合成孔径雷达极化成像解译识别技术的进展与展望

王雪松 陈思伟

王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109
引用本文: 王雪松, 陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望[J]. 雷达学报, 2020, 9(2): 259–276. doi: 10.12000/JR19109
WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
Citation: WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109

合成孔径雷达极化成像解译识别技术的进展与展望

DOI: 10.12000/JR19109
基金项目: 国家自然科学基金(61490690, 61625108, 61771480),湖湘青年英才项目(2019RS2025),装备预研基金项目(61404150104, 61404160109),国防科技大学科研计划重点项目(ZK18-02-14)
详细信息
    作者简介:

    王雪松,男,内蒙古人,博士,国防科技大学电子科学学院院长,教授,博士生导师。主要研究方向为雷达极化、雷达目标识别、新体制雷达、电子对抗等

    陈思伟,男,四川人,博士,国防科技大学电子科学学院特聘教授,硕士生导师。主要研究方向包括雷达极化、成像雷达、目标解译、电子对抗等。E-mail: chenswnudt@163.com

    通讯作者:

    陈思伟 chenswnudt@163.com

  • 责任主编:杨健 Corresponding Editor: YANG Jian
  • 中图分类号: TN958

Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives

Funds: The National Nature Science Foundation of China (61490690, 61625108, 61771480), The Youth Talents Project of Hunan Province (2019RS2025), The Equipment Pre-Research Foundation (61404150104,61404160109), The Key Research Projects of National University of Defense Technology (ZK18-02-14)
More Information
  • 摘要:

    极化合成孔径雷达(SAR)能够获取目标的全极化信息,在对地观测、灾害评估、侦察监视等民用和军用领域得到广泛应用。国内主要高校、中科院、工业部门和用户单位在该领域开展了卓有成效的工作,取得一大批标志性研究成果。该文简要综述了极化SAR成像解译识别领域的主要研究进展。在解译层面,主要介绍了极化目标分解和极化旋转域解译等理论方法的研究进展。在应用层面,结合研究团队的工作,探讨了上述理论方法在舰船检测、地物分类和建筑物损毁评估等领域的应用成效。最后,对极化SAR目标解译识别技术的研究进行了展望。

     

  • 图  1  建筑物目标极化分解结果

    Figure  1.  Polarimetric decomposition results from a built-up area

    图  2  基于UAVSAR数据的极化特征对比

    Figure  2.  Comparisons of polarimetric features using UAVSAR

    图  3  极化旋转域可视化表征

    Figure  3.  Visualization and characterization in polarimetric rotation domain

    图  4  极化相关方向图特征的TCR对比结果

    Figure  4.  TCR comparisons in terms of polarimetric correlation pattern features

    图  5  高分三号数据

    Figure  5.  GaoFen-3 data

    图  6  提出的分类器

    Figure  6.  The proposed classifier architecture

    图  7  相干斑滤波处理后的多时相UAVSAR数据及真值图

    Figure  7.  Multi-temporal UAVSAR datasets with speckle reduction and the ground-truth data

    图  8  建筑物倒损前后极化散射机理变化示意图

    Figure  8.  Illustration of the changes of the polarimetric scattering mechanisms

    图  9  广域建筑物倒损率估计及与真值数据的对比(2011.03.11东日本大地震)

    Figure  9.  Urban damage mapping results and comparisons with the ground-truth data (the March 11th, 2011, East Japan earthquake)

    表  1  高分三号极化SAR舰船目标检测结果

    Table  1.   Ship detection results with GaoFen-3 data

    方法${N_{\rm{C}}}$${N_{\rm{M}}}$${N_{{\rm{FA}}}}$FoM(%)
    SO-CFAR方法18161074.79
    Saliency方法22517092.98
    ${\left| { { {\hat \gamma }_{ {\rm{HH {\text{-}} HV} } } }\left( \theta \right)} \right|_{ {\rm{org} } } }$2366396.33
    ${\left| { { {\hat \gamma }_{({\rm{HH - VV} }){\rm{ {\text{-} } (HV)} } } }\left( \theta \right)} \right|_{ {\rm{min} } } }$2357296.31
    ${\left| { { {\hat \gamma }_{({\rm{HH - VV} }){\rm{ {\text{-} } (HV)} } } }\left( \theta \right)} \right|_{ {\rm{org} } } }$2375297.13
    下载: 导出CSV

    表  2  UAVSAR极化SAR地物分类的总体分类精度(%)

    Table  2.   The OAs of polarimetric SAR land cover classification results with UAVSAR data (%)

    DoYMethodTraining ratio
    10%5%1%
    169${T_3}$+CNN99.3599.3898.92
    SF+CNN99.5499.4398.86
    174${T_3}$+CNN93.1893.7092.37
    SF+CNN98.6998.1197.04
    175${T_3}$+CNN99.5399.4398.87
    SF+CNN99.4299.2398.34
    下载: 导出CSV
  • [1] 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039
    [2] BOERNER W M. Recent advances in extra-wide-band polarimetry, interferometry and polarimetric interferometry in synthetic aperture remote sensing and its applications[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 113–124. doi: 10.1049/ip-rsn:20030566
    [3] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [4] TOUZI R, BOERNER W M, LEE J S, et al. A review of polarimetry in the context of synthetic aperture radar: Concepts and information extraction[J]. Canadian Journal of Remote Sensing, 2004, 30(3): 380–407. doi: 10.5589/m04-013
    [5] 郭华东, 王心源, 李新武, 等. 多模式SAR玉树地震协同分析[J]. 科学通报, 2010, 55(11): 3499–3503.

    GUO Huadong, WANG Xinyuan, LI Xinwu, et al. Yushu earthquake synergic analysis using multimodal SAR datasets[J]. Chinese Science Bulletin, 2010, 55(11): 3499–3503.
    [6] 郭华东. 对地观测技术与可持续发展[M]. 北京: 科学出版社, 2001.

    GUO Huadong. Earth Observation Technology and Sustainable Development[M]. Beijing: Science Press, 2001.
    [7] 金亚秋, 徐丰. 极化散射与SAR遥感信息理论与方法[M]. 北京: 科学出版社, 2008.

    JIN Yaqiu and XU Feng. Theory and Approach for Polarimetric Scattering and Information Retrieval of SAR Remote Sensing[M]. Beijing: Science Press, 2008.
    [8] CHEN Siwei, WANG Xuesong, XIAO Shunping, et al. Target Scattering Mechanism in Polarimetric Synthetic Aperture Radar: Interpretation and Application[M]. Singapore: Springer, 2018.
    [9] CHEN Siwei. Polarimetric coherence pattern: A visualization and characterization tool for PolSAR data investigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 286–297. doi: 10.1109/TGRS.2017.2746662
    [10] CHEN Siwei, WANG Xuesong, and SATO M. Uniform polarimetric matrix rotation theory and its applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4756–4770. doi: 10.1109/tgrs.2013.2284359
    [11] CHEN Siwei, WANG Xuesong, and XIAO Shunping. Urban damage level mapping based on co-polarization coherence pattern using multitemporal polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(8): 2657–2667. doi: 10.1109/JSTARS.2018.2818939
    [12] 陈思伟, 李永祯, 王雪松, 等. 极化SAR目标散射旋转域解译理论与应用[J]. 雷达学报, 2017, 6(5): 442–455. doi: 10.12000/JR17033

    CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Polarimetric SAR target scattering interpretation in rotation domain: Theory and application[J]. Journal of Radars, 2017, 6(5): 442–455. doi: 10.12000/JR17033
    [13] LIU Xu, JIAO Licheng, TANG Xu, et al. Polarimetric convolutional network for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3040–3054. doi: 10.1109/TGRS.2018.2879984
    [14] GUO Jiao, WEI Pengliang, LIU Jian, et al. Crop classification based on differential characteristics of H/α scattering parameters for multitemporal quad- and dual-polarization SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6111–6123. doi: 10.1109/TGRS.2018.2832054
    [15] 陶臣嵩, 陈思伟, 李永祯, 等. 结合旋转域极化特征的极化SAR地物分类[J]. 雷达学报, 2017, 6(5): 524–532. doi: 10.12000/JR16131

    TAO Chensong, CHEN Siwei, LI Yongzhen, et al. Polarimetric SAR terrain classification using polarimetric features derived from rotation domain[J]. Journal of Radars, 2017, 6(5): 524–532. doi: 10.12000/JR16131
    [16] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/jproc.2012.2220511
    [17] CHEN Siwei, WANG Xuesong, XIAO Shunping, et al. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843–1855. doi: 10.1109/tgrs.2013.2255615
    [18] CHEN Siwei, LI Yongzhen, WANG Xuesong, et al. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 79–89. doi: 10.1109/msp.2014.2312099
    [19] CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127
    [20] CLOUDE S R. Polarisation: Applications in Remote Sensing[M]. London: Oxford University Press, 2009.
    [21] VAN ZYL J J and KIM Y. Synthetic Aperture Radar Polarimetry[M]. New York: Wiley, 2011.
    [22] YAMAGUCHI Y, SATO A, BOERNER W M, et al. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251–2258. doi: 10.1109/TGRS.2010.2099124
    [23] KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525–1527. doi: 10.1049/el:19900979
    [24] CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 549-557.
    [25] CAMERON W L and RAIS H. Conservative polarimetric scatterers and their role in incorrect extensions of the cameron decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(12): 3506–3516. doi: 10.1109/TGRS.2006.879115
    [26] CAMERON W L and RAIS H. Derivation of a signed cameron decomposition asymmetry parameter and relationship of cameron to huynen decomposition parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1677–1688. doi: 10.1109/TGRS.2010.2090529
    [27] CAMERON W L and RAIS H. Polarization scatterer feature metric space[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3638–3647. doi: 10.1109/TGRS.2012.2221466
    [28] CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [29] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, USA: CRC Press, 2009.
    [30] LOPEZ-MARTINEZ C, POTTIER E and CLOUDE S R. Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(9): 2058–2074. doi: 10.1109/TGRS.2005.853934
    [31] LEE J S, AINSWORTH T L, KELLY J P, et al. Evaluation and bias removal of multilook effect on entropy/alpha/anisotropy in polarimetric SAR decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3039–3052. doi: 10.1109/TGRS.2008.922033
    [32] ALVAREZ-PEREZ J L. Coherence, polarization, and statistical independence in cloude-pottier’s radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 426–441. doi: 10.1109/TGRS.2010.2056375
    [33] TOUZI R. Target scattering decomposition in terms of roll-invariant target parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 73–84. doi: 10.1109/tgrs.2006.886176
    [34] PALADINI R, MARTORELLA M, and BERIZZI F. Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022–3034. doi: 10.1109/TGRS.2011.2116121
    [35] 张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289–3297. doi: 10.11999/JEIT160992

    ZHANG Lamei, DUAN Baolong, and ZOU Bin. Research progress of target decomposition methods for polarimetric SAR images[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289–3297. doi: 10.11999/JEIT160992
    [36] FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [37] YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1699–1706. doi: 10.1109/TGRS.2005.852084
    [38] GULAB S and YAMAGUCHI Y. Model-based six-component scattering matrix power decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5687–5704. doi: 10.1109/TGRS.2018.2824322
    [39] GULAB S, MALIK R, MOHANTY S, et al. Seven-component scattering power decomposition of POLSAR coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8371–8382. doi: 10.1109/TGRS.2019.2920762
    [40] VAN ZYL J J, ARII M, and KIM Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452–3459. doi: 10.1109/TGRS.2011.2128325
    [41] KUSANO S, TAKAHASHI K, and SATO M. Volume scattering power constraint based on the principal minors of the coherency matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 361–365. doi: 10.1109/LGRS.2013.2258654
    [42] LIM Y X, BURGIN M S, and VAN ZYL J J. An optimal nonnegative eigenvalue decomposition for the freeman and durden three-component scattering model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2167–2176. doi: 10.1109/TGRS.2016.2637882
    [43] CHEN Siwei, OHKI M, SHIMADA M, et al. Deorientation effect investigation for model-based decomposition over oriented built-up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(2): 273–277. doi: 10.1109/lgrs.2012.2203577
    [44] AN Wentao, CUI Yi, and YANG Jian. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2732–2739. doi: 10.1109/TGRS.2010.2041242
    [45] LEE J S and AINSWORTH T L. The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 53–64. doi: 10.1109/TGRS.2010.2048333
    [46] NEUMANN M, FERRO-FAMIL L, and REIGBER A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1086–1104. doi: 10.1109/tgrs.2009.2031101
    [47] ARII M, VAN ZYL J J, and KIM Y. A general characterization for polarimetric scattering from vegetation canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3349–3357. doi: 10.1109/TGRS.2010.2046331
    [48] LEE J S, AINSWORTH T L, and WANG Yanting. Generalized polarimetric model-based decompositions using incoherent scattering models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2474–2491. doi: 10.1109/TGRS.2013.2262051
    [49] HAJNSEK I, JAGDHUBER T, SCHON H, et al. Potential of estimating soil moisture under vegetation cover by means of PolSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 442–454. doi: 10.1109/TGRS.2008.2009642
    [50] ARII M, VAN ZYL J J, and KIM Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104–1113. doi: 10.1109/TGRS.2010.2076285
    [51] WU Guoqing, CHEN Siwei, and WANG Xuesong. A four-component polarimetric decomposition method based on generalized scattering models[C]. 2019 PhotonIcs & Electromagnetics Research Symposium, Rome, Italy, 2019.
    [52] SINGH G, YAMAGUCHI Y, and PARK S E. General four-component scattering power decomposition with unitary transformation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3014–3022. doi: 10.1109/TGRS.2012.2212446
    [53] MAURYA H and PANIGRAHI R K. PolSAR coherency matrix optimization through selective unitary rotations for model-based decomposition scheme[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(4): 658–662. doi: 10.1109/LGRS.2018.2878654
    [54] BHATTACHARYA A, SINGH G, MANICKAM S, et al. An adaptive general four-component scattering power decomposition with unitary transformation of coherency matrix (AG4U)[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2110–2114. doi: 10.1109/LGRS.2015.2451369
    [55] CUI Yi, YAMAGUCHI Y, YANG Jian, et al. On complete model-based decomposition of polarimetric SAR coherency matrix data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 1991–2001. doi: 10.1109/tgrs.2013.2257603
    [56] ZOU Bin, LU Da, ZHANG Lamei, et al. Eigen-decomposition-based four-component decomposition for PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1286–1296. doi: 10.1109/JSTARS.2015.2513161
    [57] AN Wentao and LIN Mingsen. A reflection symmetry approximation of multilook polarimetric SAR data and its application to freeman-durden decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3649–3660. doi: 10.1109/TGRS.2018.2886386
    [58] LI Hongzhong, LI Qingquan, WU Guofeng, et al. Adaptive two-component model-based decomposition for polarimetric SAR data without assumption of reflection symmetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 197–211. doi: 10.1109/TGRS.2016.2604283
    [59] CHEN Siwei, WANG Xuesong, LI Yongzhen, et al. Adaptive model-based polarimetric decomposition using PolInSAR coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1705–1718. doi: 10.1109/tgrs.2013.2253780
    [60] XU Feng, LI Yongchen, and JIN Yaqiu. Polarimetric-anisotropic decomposition and anisotropic entropies of high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5467–5482. doi: 10.1109/TGRS.2016.2565693
    [61] XIAO Shunping, CHEN Siwei, CHANG Yuliang, et al. Polarimetric coherence optimization and its application for manmade target extraction in PolSAR data[J]. IEICE Transactions on Electronics, 2014, E97.C(6): 566–574. doi: 10.1587/transele.E97.C.566
    [62] CHEN Siwei, LI Yongzhen, and WANG Xuesong. Crop discrimination based on polarimetric correlation coefficients optimization for PolSAR data[J]. International Journal of Remote Sensing, 2015, 36(16): 4233–4249. doi: 10.1080/01431161.2015.1079345
    [63] TAO Chensong, CHEN Siwei, LI Yongzhen, et al. PolSAR land cover classification based on roll-invariant and selected hidden polarimetric features in the rotation domain[J]. Remote Sensing, 2017, 9(7): 660. doi: 10.3390/rs9070660
    [64] CHEN Siwei, WANG Xuesong, and SATO M. Urban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR data for the 3.11 East Japan earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6919–6929. doi: 10.1109/TGRS.2016.2588325
    [65] CHEN Siwei, WANG Xuesong, and SATO M. PolInSAR complex coherence estimation based on covariance matrix similarity test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4699–4710. doi: 10.1109/TGRS.2012.2192937
    [66] CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [67] CUI Xingchao, TAO Chensong, SU Yi, et al. PolSAR ship detection based on polarimteric correlation pattern[J]. IEEE Geoscience and Remote Sensing Letters. in press. doi: 10.1109/LGRS.2020.2976477.
    [68] TRUNK G V. Range resolution of targets using automatic detectors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1978, AES-14(5): 750–755. doi: 10.1109/TAES.1978.308625
    [69] ZHAI Liang, LI Yu, and SU Yi. Inshore ship detection via saliency and context information in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1870–1874. doi: 10.1109/LGRS.2016.2616187
    [70] CHEN Siwei and SATO M. Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 1985–1997. doi: 10.1109/tgrs.2012.2210050
    [71] MISHRA P, GARG A, and SINGH D. Critical analysis of model-based incoherent polarimetric decomposition methods and investigation of deorientation effect[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 4868–4877. doi: 10.1109/TGRS.2017.2652060
    [72] XIE Qinghua, BALLESTER-BERMAN J D, LOPEZ-SANCHEZ J M, et al. Quantitative analysis of polarimetric model-based decomposition methods[J]. Remote Sensing, 2016, 8(12): 977. doi: 10.3390/rs8120977
    [73] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–693. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–693. doi: 10.12000/JR19099
    [74] 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046

    HONG Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
    [75] 王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220–234. doi: 10.12000/JR17046

    WANG Jie, DING Chibiao, LIANG Xingdong, et al. Research outline of airborne MIMO-SAR system with same time-frequency coverage[J]. Journal of Radars, 2018, 7(2): 220–234. doi: 10.12000/JR17046
    [76] 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [77] 洪文. 基于混合极化架构的极化SAR: 原理与应用(中英文)[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications (in Chinese and in English)[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  6340
  • HTML全文浏览量:  2968
  • PDF下载量:  1103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2020-04-15
  • 网络出版日期:  2020-04-01

目录

    /

    返回文章
    返回