SAR图像目标识别的可解释性问题探讨

郭炜炜 张增辉 郁文贤 孙效华

郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059
引用本文: 郭炜炜, 张增辉, 郁文贤, 等. SAR图像目标识别的可解释性问题探讨[J]. 雷达学报, 2020, 9(3): 462–476. doi: 10.12000/JR20059
GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059
Citation: GUO Weiwei, ZHANG Zenghui, YU Wenxian, et al. Perspective on explainable SAR target recognition[J]. Journal of Radars, 2020, 9(3): 462–476. doi: 10.12000/JR20059

SAR图像目标识别的可解释性问题探讨

doi: 10.12000/JR20059
基金项目: 国家自然科学基金联合基金(U1830103)
详细信息
    作者简介:

    郭炜炜(1983–),男,江苏南通人,博士,分别于2005,2007,2014年获得国防科技大学信息工程学士,信息与通信专业硕士和博士学位。2008年—2010年在英国Queen Mary,University of London联合培养,2014年12月至2018年6月在上海交通大学电子信息与电气工程学院从事博士后研究工作,2018年12月至今为同济大学设计创意学院助理教授。研究方向为遥感图像理解、模式识别与机器学习、人机交互等。E-mail: weiweiguo@tongji.edu.cn

    张增辉(1980–),男,山东金乡人,博士,分别于2001年、2003年和2008年在国防科技大学获得应用数学、计算数学、信息与通信工程专业学士、硕士和博士学位。2008年6月至2013年7月,为国防科技大学数学与系统科学系讲师;2014年2月至今,为上海交通大学电子信息与电气工程学院副研究员。研究方向为SAR图像解译、雷达信号处理等。E-mail: zenghui.zhang@sjtu.edu.cn

    郁文贤(1964–),男,上海松江人,博士,教授,博士生导师,上海交通大学讲席教授,教育部长江学者特聘教授,上海市领军人才。现为上海交通大学信息技术与电气工程研究院院长,北斗导航与位置服务上海市重点实验室主任,智能探测与识别上海市高校重点实验室主任。研究方向为遥感信息处理、多源融合导航定位、目标检测识别等。E-mail: wxyu@sjtu.edu.cn

    孙效华(1972–),女,河南安阳人,麻省理工学院设计与计算专业硕士与博士,教授,博士生导师,同济大学设计创意学院副院长。曾在MIT CECI、MIT媒体实验室、FXPAL、IBM研究院、美国克拉克森大学等机构从事研究与教学。研究方向为人机智能交互与共融、人-机器人交互HRI、可视分析等。E-mail: xsun@tongji.edu.cn

    通讯作者:

    张增辉 zenghui.zhang@sjtu.edu.cn

  • 责任主编:邹焕新 Corresponding Editor: ZOU Huanxin
  • 1 https://pair-code.github.io/saliency/
  • 中图分类号: TN957.51

Perspective on Explainable SAR Target Recognition

Funds: The National Natural Science Foundation of China(U1830103)
More Information
  • 摘要: 合成孔径雷达(SAR)图像目标识别是实现微波视觉的关键技术之一。尽管深度学习技术已被成功应用于解决SAR图像目标识别问题,并显著超越了传统方法的性能,但其内部工作机理不透明、解释性不足,成为制约SAR图像目标识别技术可靠和可信应用的瓶颈。深度学习的可解释性问题是目前人工智能领域的研究热点与难点,对于理解和信任模型决策至关重要。该文首先总结了当前SAR图像目标识别技术的研究进展和所面临的挑战,对目前深度学习可解释性问题的研究进展进行了梳理。在此基础上,从模型理解、模型诊断和模型改进等方面对SAR图像目标识别的可解释性问题进行了探讨。最后,以可解释性研究为切入点,从领域知识结合、人机协同和交互式学习等方面进一步讨论了未来突破SAR图像目标识别技术瓶颈有可能的方向。

     

  • 图  1  一个简单CNN分类器在T72 SAR图像的梯度-类激活映射(Grad-CAM[6])

    Figure  1.  The results of a CNN classifier and the Grad-CAM map[6]

    图  2  MSTAR T62光学图像与不同方位角下的SAR图像

    Figure  2.  The Optical image and SAR image samples of T62 tank at different azimuth angles in MSTAR dataset

    图  3  SAR目标识别面临的挑战

    Figure  3.  Challenges of SAR ATR

    图  4  可解释性学习

    Figure  4.  Explainable machine learning

    图  5  基于梯度系列方法的决策显著性

    Figure  5.  Decision saliency of the Gradient-based methods

    图  6  LIME示意图[55]

    Figure  6.  Illustration of LIME[55]

    图  7  SAR目标识别可解释性研究

    Figure  7.  Explainable SAR automatic target recognition

    图  8  SAR目标识别的样本决策重要性分析

    Figure  8.  Decision importance analysis for the SAR target recognition model

    图  9  物理知识引导的SAR特征学习网络

    Figure  9.  Physical model guided feature learning for SAR images

    表  1  典型的可解释性方法

    Table  1.   Typical methods for explainablitiy

    解释的对象模型依赖(Model-specific)模型无关(Model-agnostic)
    解释模型
    Explain model
    ■激活最大化方法AM[43,44]
    ■概念激活矢量TCAV[45]
    ■知识蒸馏(Knowledge distilling)[46]
    ■特征置换(Permutation)[47]
    解释样本
    Explain sample
    ■基于梯度的方法Grad[48], GuidedBP[49], IntegratedGrad[50], SmoothGrad[51]
    ■特征扰动分析Perturbation[52]
    ■层次相关传播LRP[53]
    ■类激活映射CAM[54], Grad-CAM[6]
    ■基于局部代理模型的方法,如LIME[55]
    ■基于实例的方法,如Influence function[56],Critic样本方法[57]
    ■基于Shapley值的方法[58]
    下载: 导出CSV
  • [1] 金亚秋. 多模式遥感智能信息与目标识别: 微波视觉的物理智能[J]. 雷达学报, 2019, 8(6): 710–716. doi: 10.12000/JR19083

    JIN Yaqiu. Multimode remote sensing intelligent information and target recognition: Physical intelligence of microwave vision[J]. Journal of Radars, 2019, 8(6): 710–716. doi: 10.12000/JR19083
    [2] KEYDEL E R, LEE S W, and MOORE J T. MSTAR extended operating conditions: A tutorial[C]. SPIE Volume 2757, Algorithms for Synthetic Aperture Radar Imagery III, Orlando, USA, 1996. doi: 10.1117/12.242059.
    [3] ZHAO Juanping, GUO Weiwei, ZHANG Zenghui, et al. A coupled convolutional neural network for small and densely clustered ship detection in SAR images[J]. Science China Information Sciences, 2019, 62(4): 42301. doi: 10.1007/s11432-017-9405-6
    [4] 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
    [5] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136–148. doi: 10.12000/JR16130

    XU Feng, WANG Haipeng, and JIN Yaqiu. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136–148. doi: 10.12000/JR16130
    [6] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336–359. doi: 10.1007/s11263-019-01228-7
    [7] GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. 2015 International Conference on Learning Representations, San Diego, USA, 2015.
    [8] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071–2096. doi: 10.7544/issn1000-1239.2019.20190540

    JI Shouling, LI Jinfeng, DU Tianyu, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071–2096. doi: 10.7544/issn1000-1239.2019.20190540
    [9] 吴飞, 廖彬兵, 韩亚洪. 深度学习的可解释性[J]. 航空兵器, 2019, 26(1): 39–46. doi: 10.12132/ISSN.1673-5048.2018.0065

    WU Fei, LIAO Binbing, and HAN Yahong. Interpretability for deep learning[J]. Aero Weaponry, 2019, 26(1): 39–46. doi: 10.12132/ISSN.1673-5048.2018.0065
    [10] GUIDOTTI R, MONREALE A, RUGGIERI S, et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2018, 51(5): 93. doi: 10.1145/3236009
    [11] NOVAK L M, OWIRKA G J, and NETISHEN C M. Performance of a high-resolution polarimetric SAR automatic target recognition system[J]. The Lincoln Laboratory Journal, 1993, 6(1): 11–23.
    [12] GAO Gui. Statistical modeling of SAR images: A survey[J]. Sensors, 2010, 10(1): 775–795. doi: 10.3390/s100100775
    [13] 高贵. SAR图像统计建模研究综述[J]. 信号处理, 2009, 25(8): 1270–1278. doi: 10.3969/j.issn.1003-0530.2009.08.019

    GAO Gui. Review on the statistical modeling of SAR images[J]. Signal Processing, 2009, 25(8): 1270–1278. doi: 10.3969/j.issn.1003-0530.2009.08.019
    [14] 郭炜炜. SAR图像目标分割与特征提取[D]. [硕士论文], 国防科学技术大学, 2007: 28–35.

    GUO Weiwei. SAR image target segmentation and feature extraction[D]. [Master dissertation], National University of Defense Technology, 2007: 28–35.
    [15] HUAN Ruohong and YANG Ruliang. SAR target recognition based on MRF and gabor wavelet feature extraction[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: II-907–II-910. doi: 10.1109/igarss.2008.4779142.
    [16] PAPSON S and NARAYANAN R M. Classification via the shadow region in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 969–980. doi: 10.1109/taes.2012.6178042
    [17] CASASENT D and CHANG W T. Correlation synthetic discriminant functions[J]. Applied Optics, 1986, 25(14): 2343–2350. doi: 10.1364/ao.25.002343
    [18] ZHAO Q and PRINCIPE J C. Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643–654. doi: 10.1109/7.937475
    [19] SUN Yijun, LIU Zhipeng, TODOROVIC S, et al. Adaptive boosting for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 112–125. doi: 10.1109/taes.2007.357120
    [20] SUN Yongguang, DU Lan, WANG Yan, et al. SAR automatic target recognition based on dictionary learning and joint dynamic sparse representation[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1777–1781. doi: 10.1109/lgrs.2016.2608578
    [21] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
    [22] 计科峰, 匡纲要, 粟毅, 等. 基于SAR图像的目标散射中心特征提取方法研究[J]. 国防科技大学学报, 2003, 25(1): 45–50. doi: 10.3969/j.issn.1001-2486.2003.01.010

    JI Kefeng, KUANG Gangyao, SU Yi, et al. Research on the extracting method of the scattering center feature from SAR imagery[J]. Journal of National University of Defense Technology, 2003, 25(1): 45–50. doi: 10.3969/j.issn.1001-2486.2003.01.010
    [23] 丁柏圆, 文贡坚, 余连生, 等. 属性散射中心匹配及其在SAR目标识别中的应用[J]. 雷达学报, 2017, 6(2): 157–166. doi: 10.12000/JR16104

    DING Baiyuan, WEN Gongjian, YU Liansheng, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition[J]. Journal of Radars, 2017, 6(2): 157–166. doi: 10.12000/JR16104
    [24] JONES III G and BHANU B. Recognizing articulated objects in SAR images[J]. Pattern Recognition, 2001, 34(2): 469–485. doi: 10.1016/s0031-3203(99)00218-6
    [25] MAO Xiaojiao, SHEN Chunhua, and YANG Yubin. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2810–2818.
    [26] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/tpami.2015.2439281
    [27] LIU Li, OUYANG Wanli, WANG Xiaogang, et al. Deep learning for generic object detection: A survey[J]. International Journal of Computer Vision, 2020, 128(2): 261–318. doi: 10.1007/s11263-019-01247-4
    [28] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778.
    [29] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/tpami.2017.2699184
    [30] CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for sar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/tgrs.2016.2551720
    [31] 潘宗序, 安全智, 张冰尘. 基于深度学习的雷达图像目标识别研究进展[J]. 中国科学: 信息科学, 2019, 49(12): 1626–1639. doi: 10.1360/SSI-2019-0093

    PAN Zongxu, AN Quanzhi, and ZHANG Bingchen. Progress of deep learning-based target recognition in radar images[J]. Scientia Sinica Informationis, 2019, 49(12): 1626–1639. doi: 10.1360/SSI-2019-0093
    [32] 贺丰收, 何友, 刘准钆, 等. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899

    HE Fengshou, HE You, LIU Zhunga, et al. Research and development on applications of convolutional neural networks of radar automatic target recognition[J]. Journal of Electronics and Information Technology, 2020, 42(1): 119–131. doi: 10.11999/JEIT180899
    [33] ZHAO Juanping, ZHANG Zenghui, YU Wenxian, et al. A cascade coupled convolutional neural network guided visual attention method for ship detection from SAR images[J]. IEEE Access, 2018, 6: 50693–50708. doi: 10.1109/access.2018.2869289
    [34] 陈慧元, 刘泽宇, 郭炜炜, 等. 基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J]. 雷达学报, 2019, 8(3): 413–424. doi: 10.12000/JR19041

    CHEN Huiyuan, LIU Zeyu, GUO Weiwei, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network[J]. Journal of Radars, 2019, 8(3): 413–424. doi: 10.12000/JR19041
    [35] WAGNER S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. The 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 2014: 1–6.
    [36] WAGNER S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. doi: 10.1109/taes.2016.160061
    [37] HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/tgrs.2019.2947634
    [38] 赵娟萍, 郭炜炜, 柳彬, 等. 基于概率转移卷积神经网络的含噪标记SAR图像分类[J]. 雷达学报, 2017, 6(5): 514–523. doi: 10.12000/JR16140

    ZHAO Juanping, GUO Weiwei, LIU Bin, et al. Convolutional neural network-based sar image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. doi: 10.12000/JR16140
    [39] GUNNING D. EXplainable Artificial Intelligence (XAI)[R]. DARPA/I2O, 2017.
    [40] ADADI A and BERRADA M. Peeking inside the black-box: A survey on EXplainable Artificial Intelligence (XAI)[J]. IEEE Access, 2018, 6: 52138–52160. doi: 10.1109/access.2018.2870052
    [41] LIPTON Z C. The mythos of model interpretability[J]. Communications of the ACM, 2018, 61(10): 36–43. doi: 10.1145/3233231
    [42] ZHANG Quanshi and ZHU Songchun. Visual interpretability for deep learning: A survey[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1): 27–39. doi: 10.1631/fitee.1700808
    [43] MAHENDRAN A and VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International Journal of Computer Vision, 2016, 120(3): 233–255. doi: 10.1007/s11263-016-0911-8
    [44] NGUYEN A, CLUNE J, BENGIO Y, et al. Plug & play generative networks: Conditional iterative generation of images in latent space[J]. arXiv: 1612.00005, 2016.
    [45] KIM B, WATTENBERG M, GILMER J, et al. Interpretability beyond feature attribution: Quantitative Testing with Concept Activation Vectors (TCAV)[J]. arXiv: 1711.11279, 2017.
    [46] FROSST N and HINTON G. Distilling a neural network into a soft decision tree[J]. arXiv: 1711.09784, 2017.
    [47] ALTMANN A, TOLOŞI L, SANDER O, et al. Permutation importance: A corrected feature importance measure[J]. Bioinformatics, 2010, 26(10): 1340–1347. doi: 10.1093/bioinformatics/btq134
    [48] SIMONYAN K, VEDALDI A, and ZISSERMAN A. Deep inside convolutional networks: Visualising image classification models and saliency maps[J]. arXiv: 1312.6034, 2013.
    [49] SPRINGENBERG J T, DOSOVITSKIY A, BROX T, et al. Striving for simplicity: The all convolutional net[J]. arXiv: 1412.6806, 2014.
    [50] SUNDARARAJAN M, TALY A, and YAN Qiqi. Gradients of counterfactuals[J]. arXiv: 1611.02639, 2016.
    [51] SMILKOV D, THORAT N, KIM B, et al. SmoothGrad: Removing noise by adding noise[J]. arXiv: 1706.03825, 2017.
    [52] FONG R, PATRICK M, and VEDALDI A. Understanding deep networks via extremal perturbations and smooth masks[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 2950–2958. doi: 10.1109/iccv.2019.00304.
    [53] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7): e0130140. doi: 10.1371/journal.pone.0130140
    [54] ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2921–2929. doi: 10.1109/cvpr.2016.319.
    [55] RIBEIRO M, SINGH S, and GUESTRIN C.“Why should I trust you?”: Explaining the predictions of any classifier[C]. 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, San Diego, USA, 2016: 97–101. doi: 10.18653/v1/n16-3020.
    [56] KOH P W and LIANG P. Understanding black-box predictions via influence functions[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1885–1894.
    [57] KIM B, KHANNA R, and KOYEJO O. Examples are not enough, learn to criticize! Criticism for Interpretability[C]. The 30th Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 2280–2288.
    [58] LUNDBERG S M and LEE S I. A unified approach to interpreting model predictions[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 4768–4777.
    [59] ZHANG Quanshi, YANG Yu, MA Haotian, et al. Interpreting CNNs via decision trees[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 6254–6263. doi: 10.1109/cvpr.2019.00642.
    [60] DU Mengnan, LIU Ninghao, SONG Qingquan, et al. Towards explanation of DNN-based prediction with guided feature inversion[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1358–1367.
    [61] ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    [62] SAMEK W, BINDER A, MONTAVON G, et al. Evaluating the visualization of what a deep neural network has learned[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2660–2673. doi: 10.1109/tnnls.2016.2599820
    [63] NAM W J, GUR S, CHOI J, et al. Relative attributing propagation: Interpreting the comparative contributions of individual units in deep neural networks[C]. The 34th Conference on Artificial Intelligence (AAAI), New York, USA, 2020: 2501–2508.
    [64] RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206–215. doi: 10.1038/s42256-019-0048-x
    [65] XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]. The 32nd International Conference on Machine Learning(ICML), Lille, France, 2015: 2048–2057.
    [66] GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. The 27th International Conference on Machine Learning, Haifa, Israel, 2010: 399–406.
    [67] ZHENG Shuai, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1529–1537. doi: 10.1109/iccv.2015.179.
    [68] PENG Xi, TSANG I W, ZHOU J T, et al. K-meansNet: When k-means meets differentiable programming[J]. arxiv: 1808.07292, 2018.
    [69] ZHU Hongyuan, PENG Xi, Chandrasekhar V, et al. DehazeGAN: When image dehazing meets differential programming[C]. The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 1234–1240.
    [70] KARPATNE A, WATKINS W, READ J, et al. Physics-guided Neural Networks (PGNN): An application in lake temperature modeling[J]. arxiv: 1710.11431, 2017.
    [71] CHEN Tianshui, XU Muxin, HUI Xiaolu, et al. Learning semantic- specific graph representation for multi-label image recognition[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 522–531.
    [72] CHU Lingyang, HU Xia, HU Juhua, et al. Exact and consistent interpretation for piecewise linear neural networks: A closed form solution[C]. The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 2018: 1244–1253.
    [73] BAU D, ZHOU Bolei, KHOSL A, et al. Network dissection: Quantifying interpretability of deep visual representations[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3319–3327. doi: 10.1109/cvpr.2017.354.
    [74] DATCU M, ANDREI V, DUMITRU C O, et al. Explainable deep learning for SAR data[C]. Φ-week, Frascati, Italy, 2019.
    [75] HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi: 10.1016/j.isprsjprs.2020.01.016
    [76] ZHAO Juanping, DATCU M, ZHANG Zenghui, et al. Contrastive-regulated CNN in the complex domain: A method to learn physical scattering signatures from flexible PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10116–10135. doi: 10.1109/tgrs.2019.2931620
    [77] CHEN Lifu, TAN Siyu, PAN Zhouhao, et al. A new framework for automatic airports extraction from SAR images using multi-level dual attention mechanism[J]. Remote Sensing, 2020, 12(3): 560. doi: 10.3390/rs12030560
    [78] LI Chen, DU Lan, DENG Sheng, et al. Point-wise discriminative auto-encoder with application on robust radar automatic target recognition[J]. Signal Processing, 2020, 169: 107385. doi: 10.1016/j.sigpro.2019.107385
    [79] CETIN M, KARL W C, and CASTANON D A. Feature enhancement and ATR performance using nonquadratic optimization-based SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1375–1395. doi: 10.1109/taes.2003.1261134
    [80] KHANNA R, KIM B, GHOSH J, et al. Interpreting black box predictions using fisher kernels[C]. The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), Okinawa, Japan, 2019: 3382–3390.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  4833
  • HTML全文浏览量:  2080
  • PDF下载量:  767
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-11
  • 修回日期:  2020-06-17
  • 网络出版日期:  2020-06-01

目录

    /

    返回文章
    返回