Volume 9 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115
Citation: SUN Liting, HUANG Zhitao, WANG Xiang, et al. Overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115

Overview of Radio Frequency Fingerprint Extraction in Specific Emitter Identification(in English)

doi: 10.12000/JR19115
Funds:  The Program for Innovative Research Groups of the Hunan Provincial Natural Science Foundation of China (2019JJ10004)
More Information
  • Specific emitter identification is a technique of extracting the radio frequency fingerprints of the received electromagnetic signal only using external feature measurements to determine the specific emitter that transmits the signal. In recent years, the related theories and practical applications of specific emitter identification have been continuously improved, and research on radio frequency fingerprinting feature extraction methods has made great progress. Based on the domestic and foreign academic achievements, this paper systematically reviews the status quo of the fingerprint feature extraction method of specific emitter identification. In addition, a new feature classification framework is proposed based on the inherent logic of fingerprint feature extraction. The classification framework combines the description characteristics of different radio frequency fingerprinting features and the correlation between them. It divides the existing radio frequency features into two main categories: direct measurement features and dimensionality reduction transform features, which have three levels. Finally, this paper analyzes and explores several potential research directions of fingerprint feature extraction, aiming to benefit the research and application of specific radiation source identification.

     

  • loading
  • [1]
    TALBOT K I, DULEY P R, and HYATT M H. Specific emitter identification and verification[J]. Technology Review Journal, 2003, : 113–133.
    [2]
    许丹. 辐射源指纹机理及识别方法研究[D]. [博士论文], 国防科学技术大学, 2008.

    XU Dan. Research on mechanism and methodology of specific emitter identification[D]. [Ph.D. dissertation], National University of Defense Technology, 2008.
    [3]
    徐书华. 基于信号指纹的通信辐射源个体识别技术研究[D]. [博士论文], 华中科技大学, 2007.

    XU Shuhua. On the identification technique of individual transmitter based on signalprints[D]. [Ph.D. dissertation], Huazhong University of Science and Technology, 2007.
    [4]
    资晓军, 谢丹, 杨剑波. 通信辐射源指纹特征提取算法研究[J]. 舰船电子工程, 2017, 37(3): 63–65, 121. doi: 10.3969/j.issn.1672-9730.2017.03.016

    ZI Xiaojun, XIE Dan, and YANG Jianbo. Emitter fingerprint feature extraction algorithm[J]. Ship Electronic Engineering, 2017, 37(3): 63–65, 121. doi: 10.3969/j.issn.1672-9730.2017.03.016
    [5]
    LANGLEY L E. Specific emitter identification (SEI) and classical parameter fusion technology[C]. The WESCON’93, San Francisco, USA, 1993: 377–381.
    [6]
    贾永强. 通信辐射源个体识别技术研究[D]. [博士论文], 电子科技大学, 2017.

    JIA Yongqiang. The research on communication emitters identification technology[D]. [Ph.D. dissertation], School of Electronic Engineering, 2017.
    [7]
    DANEV B and CAPKUN S. Transient-based identification of wireless sensor nodes[C]. 2009 International Conference on Information Processing in Sensor Networks, San Francisco, USA, 2009: 25–36.
    [8]
    YUAN Yingjun, HUANG Zhitao, WU Hao, et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8(13): 2404–2412. doi: 10.1049/iet-com.2013.0865
    [9]
    SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665
    [10]
    GUO Shanzeng, WHITE R E, and LOW M. A comparison study of radar emitter identification based on signal transients[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 0286–0291.
    [11]
    DAVIES C L and HOLLANDS P. Automatic processing for ESM[J]. IEE Proceedings F - Communications,Radar and Signal Processing, 1982, 129(3): 164–171. doi: 10.1049/ip-f-1.1982.0025
    [12]
    ABRAHAMZADEH A, SEYEDIN S A, and DEHGHAN M. Digital-signal-type identification using an efficient identifier[J].EURASIP Journal on Advances in Signal Processing, 2007, 2007: 63.
    [13]
    王宏伟, 赵国庆, 王玉军. 基于脉冲包络前沿波形的雷达辐射源个体识别[J]. 航天电子对抗, 2009, 25(2): 35–38. doi: 10.3969/j.issn.1673-2421.2009.02.011

    WANG Hongwei, ZHAO Guoqing, and WANG Yujun. A specific emitter identification method based on front edge waveform of radar signal envelop[J]. Aerospace Electronic Warfare, 2009, 25(2): 35–38. doi: 10.3969/j.issn.1673-2421.2009.02.011
    [14]
    刘旭, 罗鹏飞, 李纲. 基于拟合角特征及SVM的雷达辐射源个体识别[J]. 计算机工程与应用, 2011, 47(8S): 281–284.

    LIU Xu, LUO Pengfei, and LI Gang. Radar emitter individual identification based on fitting angle features and SVM[J]. Computer Engineering and Applications, 2011, 47(8S): 281–284.
    [15]
    XU Shuhua, XU Lina, XU Zhengguang, et al. Individual radio transmitter identification based on spurious modulation characteristics of signal envelop[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–5.
    [16]
    张国柱, 黄可生, 姜文利, 等. 基于信号包络的辐射源细微特征提取方法[J]. 系统工程与电子技术, 2006, 28(6): 795–797, 936. doi: 10.3321/j.issn:1001-506X.2006.06.002

    ZHANG Guozhu, HUANG Kesheng, JIANG Weili, et al. Emitter feature extract method based on signal envelope[J]. Systems Engineering and Electronics, 2006, 28(6): 795–797, 936. doi: 10.3321/j.issn:1001-506X.2006.06.002
    [17]
    REHMAN S U, SOWERBY K, and COGHILL C. RF fingerprint extraction from the energy envelope of an instantaneous transient signal[C]. 2012 Australian Communications Theory Workshop (AusCTW), Wellington, New Zealand, 2012: 90–95.
    [18]
    WU Longwen, ZHAO Yaqin, FENG Mengfei, et al. Specific emitter identification using IMF-DNA with a joint feature selection algorithm[J]. Electronics, 2019, 8(9): 934. doi: 10.3390/electronics8090934
    [19]
    FENG Zhipeng, ZHANG Dong, and ZUO M J. Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: A review with examples[J]. IEEE Access, 2017, 5: 24301–24331. doi: 10.1109/ACCESS.2017.2766232
    [20]
    HALL J, BARBEAU M, and KRANAKIS E. Enhancing intrusion detection in wireless networks using radio frequency fingerprinting[C]. Communications, Internet, and Information Technology, St. Thomas, US Virgin Islands, USA, 2004: 201–206.
    [21]
    HALL J, BARBEAU M, and KRANAKIS E. Detecting rogue devices in bluetooth networks using radio frequency fingerprinting[C]. The 3rd IASTED International Conference on Communications and Computer Networks, Lima, Peru, 2006: 108–113.
    [22]
    黄渊凌, 郑辉. 基于瞬时频率畸变特性的FSK电台指纹特征提取[J]. 电讯技术, 2013, 53(7): 868–872. doi: 10.3969/j.issn.1001-893x.2013.07.009

    HUANG Yuanling and ZHENG Hui. FSK radio fingerprints extraction based on distortions of instantaneous frequency[J]. Telecommunication Engineering, 2013, 53(7): 868–872. doi: 10.3969/j.issn.1001-893x.2013.07.009
    [23]
    PADILLA P, PADILLA J L, and VALENZUELA-VALDÉS J F. Radiofrequency identification of wireless devices based on RF fingerprinting[J]. Electronics Letters, 2013, 49(22): 1409–1410. doi: 10.1049/el.2013.2759
    [24]
    BRIK V, BANERJEE S, GRUTESER M, et al. Wireless device identification with radiometric signatures[C]. The 14th Annual International Conference on Mobile Computing and Networking, MOBICOM 2008, San Francisco, USA, 2008: 116–127.
    [25]
    王威, 李诗娴, 王新. 基于星座图的通信辐射源个体识别方法[J]. 湖南城市学院学报: 自然科学版, 2017, 26(5): 51–55. doi: 10.3969/j.issn.1672-7304.2017.05.0011

    WANG Wei, LI Shixian, and WANG Xin. A communication SEI approach based on constellation diagram[J]. Journal of Hunan City University:Natural Science, 2017, 26(5): 51–55. doi: 10.3969/j.issn.1672-7304.2017.05.0011
    [26]
    程汉文, 吴乐南. 基于星座图和相似性度量的调制方式识别[J]. 应用科学学报, 2008, 26(2): 111–116. doi: 10.3969/j.issn.0255-8297.2008.02.001

    CHENG Hanwen and WU Le’nan. Classification of modulation techniques using constellation shape and similarity measure[J]. Journal of Applied Sciences-Electronics and Information Engineering, 2008, 26(2): 111–116. doi: 10.3969/j.issn.0255-8297.2008.02.001
    [27]
    RU Xiaohu, LIU Zheng, HUANG Zhitao, et al. Evaluation of unintentional modulation for pulse compression signals based on spectrum asymmetry[J]. IET Radar,Sonar&Navigation, 2017, 11(4): 656–663. doi: 10.1049/iet-rsn.2016.0248
    [28]
    叶文强, 俞志富. 基于联合时频辐射源信号识别方法[J]. 电子信息对抗技术, 2018, 33(5): 16–19, 50. doi: 10.3969/j.issn.1674-2230.2018.05.004

    YE Wenqiang and YU Zhifu. Signal recognition method based on joint time-frequency radiant source[J]. Electronic Information Warfare Technology, 2018, 33(5): 16–19, 50. doi: 10.3969/j.issn.1674-2230.2018.05.004
    [29]
    FLAMANT J, LE BIHAN N, and CHAINAIS P. Time-frequency analysis of bivariate signals[J]. Applied and Computational Harmonic Analysis, 2019, 46(2): 351–383. doi: 10.1016/j.acha.2017.05.007
    [30]
    BERTONCINI C, RUDD K, NOUSAIN B, et al. Wavelet fingerprinting of Radio-Frequency IDentification (RFID) tags[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4843–4850. doi: 10.1109/TIE.2011.2179276
    [31]
    HIPPENSTIEL R D. Wavelet based approach to transmitter identification[R]. NPS-EC-95-014, 1995.
    [32]
    高敬鹏, 孔维宇, 刘佳琪, 等. 基于时频分析的自适应PCA辐射源调制识别[J]. 应用科技, 2018, 45(5): 33–37. doi: 10.11991/yykj.201712013

    GAO Jingpeng, KONG Weiyu, LIU Jiaqi, et al. Research on emitter modulation recognition of the adaptive PCA based on time-frequency analysis[J]. Applied Science and Technology, 2018, 45(5): 33–37. doi: 10.11991/yykj.201712013
    [33]
    XIE Zhenhua, XU Luping, NI Guangren, et al. A new feature vector using selected line spectra for pulsar signal bispectrum characteristic analysis and recognition[J]. Chinese Journal of Astronomy and Astrophysics, 2007, 7(4): 565–571.
    [34]
    蔡忠伟, 李建东. 基于双谱的通信辐射源个体识别[J]. 通信学报, 2007, 28(2): 75–79. doi: 10.3321/j.issn:1000-436X.2007.02.012

    CAI Zhongwei and LI Jiandong. Study of transmitter individual identification based on bispectra[J]. Journal on Communications, 2007, 28(2): 75–79. doi: 10.3321/j.issn:1000-436X.2007.02.012
    [35]
    王欢欢, 张涛. 结合时域分析和改进双谱的通信信号特征提取算法[J]. 信号处理, 2017, 33(6): 864–871. doi: 10.16798/j.issn.1003-0530.2017.06.012

    WANG Huanhuan and ZHANG Tao. Extraction algorithm of communication signal characteristics based on improved bispectra and time-domain Analysis[J]. Journal of Signal Processing, 2017, 33(6): 864–871. doi: 10.16798/j.issn.1003-0530.2017.06.012
    [36]
    杨举, 卢选民, 周亚建. 基于多谱与支持向量机的通信辐射源个体识别[J]. 计算机仿真, 2010, 27(11): 349–353. doi: 10.3969/j.issn.1006-9348.2010.11.088

    YANG Ju, LU Xuanmin, and ZHOU Yajian. Transmitter individual identification based on polyspectra and support Vector Machine[J]. Computer Simulation, 2010, 27(11): 349–353. doi: 10.3969/j.issn.1006-9348.2010.11.088
    [37]
    GONG Yong, HU Guyu, and PAN Zhisong. Radio transmitter identification based on bispectra with tensor representation[C]. 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 2010: V3-294–V3-298.
    [38]
    刘婷. 基于循环平稳分析的雷达辐射源特征提取与融合识别[D]. [硕士论文], 西安电子科技大学, 2009.

    LIU Ting. Feature extraction and fusion recognition of radar radiation source based on cyclic stationary analysis[D]. [Master dissertation], Xidian University, 2009.
    [39]
    陈志伟, 徐志军, 王金明, 等. 一种基于循环谱切片的通信辐射源识别方法[J]. 数据采集与处理, 2013, 28(3): 284–288. doi: 10.3969/j.issn.1004-9037.2013.03.005

    CHEN Zhiwei, XU Zhijun, WANG Jinming, et al. Emitter identification method based on cyclic spectrum density slice[J]. Journal of Data Acquisition&Processing, 2013, 28(3): 284–288. doi: 10.3969/j.issn.1004-9037.2013.03.005
    [40]
    王欢欢, 张涛, 孟凡玉. 基于时频域细微特征的辐射源个体识别[J]. 信息工程大学学报, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006

    WANG Huanhuan, ZHANG Tao, and MENG Fanyu. Specific emitter identification based on time-frequency domain characteristic[J]. Journal of Information Engineering University, 2018, 19(1): 23–29. doi: 10.3969/j.issn.1671-0673.2018.01.006
    [41]
    王丽. 低频辐射源细微特征分析[D]. [硕士论文], 南京航空航天大学, 2014.

    WANG Li. Analysis of subtle characteristics of low-frequency radiation[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2014.
    [42]
    桂云川, 杨俊安, 吕季杰, 等. 基于经验模态分解的通信辐射源分形特征提取算法[J]. 探测与控制学报, 2016, 38(1): 104–108.

    GUI Yunchuan, YANG Jun’an, LV Jijie, et al. A fractal feature extraction algorithm based on empirical mode decomposition[J]. Journal of Detection&Control, 2016, 38(1): 104–108.
    [43]
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205.
    [44]
    YUAN H L and HU A Q. Preamble-based detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2010, 46(16): 1165–1167. doi: 10.1049/el.2010.1220
    [45]
    WU Qingyang, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54(24): 1405–1407.
    [46]
    叶浩欢, 柳征, 姜文利. 考虑多普勒效应的脉冲无意调制特征比较[J]. 电子与信息学报, 2012, 34(11): 118–123. doi: 10.3724/SP.J.1146.2012.00400

    YE Haohuan, LIU Zheng, and JIANG Wenli. A comparison of unintentional modulation on pulse features with the consideration of Doppler effect[J]. Journal of Electronics&Information Technology, 2012, 34(11): 118–123. doi: 10.3724/SP.J.1146.2012.00400
    [47]
    普运伟, 金炜东, 朱明, 等. 雷达辐射源信号模糊函数主脊切面特征提取方法[J]. 红外与毫米波学报, 2008, 27(2): 133–137. doi: 10.3321/j.issn:1001-9014.2008.02.012

    PU Yunwei, JIN Weidong, ZHU Ming, et al. Extracting the main ridge slice characteristics of ambiguity function for radar emitter signals[J]. Journal of Infrared and Millimeter Waves, 2008, 27(2): 133–137. doi: 10.3321/j.issn:1001-9014.2008.02.012
    [48]
    李林, 姬红兵. 基于模糊函数的雷达辐射源个体识别[J]. 电子与信息学报, 2009, 31(11): 2546–2551. doi: 10.3724/SP.J.1146.2008.01406

    LI Lin and JI Hongbing. Specific emitter identification based on ambiguity function[J]. Journal of Electronics&Information Technology, 2009, 31(11): 2546–2551. doi: 10.3724/SP.J.1146.2008.01406
    [49]
    王磊, 姬红兵, 史亚. 基于模糊函数特征优化的雷达辐射源个体识别[J]. 红外与毫米波学报, 2011, 30(1): 74–79.

    WANG Lei, JI Hongbing, and SHI Ya. Feature optimization of ambiguity function for radar emitter recognition[J]. Journal of Infrared and Millimeter Waves, 2011, 30(1): 74–79.
    [50]
    王磊, 姬红兵, 李林. 基于模糊函数零点切片特征优化的辐射源个体识别[J]. 西安电子科技大学学报: 自然科学版, 2010, 37(2): 285–289, 304.

    WANG Lei, JI Hongbing, and LI Lin. Specific emitter recognition based on feature optimization of ambiguity function zero-slice[J]. Journal of Xidian University, 2010, 37(2): 285–289, 304.
    [51]
    王磊, 姬红兵, 史亚. 基于模糊函数代表性切片的运动雷达辐射源识别[J]. 系统工程与电子技术, 2010, 32(8): 1630–1634. doi: 10.3969/j.issn.1001-506X.2010.08.16

    WANG Lei, JI Hongbing, and SHI Ya. Moving radar emitter recognition based on representative-cut feature of ambiguity function[J]. Systems Engineering and Electronics, 2010, 32(8): 1630–1634. doi: 10.3969/j.issn.1001-506X.2010.08.16
    [52]
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1998, 454(1971): 903–995.
    [53]
    SONG Chunyun, XU Jianmin, and ZHAN Yi. A method for specific emitter identification based on empirical mode decomposition[C]. 2010 IEEE International Conference on Wireless Communications, Networking and Information Security, Beijing, China, 2010: 54–57.
    [54]
    哈章, 刘湘德, 蔡强, 等. 基于EMD时频重构特征的航管应答器个体识别[J]. 电子信息对抗技术, 2012, 27(3): 1–5, 27. doi: 10.3969/j.issn.1674-2230.2012.03.001

    HA Zhang, LIU Xiangde, CAI Qiang, et al. Study of specific emitter identification for ATC transponder[J]. Electronic Information Warfare Technology, 2012, 27(3): 1–5, 27. doi: 10.3969/j.issn.1674-2230.2012.03.001
    [55]
    梁江海, 黄知涛, 袁英俊, 等. 一种基于经验模态分解的通信辐射源个体识别方法[J]. 中国电子科学研究院学报, 2013, 8(4): 393–397, 417. doi: 10.3969/j.issn.1673-5692.2013.04.013

    LIANG Jianghai, HUANG Zhitao, YUAN Yingjun, et al. A method based on empirical mode decomposition for identifying transmitter individuals[J]. Journal of CAEIT, 2013, 8(4): 393–397, 417. doi: 10.3969/j.issn.1673-5692.2013.04.013
    [56]
    FREI M G and OSORIO I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 2007, 463(2078): 321–342. doi: 10.1098/rspa.2006.1761
    [57]
    李学成, 段田东, 徐文艳, 等. 基于固有时间尺度分解的信号细微特征识别[J]. 信息工程大学学报, 2014, 15(5): 570–575. doi: 10.3969/j.issn.1671-0673.2014.05.010

    LI Xuecheng, DUAN Tiandong, XU Wenyan, et al. ITD-based identification of signal fine features[J]. Journal of Information Engineering University, 2014, 15(5): 570–575. doi: 10.3969/j.issn.1671-0673.2014.05.010
    [58]
    桂云川, 杨俊安, 吕季杰. 基于固有时间尺度分解模型的通信辐射源特征提取算法[J]. 计算机应用研究, 2017, 34(4): 1172–1175. doi: 10.3969/j.issn.1001-3695.2017.04.049

    GUI Yunchuan, YANG Jun’an, and LYU Jijie. Feature extraction algorithm based on intrinsic time-scale decomposition model for communication transmitter[J]. Application Research of Computers, 2017, 34(4): 1172–1175. doi: 10.3969/j.issn.1001-3695.2017.04.049
    [59]
    任东方, 张涛, 韩洁. 结合ITD与非线性分析的通信辐射源个体识别方法[J]. 信号处理, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010

    REN Dongfang, ZHANG Tao, and HAN Jie. Approach of specific communication emitter identification combining ITD and nonlinear analysis[J]. Journal of Signal Processing, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010
    [60]
    任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299

    REN Dongfang, ZHANG Tao, HAN Jie, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299
    [61]
    MARTIS R J, ACHARYA U R, TAN J H, et al. Application of Intrinsic Time-scale Decomposition (ITD) to EEG signals for automated seizure prediction[J]. International Journal of Neural Systems, 2013, 23(5): 1350023. doi: 10.1142/S0129065713500238
    [62]
    AN Xueli, JIANG Dongxiang, CHEN Jie, et al. Application of the intrinsic time-scale decomposition method to fault diagnosis of wind turbine bearing[J]. Journal of Vibration and Control, 2012, 18(2): 240–245. doi: 10.1177/1077546311403185
    [63]
    XU Yonggang, XIE Zhicong, CUI Linli, et al. The feature extraction method of gear magnetic memory signal[J]. Advanced Materials Research, 2013, 819: 206–211. doi: 10.4028/www.scientific.net/AMR.819.206
    [64]
    DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675
    [65]
    陈尚, 郑翔. 基于VMD能量熵与支持向量机的断路器机械故障诊断方法研究[J]. 黑龙江电力, 2019, 41(1): 60–63.

    CHEN Shang and ZHENG Xiang. Research on mechanical fault diagnosis method of circuit breaker based on VMD energy entropy and support vector machine[J]. Heilongjiang Electric Power, 2019, 41(1): 60–63.
    [66]
    孟庆芳. 非线性动力系统时间序列分析方法及其应用研究[D]. [博士论文], 山东大学, 2008.

    MENG Qingfang. Nonlinear dynamical time series analysis methods and its application[D]. [Ph.D. dissertation], Shandong University, 2008.
    [67]
    CARROLL T L. A nonlinear dynamics method for signal identification[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2007, 17(2): 023109. doi: 10.1063/1.2722870
    [68]
    袁英俊. 通信辐射源个体识别关键技术研究[D]. [博士论文], 长沙: 国防科技大学, 2014.

    YUAN Yingjun. Research on key technology of communication specific emitter identification[D]. [Ph.D. dissertation], National University of Defense Technology, 2014.
    [69]
    朱胜利. 混沌信号处理在辐射源个体识中的应用研究[D]. [博士论文], 电子科技大学, 2018.

    ZHU Shengli. Research on applications of chaotic signal processing in specific emitter identification[D]. [Ph.D. dissertation], School of Information and Communication, 2018.
    [70]
    BIHL T J, BAUER K W, and TEMPLE M A. Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8): 1862–1874. doi: 10.1109/TIFS.2016.2561902
    [71]
    ZHU Shengli and GAN Lu. Specific emitter identification based on visibility graph entropy[J]. Chinese Physics Letters, 2018, 35(3): 030501.
    [72]
    许丹, 徐海源, 卢启中, 等. 基于自激振荡器模型的辐射源个体识别方法[J]. 信号处理, 2008, 24(1): 122–126. doi: 10.3969/j.issn.1003-0530.2008.01.029

    XU Dan, XU Haiyuan, LU Qizhong, et al. A specific emitter identification method based on self-excitation oscillator model[J]. Signal Processing, 2008, 24(1): 122–126. doi: 10.3969/j.issn.1003-0530.2008.01.029
    [73]
    徐志军, 陈志伟, 王金明, 等. 基于功放特性的辐射源识别的改进方法[J]. 南京邮电大学学报: 自然科学版, 2013, 33(6): 54–58.

    XU Zhijun, CHEN Zhiwei, WANG Jinming, et al. An improved method for emitter identification based on character of power amplifier[J]. Journal of Nanjing University of Posts and Telecommunications:Natural Science, 2013, 33(6): 54–58.
    [74]
    黄渊凌, 郑辉. 一种基于相噪特性的辐射源指纹特征提取方法[J]. 计算机仿真, 2013, 30(9): 182–185. doi: 10.3969/j.issn.1006-9348.2013.09.042

    HUANG Yuanling and ZHENG Hui. Emitter fingerprint feature extraction method based on characteristics of phase noise[J]. Computer Simulation, 2013, 30(9): 182–185. doi: 10.3969/j.issn.1006-9348.2013.09.042
    [75]
    马驰, 张红云, 苗夺谦. 改进的主曲线算法在指纹骨架提取中的应用[J]. 计算机工程与应用, 2010, 46(16): 170–173.

    MA Chi, ZHANG Hongyun, and MIAO Duoqian. Improvement of principal curves algorithm and its application in finger-print skeleton extraction[J]. Computer Engineering and Applications, 2010, 46(16): 170–173.
    [76]
    王欢欢, 张涛. 基于高阶谱谱骨架的信号细微特征识别[J]. 计算机应用与软件, 2017, 34(8): 179–184. doi: 10.3969/j.issn.1000-386x.2017.08.032

    WANG Huanhuan and ZHANG Tao. Higher-order spectrum skeleton application to signal fine character identification[J]. Computer Applications and Software, 2017, 34(8): 179–184. doi: 10.3969/j.issn.1000-386x.2017.08.032
    [77]
    李学成, 段田东, 徐文艳, 等. 基于软K段主曲线的信号细微特征识别[J]. 计算机应用与软件, 2015, 32(5): 198–202. doi: 10.3969/j.issn.1000-386x.2015.05.048

    LI Xuecheng, DUAN Tiandong, XU Wenyan, et al. Identifying imperceptible feature of signals based on soft K-segments algorithm for principal curves[J]. Computer Applications and Software, 2015, 32(5): 198–202. doi: 10.3969/j.issn.1000-386x.2015.05.048
    [78]
    官建平. 基于双谱的辐射源个体识别技术[D]. [硕士论文], 西安电子科技大学, 2014.

    GUAN Jianping. Study of individual transmitter identification based on bispectrum[D]. [Master dissertation], Xidian University, 2014.
    [79]
    唐智灵, 杨小牛, 李建东. 调制无线电信号的分形特征研究[J]. 物理学报, 2011, 60(5): 550–556.

    TANG Zhiling, YANG Xiaoniu, and LI Jiandong. Study on fractal features of modulated radio signal[J]. Acta Physica Sinica, 2011, 60(5): 550–556.
    [80]
    WU Longwen, ZHAO Yaqin, WANG Zhao, et al. Specific emitter identification using fractal features based on box-counting dimension and variance dimension[C]. 2017 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain, 2017: 226–231.
    [81]
    桂云川, 杨俊安, 万俊. 基于双谱特征融合的通信辐射源识别算法[J]. 探测与控制学报, 2016, 38(5): 91–95.

    GUI Yunchuan, YANG Jun’an, and WAN Jun. A transmitter recognition algorithm based on dual spectrum feature fusion[J]. Journal of Detection&Control, 2016, 38(5): 91–95.
    [82]
    HUANG Guangquan, YUAN Yingjun, WANG Xiang, et al. Specific emitter identification based on nonlinear dynamical characteristics[J]. Canadian Journal of Electrical and Computer Engineering, 2016, 39(1): 34–41. doi: 10.1109/CJECE.2015.2496143
    [83]
    徐玉龙, 王金明, 徐志军, 等. 基于小波熵的辐射源指纹特征提取方法[J]. 数据采集与处理, 2014, 29(4): 631–635. doi: 10.3969/j.issn.1004-9037.2014.04.022

    XU Yulong, WANG Jinming, XU Zhijun, et al. Fingerprint feature extraction method for emitters based on wavelet entropy[J]. Journal of Data Acquisition and Processing, 2014, 29(4): 631–635. doi: 10.3969/j.issn.1004-9037.2014.04.022
    [84]
    唐哲, 雷迎科. 基于最大相关熵的通信辐射源个体识别方法[J]. 通信学报, 2016, 37(12): 175–179. doi: 10.11959/j.issn.1000-436x.2016283

    TANG Zhe and LEI Yingke. Method of individual communication transmitter identification based on maximum correntropy[J]. Journal on Communications, 2016, 37(12): 175–179. doi: 10.11959/j.issn.1000-436x.2016283
    [85]
    SAHMEL P H, REED J H, and SPOONER C M. Eigenspace approach to specific emitter identification[J]. Frequenz, 2010, 64(11/12): 229–235.
    [86]
    王磊. 雷达辐射源个体识别的方法研究[D]. [博士论文], 西安电子科技大学, 2011.

    WANG Lei. On methods for specific radar emitter identification[D]. [Ph.D. dissertation], Xidian University, 2011.
    [87]
    XU Shuhua, HUANG Benxiong, XU Lina, et al. Radio transmitter classification using a new method of stray features analysis combined with PCA[C]. Military Communications Conference, Orlando, USA, 2007: 1–5.
    [88]
    YE Wenqiang and PENG Cong. Recognition algorithm of emitter signals based on PCA+CNN[C]. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 2018: 2410–2414.
    [89]
    DING Lida, WANG Shilian, WANG Fanggang, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591–2594.
    [90]
    BITAR N, MUHAMMAD S, and REFAI H H. Wireless technology identification using deep convolutional neural networks[C]. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Montreal, Canada, 2017: 1–6.
    [91]
    WONG L J, HEADLEY W C, ANDREWS S, et al. Clustering learned CNN features from raw I/Q data for emitter identification[C]. MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), Los Angeles, USA, 2018: 26–33.
    [92]
    RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification[J]. IEEE Communications Magazine, 2018, 56(9): 146–152. doi: 10.1109/MCOM.2018.1800153
    [93]
    YOUSSEF K, BOUCHARD L, HAIGH K, et al. Machine learning approach to RF transmitter identification[J]. IEEE Journal of Radio Frequency Identification, 2018, 2(4): 197–205. doi: 10.1109/JRFID.2018.2880457
    [94]
    MCGINTHY J M, WONG L J, and MICHAELS A J. Groundwork for neural network-based specific emitter identification authentication for IoT[J]. IEEE Internet of Things Journal, 2019, 6(4): 6429–6440. doi: 10.1109/JIOT.2019.2908759
    [95]
    WU Xiaopo, SHI Yangming, MENG Weibo, et al. Specific emitter identification for satellite communication using probabilistic neural networks[J]. International Journal of Satellite Communications and Networking, 2019, 37(3): 283–291. doi: 10.1002/sat.1286
    [96]
    ROY D, MUKHERJEE T, CHATTERJEE M, et al. RFAL: Adversarial learning for RF transmitter identification and classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2): 783–801. doi: 10.1109/TCCN.2019.2948919
    [97]
    XIE Feiyi, WEN Hong, WU Jinsong, et al. Data augmentation for radio frequency fingerprinting via pseudo-random integration[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, . doi: 10.1109/TETCI.2019.2907740
    [98]
    MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
    [99]
    程旗, 赵浩然. 一种基于决策树的信号分类方法[J]. 电子世界, 2018, (13): 28–29, 32.

    CHENG Qi and ZHAO Haoran. A signal classification method based on decision tree[J]. Electronics World, 2018, (13): 28–29, 32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (7079) PDF downloads(470) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint