertation], Xidian University, 2018.
    [33] 何嘉懿. 天基预警雷达微弱动目标检测跟踪方法研究[D]. [博士论文], 西安电子科技大学, 2016.

    HE Jiayi. Detection and tracking of weak moving targets for space based warning radar[D]. [Ph. D. dissertation], Xidian University, 2016.
    [34] 刘泽宇, 柳彬, 郭炜炜, 等. 高分三号NSC模式SAR图像舰船目标检测初探[J]. 雷达学报, 2017, 6(5): 473–482. doi: 10.12000/JR17059

    LIU Zeyu, LIU Bin, GUO Weiwei, et al. Ship detection in GF-3 NSC mode SAR images[J]. Journal of Radars, 2017, 6(5): 473–482. doi: 10.12000/JR17059
    [35] 徐晋, 付启众, 陆鹏程, 等. 米波雷达对海面目标探测性能分析及验证[J]. 雷达科学与技术, 2012, 10(4): 376–379. doi: 10.3969/j.issn.1672-2337.2012.04.006

    XU Jin, FU Qizhong, LU Pengcheng, et al. Analysis and experiment verification of maritime target detection performance of meter-wave radar[J]. Radar Science and Technology, 2012, 10(4): 376–379. doi: 10.3969/j.issn.1672-2337.2012.04.006
    [36] 杨松岩. 高频波段雷达目标特征提取与识别方法研究[D]. [博士论文], 哈尔滨工业大学, 2015.

    YANG Songyan. Research on high frequency band radar target features extraction and identification[D]. [Ph. D. dissertation], Harbin Institute of Technology, 2015.
    [37] 刘根旺, 张杰, 张晰, 等. 基于残差谱显著性区域提取的极化SAR船只检测[J]. 电波科学学报, 2019, 34(6): 751–760.

    LIU Genwang, ZHANG Jie, ZHANG Xi, et al. Ship detection based on visual saliency region extraction of spectral residual for Pol-SAR images[J]. Chinese Journal of Radio Science, 2019, 34(6): 751–760.
    [38] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    [39] 王雪松, 杨勇. 海杂波与目标极化特性研究进展[J]. 电波科学学报, 2019, 34(6): 665–675.

    WANG Xuesong and YANG Yong. Overview on cognition of clutter and target polarization characteristics for maritime radar[J]. Chinese Journal of Radio Science, 2019, 34(6): 665–675.
    [40] 王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109

    WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
    [41] 李尚生, 付哲泉, 于晶, 等. 基于极化特征的抗箔条干扰方法研究[J]. 雷达科学与技术, 2016, 14(5): 478–481. doi: 10.3969/j.issn.1672-2337.2016.05.005

    LI Shangsheng, FU Zhequan, YU Jing, et al. Research on anti-chaff jamming method based on radar echo signal[J]. Radar Science and Technology, 2016, 14(5): 478–481. doi: 10.3969/j.issn.1672-2337.2016.05.005
    [42] 金林. 量子雷达研究进展[J]. 现代雷达, 2017, 39(3): 1–7.

    JIN Lin. Research progress of quantum radar[J]. Modern Radar, 2017, 39(3): 1–7.
    [43] 潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52.

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52.
    [44] 王宏强, 邓彬, 秦玉亮. 太赫兹雷达技术[J]. 雷达学报, 2018, 7(1): 1–21. doi: 10.12000/JR17107

    WANG Hongqiang, DENG Bin, and QIN Yuliang. Review of terahertz radar technology[J]. Journal of Radars, 2018, 7(1): 1–21. doi: 10.12000/JR17107
    [45] 郭桂荣, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [46] 诸四海. 在强海杂波背景下的潜望镜检测[J]. 现代雷达, 2000, 22(4): 43–47. doi: 10.3969/j.issn.1004-7859.2000.04.009

    ZHU Sihai. The periscope detection against the background of strong sea clutters[J]. Modern Radar, 2000, 22(4): 43–47. doi: 10.3969/j.issn.1004-7859.2000.04.009
    [47] 于连庆, 孙斌, 沈学勇, 等. 国外潜望镜探测雷达发展与思考[J]. 现代雷达, 2015, 37(4): 10–13. doi: 10.3969/j.issn.1004-7859.2015.04.003

    YU Lianqing, SUN Bin, SHEN Xueyong, et al. Development and considerations of overseas periscope detection radar[J]. Modern Radar, 2015, 37(4): 10–13. doi: 10.3969/j.issn.1004-7859.2015.04.003
    [48] 于录, 李瑱. 目标特性对反舰导弹捕捉概率的影响[J]. 战术导弹技术, 2010, (3): 44–47.

    YU Lu and LI Zhen. Influence of target characteristics on the acquiring probability of anti-ship missile[J]. Tactical Missile Technology, 2010(3): 44–47.
    [49] 卫鑫, 姜宁. 冲淡干扰在单舰反导作战中的作战运用[J]. 舰船电子工程, 2018, 38(2): 17–20. doi: 10.3969/j.issn.1672-9730.2018.02.005

    WEI Xin and JIANG Ning. Tactics usage of dilution jamming in single antimissile operation[J]. Ship Electronic Engineering, 2018, 38(2): 17–20. doi: 10.3969/j.issn.1672-9730.2018.02.005
    [50] 张俊, 胡生亮, 杨庆, 等. 基于RCS幅值特性相似度的浮空式角反射体布放态势寻优[J]. 海军工程大学学报, 2019, 31(2): 32–36. doi: 10.7495/j.issn.1009-3486.2019.02.006

    ZHANG Jun, HU Shengliang, YANG Qing, et al. Optimization of position situation of air-floating corner reflectors based on similarity of RCS amplitude characteristic[J]. Journal of Naval University of Engineering, 2019, 31(2): 32–36. doi: 10.7495/j.issn.1009-3486.2019.02.006
    [51] 秦剑冬, 吴晓锋, 程志锋, 等. 舰空导弹和箔条冲淡干扰电磁兼容模型与仿真[J]. 海军工程大学学报, 2017, 29(3): 92–97.

    QIN Jiandong, WU Xiaofeng, CHENG Zhifeng, et al. Model and simulation of electromagnetic compatibility of SAM and decoy dilution jamming[J]. Journal of Naval University of Engineering, 2017, 29(3): 92–97.
    [52] 姚远, 肖舒文, 陈晓盼. 国外雷达目标特性测试技术发展研究[J]. 制导与引信, 2017, 38(4): 11–15, 22. doi: 10.3969/j.issn.1671-0576.2017.04.003

    YAO Yuan, XIAO Shuwen, and CHEN Xiaopan. Research on the development of foreign radar target properties measurements[J]. Guidance &Fuze, 2017, 38(4): 11–15, 22. doi: 10.3969/j.issn.1671-0576.2017.04.003
    [53] 林刚, 许家栋. 目标RCS动态数据的分布特征研究[J]. 现代雷达, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006

    LIN Gang and XU Jiadong. Study of the statistical characterization of Targets’ RCS dynamic data[J]. Modern Radar, 2006, 28(2): 18–20, 39. doi: 10.3969/j.issn.1004-7859.2006.02.006
    [54] “电磁计算”专刊编委会. 电磁计算十大问题[J]. 电波科学学报, 2020, 35(1): 3–12.

    The Editorial Board of Special Issue for "Computational Electromagnetics". Ten problems in computational electromagnetics[J]. Chinese Journal of Radio Science, 2020, 35(1): 3–12.
    [55] 郭立新, 张民, 吴振森. 随机粗糙面与目标复合电磁散射的基本理论和方法[M]. 北京: 科学出版社, 2014.

    GUO Lixin, ZHANG Min, and WU Zhensen. Basic Theory and Method of Electromagnetic Scattering from Random Rough Surface and Target[M]. Beijing: Science Press, 2014.
    [56] 刘宁波, 关键, 宋杰, 等. 分形理论在目标检测中的应用[J]. 现代雷达, 2012, 34(2): 12–18. doi: 10.3969/j.issn.1004-7859.2012.02.004

    LIU Ningbo, GUAN Jian, SONG Jie, et al. Application of target detection based on fractal theories[J]. Modern Radar, 2012, 34(2): 12–18. doi: 10.3969/j.issn.1004-7859.2012.02.004
    [57] SCHARF L L and FRIEDLANDER B. Matched subspace detectors[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 2146–2157. doi: 10.1109/78.301849
    [58] 关键, 张彦飞, 李彬玉, 等. 雷达非合作目标恒虚警检测和分类一体化方案[J]. 光电工程, 2006, 33(7): 1–4, 73. doi: 10.3969/j.issn.1003-501X.2006.07.001

    GUAN Jian, ZHANG Yanfei, LI Binyu, et al. Joint CFAR detection and classification scheme for radarnon-cooperative target recognition[J]. Opto-Electronic Engineering, 2006, 33(7): 1–4, 73. doi: 10.3969/j.issn.1003-501X.2006.07.001
  • 加载中
图(7)
计量
  • 文章访问数:  4072
  • HTML全文浏览量:  1660
  • PDF下载量:  570
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-06
  • 修回日期:  2020-08-25
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回