Loading [MathJax]/jax/output/SVG/jax.js
TAN Pengyuan, ZHU Jianjun, FU Haiqiang, et al. Inversion of forest height based on ALOS-2 PARSAR-2 multi-baseline polarimetric SAR interferometry data[J]. Journal of Radars, 2020, 9(3): 569–577. doi: 10.12000/JR20030
Citation: WAN Xianrong, YI Jianxin, ZHAN Weijie, XIE Deqiang, SHU Kan, SONG Jiale, CHENG Feng, RAO Yunhua, GONG Ziping, KE Hengyu. Research Progress and Development Trend of the Multi-Illuminator-based Passive Radar (in English)[J]. Journal of Radars, 2020, 9(6): 939-958. doi: 10.12000/JR20143

Research Progress and Development Trend of the Multi-Illuminator-based Passive Radar (in English)

DOI: 10.12000/JR20143
Funds:  The National Natural Science Foundation of China (61931015, 62071335, 61701350, U1933135, 61831009), The National Key Research and Development Program (2016YFB0502403), Technological Innovation Project of Hubei Province of China (2019AAA061)
More Information
  • Corresponding author: WAN Xianrong, xrwan@whu.edu.cn; YI Jianxin, jxyi@whu.edu.cn
  • Received Date: 2020-11-28
  • Rev Recd Date: 2020-12-18
  • Publish Date: 2020-12-22
  • Given the functions and performance advantages of passive radar, this paper first reviews the research history of passive radar for more than 80 years and then examines the research progress of related key technologies, including reference signal reconstruction, multipath clutter suppression, target detection, target tracking, and passive radar imaging. On this basis, the latest research results of typical experimental systems of passive radar abroad (particularly in European countries) are presented in terms of system structures, technical parameters, and performance indices. Then this paper focuses on the Multi-Illuminator-based PAssive Radar (MIPAR) series of Wuhan University in China. The target detection results of MIPAR in different frequency bands (HF/VHF/UHF/L) are given, that show the application potential of the MIPAR system in long-range early warning and close-range high-precision monitoring. Finally, the development trends of passive radar, including the integration of multiple illuminators, system network configuration, and intelligent signal processing, are discussed.

     

  • 森林高度是估算森林蓄积量及生物量的重要基础数据,对于研究森林资源状况以及分析全球生态环境、气候变化具有重要意义。极化合成孔径雷达干涉测量技术(Polarimetric SAR Interferometry, PolInSAR)采用微波监测模式,其回波信号不仅记录垂直结构及其属性信息,且可以区分同一分辨单元内不同散射体高度的能力,已被视为大范围、高分辨率、高精度反演森林高度的有效手段之一[1]

    为了实现利用PolInSAR观测量准确地提取森林高度,Thrauhft等人[2]建立了随机地体二层散射模型(Random Volume over Ground, RVoG),该模型将森林散射场景抽象为两层,即由随机均匀分布的散射体组成的植被层,以及微波信号不可穿透的地表层。随后,Papathanassiou等人[3,4]进一步分析PolInSAR复相干性与RVoG模型的关联,建立了利用PolInSAR反演森林高度的框架。实质上,该框架是基于体散射去相干的模型表达来反演森林高度等参数的,并且利用不同PolInSAR数据都获得了较高的反演精度[5-7]

    由于森林场景具有显著的时变性,具有长时间间隔的星载重轨干涉SAR(如ALOS-1至少为46天,ALOS-2为14天)散射场景内介电常数变化(如降雨)和风动都会产生严重的时间去相干。因此,除了体去相干的影响,时间去相干也是星载重轨极化干涉SAR数据中不可忽略的去相干因素,决定了森林参数反演的精度,甚至是反演成败的关键。为此,Yang等人[8]在随机移动散射模型(Random Motion over Ground, RMoG)[9]和体时去相干散射模型 (Volume Temporal Decorrelation, VTD)模型[10]基础上,提出一种时间去相干半经验森林高度反演方法。该方法结合少量机载LiDAR森林高度数据辅助时间去相干半经验模型解算,利用ALOS-1 PARSAR-1 HV极化相干幅度成功实现了大尺度森林高度反演。

    然而,该方法需假设HV极化不包含地表散射回波能量贡献,事实上,L波段SAR信号具有较强的穿透性,尤其当森林高度较低或密度较小时,HV极化方式会记录显著地表回波信号。此外,该方法只适用于单基线干涉数据,尚未考虑多基线条件下,如何充分利用观测几何的多样性提升反演结果的可靠性。因此本文的目的是针对上述反演方法的限制,利用ALOS-2 PARSAR-2多基线PolInSAR数据更为准确地提取森林高度。主要思路如下:首先利用相干最大分离算法(Maximum Coherence Difference, MCD)在极化空间内寻求具有最少地面散射能量贡献的极化方式,以获得更为纯净的森林冠层散射贡献。然后利用该极化方式的相干幅度,在少量森林高度地面调查数据辅助下基于时间去相干半经验模型进行森林高度反演。在此基础之上,结合多基线数据根据PolInSAR相干集在复数平面内的几何表达,甄选最优观测干涉数据的反演结果作为森林高度反演最终结果。

    综合顾及垂直方向上散射体分布产生的体去相干、散射场景内介电特性改变和植被风动引起的时间去相干同时占主导地位,星载重轨PolInSAR复相干系数一般形式表示为[8]

    γ(ω)=eiφ0γvdγv/m+γgdμ(ω)1+μ(ω) (1)

    式中,φ0为地表相位;γvdγgd分别表示植被体层和地面层介电特性改变引起的时间去相干复因子;μ(ω)为地体幅度比,与极化方式有关;γv/m为体散射去相干和时间去相干(植被风动引起)产生的耦合去相干

    γv/m=h0exp[12(4πλ)2σ2r(z)]f(z)exp(ikzz)dzh0f(z)dz (2)

    其中,h表示森林高度;f(z)为指数形式的垂直结构函数,描述垂直方向z上散射体的分布;σr(z)为散射体沿雷达视线方向的随机运动标准差,假定与森林高度呈线性关系

    σr(z)=σrhrz (3)

    式中,σr表示在参考高度hr(根据先验信息一般设为15 m[8,9])处的运动标准差。

    为了解决上述模型过参数化问题,Yang等人[8]对散射场景做如下假设:(1) 散射场景内时间去相干与消光系数在空间上具有一致性;(2) HV极化方式具有较小地面散射能量贡献,可假定其地体幅度比μmin=0,此时对于该极化方式可忽略地面层介电常数改变引起的时间去相干;(3) 假定干涉场景为零空间基线理想情况(忽略森林垂直结构引起的体散射去相干),即垂直有效波束kz=0,此时对于式(2)适用积分第一中值定理(即对于在给定区间[a,b]有连续函数f(x)和同号可积函数g(x),区间内存在一点ε满足baf(x)g(x)dx=f(ε)bag(x)dx。因此在上述假定条件下,式(1)可简化为时间去相干半经验模型[8,11]

    γ=Ssceneexp[12(4πσrαλhr)2h2]Sscenesinc(hCscene) (4)

    其中,α为中值ε关于森林高度的比例因子,即ε=αh(0α1); Sscene, Cscene分别与植被体层介电特性改变和风动引起的时间去相干有关

    Sscene=|γvd|; Cscene=λhr2π2σrα (5)

    已有方法主要选用对森林冠层较为敏感的HV极化方式进行模型求解,但是ALOS-2 PALSAR-2发射具有较强穿透能力的L波段电磁波,HV极化方式回波信号中同样会记录显著地表回波信号。鉴于此,本文利用ALOS-2 PALSAR-2全极化数据结合极化相干最优理论,尽可能抑制地表回波信号的干扰。具体方法如下:

    在主辅极化SAR影像散射机制相同的情况下,极化干涉SAR的复相干系数表示为[12]

    γ=ωHΩ12ωωHT11ωωHT22ω (6)

    式中,自相关矩阵T11T22都是标准Hermitian相干矩阵,分别描述主辅影像的极化特性,Ω12为互相关矩阵,不仅包含极化信息,还包含了主副影像不同极化通道间的干涉相位关系。ω为归一化复投影矢量,通过转换ω可以计算极化空间内任意极化基下对应散射机制的复相干系数,组成相干集。该复相干系数集合形成的区域边界范围可以看作将相干复平面旋转任意角度,得到的实部最大和最小相干系数[13]

    Re(γeiϕ)=ωHAωωHTωA=eiϕΩ12+eiϕΩH122,T=T11+T222} (7)

    式中,ϕ为旋转相位,在[0,π)范围内等间隔采样角度。式(7)求极值可以转化为求解特征值问题即Aω=λTω,进而得到最大和最小特征值分别对应的特征向量ω1ω2,那么相干区域的一对边界点可以表示为[14]

    γ1=ωH1Ω12ω1ωH1Tω1, γ2=ωH2Ω12ω2ωH2Tω2 (8)

    相比传统InSAR技术只能获取HH, HV或VV极化方式对应的复相干系数,相干集中包含了特定极化散射机理对应的复相干系数,为寻求极化空间内具有更为纯净森林冠层散射贡献的极化方式提供了可能。相干区域范围示意如图1所示,其中在相干区域成对边界点中距离最远的一对相干系数点γA, γB(也就是相干区域长轴两端点),可以表征植被层和地表层有效相位中心的最大分离[15]。根据式(9)进一步确定体散射占优极化方式复相干γ(μmin)与地表散射占优极化方式的复相干γ(μmax)

    图  1  不同干涉对相干区域在复平面上的示意图
    Figure  1.  Coherent regions on the complex plane for different interferometric pairs
    kz>0:ifarg(γAγB)>0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)<0thenγ(μmin)=γB,γ(μmax)=γAkz<0:ifarg(γAγB)<0thenγ(μmin)=γA,γ(μmax)=γBifarg(γAγB)>0thenγ(μmin)=γB,γ(μmax)=γA} (9)

    其中,μmin表示具有最小地体幅度比的极化方式,对应体散射占优极化方式复相干;μmax表示具有最大地体幅度比的极化方式,对应表面散射占优极化方式复相干;kz为垂直有效波束,取决于成像相对几何关系(垂直基线B,斜距R,入射角θ和雷达波长λ)[16]

    kz=4πBλRsinθ (10)

    即便简化了模型参数和采用多基线PolInSAR数据增加了观测量,利用传统多维非线性迭代求解时间去相干半经验模型仍存在秩亏问题。因此本文采用一种外部数据辅助反演法[8],即先利用小范围真实森林高度数据辅助解算出模型参数SsceneCscene,然后代入模型中即可得到整个散射场景范围的森林高度结果。模型参数求解具体思路如下:对于给定模型参数初始值,利用训练数据中的μmin极化方式相干幅度结合式(4)可以得到反演森林高度结果hinvert,它与对应真实森林高度数据hreal确定的散点图如图2所示。理想情况下,两者数据散点应沿虚线y=x分布,但实际上在初始模型参数误差存在情况下,两者散点点阵椭圆主轴与y=x并非一致,而是存在一定的偏差。因此通过利用训练数据对其调整来寻求散射场景最佳模型参数。

    图  2  反演森林高度与真实森林高度散点点阵椭圆示意图
    Figure  2.  Scatters ellipse between invert height and real height

    主成分分析思想[17]为实现上述思路提供了契机,即通过对训练数据中hrealhinvert这两个二维数据的协方差矩阵进行特征值分解,可以确定该二维数据降维后的主轴(也就是散点点阵椭圆的长轴)斜率k

    X=[Var(hreal)Cov(hreal,hinvert)Cov(hinvert,hreal)Var(hinvert)]=[P11P12P21P22][λ100λ2][P11P12P21P22]1k=P21P11} (11)

    其中λ1λ2为按降序排列的特征值,P为特征值对应的特征向量的元素。而点阵椭圆质心与虚线y=x的偏差 b可以表示为

    b=M(hreal)M(hinvert)[M(hreal)+M(hinvert)]/2 (12)

    式中,M 表示取平均运算。

    散点点阵椭圆主轴确定后,显然可以通过建立使逼近参数k, b分别趋近于1, 0的目标函数

    (k1)2+(b0)2=min (13)

    该目标函数可以利用高斯-牛顿迭代算法进行非线性最小二乘求解,如式(14)所示

    [SsceneCscene]=(JT0J0)1JT0[1k00b0]+[Sscene0Cscene0] (14)

    式中,表示最终迭代次数;通过给定模型参数初始值Sscene0, Cscene0,结合上述主成分思想可以得到初始点相应的k0, b0以及雅克比矩阵J0

    J0=[kSscenekCscenebSscenebCscene]|Sscene0Cscene0 (15)

    然后将得到修正后的模型参数作为新的初始点进行下一次迭代,经过多次迭代后即可获得最佳模型参数Sscene, Cscene,迭代终止条件为(ε为经验阈值,本文设为106)

    |[SsceneCscene][S(1)sceneC(1)scene]|<ε (16)

    在利用训练数据求得时间去相干半经验模型参数后,对每个像元求解一元非线性方程得到整个散射场景内的森林高度结果。

    时间去相干、体去相干以及其他噪声等因素会共同影响PolInSAR复相干性在复平面单位圆上的几何表达[18]。在多基线配置下,不同干涉对在同一分辨单元内往往呈现出不同的相干区域结构(如图1所示)。而相干特性P可以作为评价相干区域结构的指标[19]

    P=|γ(μmin)γ(μmax)||γ(μmin)+γ(μmax)| (17)

    式中,γ(μmin), γ(μmax)为2.2节所述相干区域长轴的两端点,分别对应体散射极化通道与地表散射极化通道的复相干系数。|γ(μmin)γ(μmax)|即为极化相干区域的长轴,反映了不同极化相干点在复数单位圆的分离程度;|γ(μmin)+γ(μmax)|为相干区域质心到坐标原点距离的2倍,反映了相干区域整体相干性的平均水平。因此,P 值越大说明该干涉对具有更好的相干性质量与极化分离度,反演的结果更为可靠。

    通过相干特性指标P 甄选出不同干涉对在同一分辨单元内反演出的最优森林高度值作为多基线PolInSAR森林高度融合结果,多基线PolInSAR融合反演框架可表示为

    maxP1(γ1(μmin),γ1(μmax))P2(γ2(μmin),γ2(μmax))PN(γN(μmin),γN(μmax)) (18)

    式中,N 为极化干涉SAR观测基线数。

    研究区域黄丰桥国有林场(27°05—27°24 N, 113°35—113°55 E)呈带状分布,横跨湖南省攸县东西两部(如图3所示)。该林场属亚热带季风湿润性气候区,年平均气温17.8 °C,年降水量1410.8 mm,大部分降雨发生于春、夏季。林场境内森林茂盛,拥有森林蓄积量90.12×104 m3,森林覆盖率达90%。林分类型以针叶林为主,包括杉木、油松、落叶松等。

    图  3  实验区:绿线范围为黄丰桥(HFQ)林场研究区域,蓝色虚线为ALOS-2 PALSAR-2影像范围,圆点为地面实测林分样地
    Figure  3.  The test site: the green line indicates the study area of HuangFengQiao (HFQ) forestry center, the blue dotted line indicates the ALOS-2 PALSAR-2 image range, and the dots are field measurement plots

    地面实测数据由中南林业科技大学于2016年6~7月采集得到,通过在林区范围内选取60个相互独立的林分样地以确保避免空间自相关,每个林分样地规格为30×30 m。树高则基于单木测高原理利用激光测高仪测得,林分高度范围为4.60~20.20 m,平均高度为13.24 m。本文通过随机采样,将60个林分样地数据随机分为45个训练数据(图3黄点所示)和15个验证数据(图3红点所示)两组。

    多基线星载重轨PolInSAR数据是利用日本宇航局(JAXA)提供的5景覆盖研究区域的ALOS-2 PALSAR-2 L波段全极化数据。该SAR影像范围如图3蓝色虚线所示,获取时间为2016年6月至8月,获取模式为StripMap2(SM2),影像主要参数信息如表1所示。将5景SAR影像组成3个时间基线为14天的干涉影像对(BL1, BL2, BL3),然后各自进行配准处理,并进行公共带通滤波以确保去除几何去相干。相干性以11×11窗口进行估计,并应用Boxcar滤波进行平滑处理以消除斑点效应。最后利用SRTM DEM对SAR影像进行地理编码,并将其重采样至与DEM空间分辨率一致(30×30 m)。图4为3个干涉对的HV极化和μmin极化的相干性统计图,由统计图可见不同干涉对的相干性均较低,说明研究区域受时间去相干影响较为严重。

    表  1  ALOS-2 PALSAR-2参数信息
    Table  1.  Parameter information of ALOS-2 PALSAR-2
    日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
    0616—0630 (BL1)0.013~0.015
    0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
    0811—0825 (BL3)0.009~0.010
    下载: 导出CSV 
    | 显示表格
    图  4  相干性统计图
    Figure  4.  The histograms of coherence

    以选取的15个验证林分的实测森林高度(H-field)对反演结果(H-invert)进行分析评价,图5为3个干涉对利用HV极化反演得到的散点图结果,均方根误差RMSE分别为:4.20 m, 4.03 m和3.42 m。利用μmin极化方式反演的验证结果如图6所示,3个干涉对的反演精度分别提高了:20%, 17%和12%,除此之外,相关系数R2也分别有所提高。分析认为采用全极化数据结合PolInSAR相干优化算法扩展了极化空间,相比已有方法中选用的HV极化,μmin极化含有更少地表散射贡献,更贴近时间去相干半经验模型推导过程中基于“零”地体幅度比的关键假设。

    图  5  单基线InSAR反演高度与验证数据散点图
    Figure  5.  Scatterplot comparison between inversion height of single baseline InSAR and validation data
    图  6  单基线PolInSAR反演高度与验证数据散点图
    Figure  6.  Scatterplot comparison between inversion height of single baseline PolInSAR and validation data

    从上述单基线森林高度反演结果看,不同干涉对反演整体精度较为接近,但是对于同一林分在利用不同干涉对反演的结果却存在明显差异。因此,当多基线数据可用时,我们进一步在单基线PolInSAR森林高度反演结果的基础上挖掘PolInSAR数据本身特性并对其森林高度反演能力进行评判。与时间去相干相关的参数SsceneCscene共同反映了散射场景内的时间去相干影响水平,其中Sscene与植被体层介电特性变化相关,Cscene反映了植被体层随机运动引起时间去相关水平。表2即为单基线PolInSAR模型参数解算结果,对于不同干涉对,Sscene越小,表明该基线在散射场景内植被体层介电变化(降水等引起)越显著;Cscene越小,则表明植被体层随机运动(风动等引起)越强烈。从图4相干性统计图也可以看出,干涉对BL1相干性相对更低,受时间去相干的影响更为严重。因此,在不同时间去相干以及其他噪声影响下,每个干涉对在同一分辨单元内会具有不同的的相干特性,呈现出优劣不同的相干区域结构。

    表  2  单基线PolInSAR模型参数解算结果
    Table  2.  Model parameter results of single baseline PolInSAR inversion
    模型参数BL1BL2BL3
    Sscene0.690.780.78
    Cscene9.8810.0811.14
    下载: 导出CSV 
    | 显示表格

    3个干涉对在验证林分的相干特性P值、反演森林高度值以及多基线融合森林高度值如表3所示,从整体看,根据相干特性P值大小从3个单基线PolInSAR反演结果中甄选出的森林高度结果更接近于实测真实森林高度。整个实验区的多基线PolInSAR融合反演结果以及精度评定如图7所示,均方根误差RMSE为2.05 m,相比于已有的方法,本文提出的多基线PolInSAR融合反演策略精度至少提高了40%(与图5中BL3基线结果对比),同时,相关系数也提升至0.81。

    表  3  3个干涉对的相干特性P值以及森林高度值
    Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
    林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
    10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
    20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
    30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
    40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
    50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
    60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
    70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
    80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
    90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
    100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
    110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
    120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
    130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
    140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
    150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
    下载: 导出CSV 
    | 显示表格
    图  7  多基线PolInSAR融合反演
    Figure  7.  Multi baseline PolInSAR fusion inversion

    在多基线全极化数据可用条件下,弥补单基线InSAR观测信息不足以及几何结构单一的问题,对于反演结果整体精度提升具有重要作用。本文提出了一种星载重轨多基线PolInSAR反演森林高度的策略,对InSAR极化空间和观测几何空间进行扩展,主要结论如下:

    (1) 该方法利用MCD相干优化算法获得对体散射最为敏感的极化方式,并基于时间去相干半经验模型进行森林高度反演,使每条单基线反演精度在一定程度上都有所提高。

    (2) 利用由相干特性指标P确定的相干区域最优准则可以优选出同一分辨单元内最优的单基线森林高度反演结果。因此,相比仅利用单基线单一极化反演方法,多基线PolInSAR融合策略具有更好的稳定性,精度也更高。

  • [1]
    GRIFFITH H D and BAKER C J. Passive coherent location radar systems. Part 1: Performance prediction[J]. IEE Proceedings – Radar, Sonar and Navigation, 2005, 152(3): 153–159. doi: 10.1049/ip-rsn:20045082.
    [2]
    BAKER C J, GRIFFITHS H D, and PAPOUTSIS I. Passive coherent location radar systems. Part 2: Waveform properties[J]. IEE Proceedings – Radar, Sonar and Navigation, 2005, 152(3): 160–168. doi: 10.1049/ip-rsn:20045083.
    [3]
    万显荣. 基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J]. 雷达学报, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027.

    WAN Xianrong. An overview on development of passive radar based on the low frequency band digital broadcasting and TV signals[J]. Journal of Radars, 2012, 1(2): 109–123. doi: 10.3724/SP.J.1300.2012.20027.
    [4]
    宋杰, 何友, 蔡复青, 等. 基于非合作雷达辐射源的无源雷达技术综述[J]. 系统工程与电子技术, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.

    SONG Jie, HE You, CAI Fuqing, et al. Overview of passive radar technology based on non-cooperative radar illuminator[J]. Systems Engineering and Electronics, 2009, 31(9): 2151–2156, 2180. doi: 10.3321/j.issn:1001-506X.2009.09.028.
    [5]
    KUSCHEL H, CRISTALLINI D, and OLSEN K E. Tutorial: Passive radar tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34(2): 2–19. doi: 10.1109/MAES.2018.160146.
    [6]
    郑恒, 王俊, 江胜利, 等. 外辐射源雷达[M]. 北京: 国防工业出版社, 2017: 1–10.

    ZHENG Heng, WANG Jun, JIANG Shengli, et al. Passive Bistatic Radar[M]. Beijing: National Defense Industry Press, 2017: 1–10.
    [7]
    吕晓德, 仲利华, 刘忠胜, 等. 无源相参雷达系统 —原理、信号处理及设计[M]. 北京: 科学出版社, 2019: 1–22.

    LV Xiaode, ZHONG Lihua, LIU Zhongsheng, et al. Passive Coherent Radar System—Principle, Signal Processing and Design[M]. Beijing: Science Press, 2019: 1–22.
    [8]
    GRIFFITHS H and WILLIS N. Klein Heidelberg—the first modern bistatic radar system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1571–1588. doi: 10.1109/TAES.2010.5595580.
    [9]
    GRIFFITHS H D and LONG N R W. Television-based bistatic radar[J]. IEE Proceedings F - Communications, Radar and Signal Processing, 1986, 133(7): 649–657. doi: 10.1049/ip-f-1.1986.0104.
    [10]
    HOWLAND P E. Target tracking using television-based bistatic radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 1999, 146(3): 166–174. doi: 10.1049/ip-rsn:19990322.
    [11]
    HOWLAND P E, MAKSIMIUK D, and REITSMA G. FM radio based bistatic radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 107–115. doi: 10.1049/ip-rsn:20045077.
    [12]
    SAINI R and CHERNIAKOV M. DTV signal ambiguity function analysis for radar application[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 133–142. doi: 10.1049/ip-rsn:20045067.
    [13]
    POULLIN D. Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation[J]. IEE Proceedings - Radar, Sonar and Navigation, 2005, 152(3): 143–152. doi: 10.1049/ip-rsn:20045017.
    [14]
    苏卫民, 顾红, 张先义. 基于外辐射源的雷达目标探测与跟踪技术研究[J]. 现代雷达, 2005, 27(4): 19–22. doi: 10.3969/j.issn.1004-7859.2005.04.006.

    SU Weimin, GU Hong, and ZHANG Xianyi. A study on radar target detection and tracking technology based on opportunity transmitter[J]. Modern Radar, 2005, 27(4): 19–22. doi: 10.3969/j.issn.1004-7859.2005.04.006.
    [15]
    王俊, 张守宏, 保铮. 基于外照射的无源相干雷达系统及其关键问题[J]. 电波科学学报, 2005, 20(3): 381–385. doi: 10.3969/j.issn.1005-0388.2005.03.021.

    WANG Jun, ZHANG Shouhong, and BAO Zheng. Study on the external illuminator based passive coherent radar experimental system[J]. Chinese Journal of Radio Science, 2005, 20(3): 381–385. doi: 10.3969/j.issn.1005-0388.2005.03.021.
    [16]
    COLEMAN C and YARDLEY H. Passive bistatic radar based on target illuminations by digital audio broadcasting[J]. IET Radar, Sonar & Navigation, 2008, 2(5): 366–375. doi: 10.1049/iet-rsn:20080019.
    [17]
    杨广平. 外辐射源雷达关键技术研究[J]. 现代雷达, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.

    YANG Guangping. A study on key technology of passive radar[J]. Modern Radar, 2008, 30(8): 5–9. doi: 10.3969/j.issn.1004-7859.2008.08.002.
    [18]
    万显荣, 邵启红, 柯亨玉, 等. 基于数字调幅广播的无源双基地地波雷达[J]. 雷达科学与技术, 2009, 7(6): 401–405. doi: 10.3969/j.issn.1672-2337.2009.06.001.

    WAN Xianrong, SHAO Qihong, KE Hengyu, et al. HF passive bistatic surface wave radar based on DRM digital AM broadcast[J]. Radar Science and Technology, 2009, 7(6): 401–405. doi: 10.3969/j.issn.1672-2337.2009.06.001.
    [19]
    赵兴浩, 陶然. 无源雷达GSM信号模糊函数研究[J]. 现代雷达, 2004, 26(2): 31–34. doi: 10.3969/j.issn.1004-7859.2004.02.009.

    ZHAO Xinghao and TAO Ran. Ambiguity function of GSM signal for passive radar[J]. Modern Radar, 2004, 26(2): 31–34. doi: 10.3969/j.issn.1004-7859.2004.02.009.
    [20]
    ZEMMARI R, DAUN M, and NICKEL U. Maritime surveillance using GSM passive radar[C]. The 13th International Radar Symposium (IRS), Warsaw, Poland, 2012: 76–82. doi: 10.1109/IRS.2012.6233293.
    [21]
    COLONE F, FALCONE P, BONGIOANNI C, et al. WiFi-based passive bistatic radar: Data processing schemes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1061–1079. doi: 10.1109/TAES.2012.6178049.
    [22]
    MA Hui, ANTONIOU M, STOVE A G, et al. Maritime moving target localization using passive GNSS-Based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4808–4819. doi: 10.1109/TGRS.2018.2838682.
    [23]
    VEREMYEV V I, VOROBEV E N, and KOKORINA Y V. Feasibility study of air target detection by passive radar using satellite-based transmitters[C]. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, Saint Petersburg and Moscow, Russia, 2019: 154–157. doi: 10.1109/EIConRus.2019.8656630.
    [24]
    SANTI F, PIERALICE F, and PASTINA D. Joint detection and localization of vessels at sea with a GNSS-based multistatic radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5894–5913. doi: 10.1109/TGRS.2019.2902938.
    [25]
    PASTINA D, SANTI F, PIERALICE F, et al. Passive radar imaging of ship targets with GNSS signals of opportunity[J]. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3005306.
    [26]
    WANG Yasen, BAO Qinglong, WANG Dinghe, et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1868–1872. doi: 10.1109/LGRS.2015.2432574.
    [27]
    SONG Jie, CAI Fuqing, ZHANG Caisheng, et al. Experimental results of maritime moving target detection based on passive bistatic radar using non-cooperative radar illuminators[J]. The Journal of Engineering, 2019, 2019(20): 6763–6766. doi: 10.1049/joe.2019.0586.
    [28]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB 20600-2006 数字电视地面广播传输系统帧结构、信道编码和调制[S]. 北京: 中国标准出版社, 2007.

    General Administration of the People’s Republic of China Quality Supervision and Quarantine, National Standardization Administration of China. GB 20600-2006 Framing structure, channel coding and modulation for digital television terrestrial broadcasting system[S]. Beijing: China Standard Press, 2007.
    [29]
    国家广播电影电视总局. GY/T 220.1-2006 移动多媒体广播 第1部分: 广播信道帧结构、信道编码和调制[S]. 中国移动多媒体标准, 2006.

    State Administration of Radio, Film and Television. GY/T 220.1-2006 Mobile multimedia broadcasting part 1: Framing structure channel coding and modulation for broadcasting channel[S]. China Mobile Multimedia Broadcasting Standard, 2006.
    [30]
    European Telecommunication Standards Institute. ES 201 980 v3.1.1-Digital Radio Mondiale (DRM) System Specification[S]. 2009.
    [31]
    王俊, 牛溢华. 基于多电视台的两种无源雷达成像算法[J]. 系统工程与电子技术, 2007, 29(8): 1263–1267. doi: 10.3321/j.issn:1001-506x.2007.08.012.

    WANG Jun and NIU Yihua. Two algorithms for passive radar imaging based on multiple television stations[J]. Systems Engineering and Electronics, 2007, 29(8): 1263–1267. doi: 10.3321/j.issn:1001-506x.2007.08.012.
    [32]
    高志文, 陶然, 单涛. DVB-T辐射源雷达信号模糊函数的副峰分析与抑制[J]. 电子学报, 2008, 36(3): 505–509. doi: 10.3321/j.issn:0372-2112.2008.03.018.

    GAO Zhiwen, TAO Ran, and SHAN Tao. Side peaks analysis and suppression of DVB-T signal ambiguity function for passive radar[J]. Acta Electronica Sinica, 2008, 36(3): 505–509. doi: 10.3321/j.issn:0372-2112.2008.03.018.
    [33]
    高志文, 陶然, 单涛. 外辐射源雷达互模糊函数的两种快速算法[J]. 电子学报, 2009, 37(3): 669–672. doi: 10.3321/j.issn:0372-2112.2009.03.044.

    GAO Zhiwen, TAO Ran, and SHAN Tao. Two fast algorithms of cross-ambiguity function for passive radar[J]. Acta Electronica Sinica, 2009, 37(3): 669–672. doi: 10.3321/j.issn:0372-2112.2009.03.044.
    [34]
    关欣, 胡东辉, 仲利华, 等. 一种高效的外辐射源雷达高径向速度目标实时检测方法[J]. 电子与信息学报, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903.

    GUAN Xin, HU Donghui, ZHONG Lihua, et al. An effective real-time target detection algorithm for high radial speed targets in passive radar[J]. Journal of Electronics & Information Technology, 2013, 35(3): 581–588. doi: 10.3724/SP.J.1146.2012.00903.
    [35]
    关欣, 仲利华, 胡东辉, 等. 一种基于RSPWVD-Hough变换的无源雷达多普勒展宽补偿方法[J]. 雷达学报, 2013, 2(4): 430–438. doi: 10.3724/SP.J.1300.2013.13073.

    GUAN Xin, ZHONG Lihua, HU Donghui, et al. A compensation algorithm based on RSPWVD-Hough transform for Doppler expansion in passive radar[J]. Journal of Radars, 2013, 2(4): 430–438. doi: 10.3724/SP.J.1300.2013.13073.
    [36]
    唐慧, 万显荣, 陈伟, 等. 数字地面多媒体广播外辐射源雷达目标探测实验研究[J]. 电子与信息学报, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939.

    TANG Hui, WAN Xianrong, CHEN Wei, et al. Experimentation on target detection with passive radar based on Digital Terrestrial Multimedia Broadcasting[J]. Journal of Electronics & Information Technology, 2013, 35(3): 575–580. doi: 10.3724/SP.J.1146.2012.00939.
    [37]
    WAN Xianrong, YI Jianxin, ZHAO Zhixin, et al. Experimental research for CMMB-Based passive radar under a multipath environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 70–85. doi: 10.1109/TAES.2013.120737.
    [38]
    MA Yahui, SHAN Tao, ZHANG Y D, et al. A novel two-dimensional sparse-weight NLMS filtering scheme for passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5): 676–680. doi: 10.1109/LGRS.2016.2535173.
    [39]
    BACZYK M K and MALANOWSKI M. Reconstruction of the reference signal in DVB-T-based passive radar[J]. International Journal of Electronics and Telecommunications, 2011, 57(1): 43–48. doi: 10.2478/v10177-011-0006-y.
    [40]
    SEARLE S, HOWARD S, and PALMER J. Remodulation of DVB-T signals for use in passive bistatic radar[C]. 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, USA, 2010: 1112–1116. doi: 10.1109/ACSSC.2010.5757576.
    [41]
    MAHFOUDIA O, HORLIN F, and NEYT X. Optimum reference signal reconstruction for DVB-T based passive radars[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1446–1449. doi: 10.1109/RADAR.2017.7944411.
    [42]
    MAHFOUDIA O, HORLIN F, and NEYT X. Performance analysis of the reference signal reconstruction for DVB-T passive radars[J]. Signal Processing, 2019, 158: 26–35.
    [43]
    BOK D. Reconstruction and reciprocal filter of OFDM waveforms for DVB-T2 based passive radar[C]. 2018 International Conference on Radar (RADAR), Brisbane, Australia, 2018: 1–6.
    [44]
    O’HAGAN D W, SETSUBI M, and PAINE S. Signal reconstruction of DVB-T2 signals in passive radar[C]. 2018 IEEE Radar Conference (RadarConf), Oklahoma, USA, 2018: 1111–1116. doi: 10.1109/RADAR.2018.8378717.
    [45]
    万显荣, 岑博, 易建新, 等. 中国移动多媒体广播外辐射源雷达参考信号获取方法研究[J]. 电子与信息学报, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572.

    WAN Xianrong, CEN Bo, YI Jianxin, et al. Reference signal extraction methods for CMMB-based passive bistatic radar[J]. Journal of Electronics & Information Technology, 2012, 34(2): 338–343. doi: 10.3724/SP.J.1146.2011.00572.
    [46]
    WAN Xianrong, WANG Junfang, HONG Sheng, et al. Reconstruction of reference signal for DTMB-based passive radar systems[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 165–168. doi: 10.1109/CIE-Radar.2011.6159501.
    [47]
    ZHANG Xun, YI Jianxin, WAN Xianrong, et al. Reference signal reconstruction under oversampling for DTMB-based passive radar[J]. IEEE Access, 2020, 8: 74024–74038. doi: 10.1109/ACCESS.2020.2986589.
    [48]
    SCHWARK C and HECKENBACH J. Multi-sensor reference diversity for improved OFDM signal reconstruction[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1446–1449. doi: 10.1109/RADAR.2017.7944434.
    [49]
    BERTHILLOT C, SANTORI A, RABASTE O, et al. BEM reference signal estimation for an airborne passive radar antenna array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2833–2845. doi: 10.1109/TAES.2017.2716458.
    [50]
    GUO Shuai, WANG Jun, MA Hui, et al. Modified blind equalization algorithm based on cyclostationarity for contaminated reference signal in airborne PBR[J]. Sensors, 2020, 20(3): 788. doi: 10.3390/s20030788.
    [51]
    PALMARINI C, MARTELLI T, COLONE F, et al. Disturbance removal in passive radar via sliding extensive cancellation algorithm (ECA-S)[C]. 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 162–167. doi: 10.1109/RadarConf.2015.7411873.
    [52]
    YI Jianxin, WAN Xianrong, LI Deshi, et al. Robust clutter rejection in passive radar via generalized subband cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1931–1946. doi: 10.1109/TAES.2018.2805228.
    [53]
    赵志欣, 万显荣, 邵启红, 等. DRM无源雷达多径杂波的分载波空域抑制[J]. 华中科技大学学报: 自然科学版, 2012, 40(3): 13–17.

    ZHAO Zhixin, WAN Xianrong, SHAO Qihong, et al. Multipath clutter suppression by spatial filtering on each carrier in DRM-based passive radar[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2012, 40(3): 13–17.
    [54]
    易建新, 万显荣, 赵志欣, 等. 单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法(英文)[J]. 雷达学报, 2013, 2(1): 1–13. doi: 10.3724/SP.J.1300.2013.13030.

    YI Jianxin, WAN Xianrong, ZHAO Zhixin, et al. Subcarrier-based processing for clutter rejection in CP-OFDM signal-based passive radar using SFN configuration[J]. Journal of Radars, 2013, 2(1): 1–13. doi: 10.3724/SP.J.1300.2013.13030.
    [55]
    LIU Yuqi, YI Jianxin, WAN Xianrong, et al. Evaluation of clutter suppression in CP-OFDM-based passive radar[J]. IEEE Sensors Journal, 2019, 19(14): 5572–5586. doi: 10.1109/JSEN.2019.2907660.
    [56]
    万显荣, 刘玉琪, 程丰, 等. 基于信道分段平滑的外辐射源雷达非平稳杂波抑制方法[J]. 电子与信息学报, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754.

    WAN Xianrong, LIU Yuqi, CHENG Feng, et al. Nonstationary clutter suppression method for passive radar based on channel segmentation and smoothing[J]. Journal of Electronic & Information Technology, 2020, 42(1): 132–139. doi: 10.11999/JEIT190754.
    [57]
    刘玉琪, 万显荣, 易建新, 等. 基于信道多普勒特征的外辐射源雷达杂波抑制方法[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20201014.1325.020.html, 2020.

    LIU Yuqi, WAN Xianrong, YI Jianxin, et al. Clutter suppression method for passive radar based on channel Doppler characteristic[J/OL]. Journal of Electronic and Information Technology. http://kns.cnki.net/kcms/detail/11.2422.TN.20201014.1325.020.html, 2020.
    [58]
    CHABRIEL G, BARRÈRE J, GASSIER G, et al. Passive covert radars using CP-OFDM signals. A new efficient method to extract targets echoes[C]. 2014 Radar Conference, Lille, France, 2014: 1–6. doi: 10.1109/RADAR.2014.7060382.
    [59]
    FANG Liang, WAN Xianrong, FANG Gao, et al. Passive detection using orthogonal frequency division multiplex signals of opportunity without multipath clutter cancellation[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 516–524. doi: 10.1049/iet-rsn.2015.0238.
    [60]
    FABRIZIO G, COLONE F, LOMBARDO P, et al. Adaptive beamforming for high-frequency over-the-horizon passive radar[J]. IET Radar, Sonar & Navigation, 2009, 3(4): 384–405. doi: 10.1049/iet-rsn.2008.0159.
    [61]
    吴海洲, 陶然, 单涛. 基于DTTB照射源的无源雷达直达波干扰抑制[J]. 电子与信息学报, 2009, 31(9): 2033–2038.

    WU Haizhou, TAO Ran, and SHAN Tao. Direct-path interference suppression for passive radar based on DTTB illuminator[J]. Journal of Electronics & Information Technology, 2009, 31(9): 2033–2038.
    [62]
    TAO R, WU H Z, and SHAN T. Direct-path suppression by spatial filtering in digital television terrestrial broadcasting-based passive radar[J]. IET Radar, Sonar & Navigation, 2010, 4(6): 791–805. doi: 10.1049/iet-rsn.2009.0138.
    [63]
    BROWN J, WOODBRIDGE K, GRIFFITHS H, et al. Passive bistatic radar experiments from an airborne platform[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 50–55. doi: 10.1109/MAES.2012.6380826.
    [64]
    梁龙, 万显荣, 程丰, 等. 机载外辐射源雷达杂波模型及特性分析[J]. 电波科学学报, 2014, 29(4): 595–600. doi: 10.13443/j.cjors.2013080601.

    LIANG Long, WAN Xianrong, CHENG Feng, et al. Modeling and characteristics analysis of clutter for airborne passive radar[J]. Chinese Journal of Radio Science, 2014, 29(4): 595–600. doi: 10.13443/j.cjors.2013080601.
    [65]
    万显荣, 梁龙, 但阳鹏, 等. 移动平台外辐射源雷达实验研究[J]. 电波科学学报, 2015, 30(2): 383–390. doi: 10.13443/j.cjors.2014042301.

    WAN Xianrong, LIANG Long, DAN Yangpeng, et al. Experimental research of passive radar on moving platform[J]. Chinese Journal of Radio Science, 2015, 30(2): 383–390. doi: 10.13443/j.cjors.2014042301.
    [66]
    PALMER J, UMMENHOFER M, SUMMERS A, et al. Receiver platform motion compensation in passive radar[J]. IET Radar, Sonar & Navigation, 2017, 11(6): 922–931. doi: 10.1049/iet-rsn.2016.0516.
    [67]
    YANG Pengcheng, LYU X D, CHAI Zhihai, et al. Clutter cancellation along the clutter ridge for airborne passive radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 951–955. doi: 10.1109/LGRS.2017.2689076.
    [68]
    WOJACZEK P, COLONE F, CRISTALLINI D, et al. Reciprocal-filter-based STAP for passive radar on moving platforms[J].IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 967–988. doi: 10.1109/TAES.2018.2867688.
    [69]
    BLASONE G P, COLONE F, LOMBARDO P, et al. A two-stage approach for direct signal and clutter cancellation in passive radar on moving platforms[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–6. doi: 10.1109/RADAR.2019.8835704.
    [70]
    BLASONE G P, COLONE F, LOMBARDO P, et al. Passive radar DPCA schemes with adaptive channel calibration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4014–4034. doi: 10.1109/TAES.2020.2987478.
    [71]
    VISWANATHAN R and VARSHNEY P K. Distributed detection with multiple sensors Part I. Fundamentals[J]. Proceedings of the IEEE, 1997, 85(1): 54–63. doi: 10.1109/5.554208.
    [72]
    TAO Ran, GAO Zhiwen, and WANG Yue. Side peaks interference suppression in DVB-T based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3610–3619. doi: 10.1109/TAES.2012.6324746.
    [73]
    HACK D E, PATTON L K, HIMED B, et al. Detection in passive MIMO radar networks[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2999–3012. doi: 10.1109/TSP.2014.2319776.
    [74]
    CUI Guolong, LIU Jun, LI Hongbin, et al. Signal detection with noisy reference for passive sensing[J]. Signal Processing, 2015, 108: 389–399. doi: 10.1016/j.sigpro.2014.09.034.
    [75]
    LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006.
    [76]
    ZHANG Xin, LI Hongbin, LIU Jun, et al. Joint delay and Doppler estimation for passive sensing with direct-path interference[J]. IEEE Transactions on Signal Processing, 2016, 64(3): 630–640. doi: 10.1109/TSP.2015.2488584.
    [77]
    BIALKOWSKI K S, CLARKSON I V L, and HOWARD S D. Generalized canonical correlation for passive multistatic radar detection[C]. 2011 IEEE Statistical Signal Processing Workshop (SSP), Nice, France, 2011: 417–420. doi: 10.1109/SSP.2011.5967719.
    [78]
    ZAIMBASHI A, DERAKHTIAN M, and SHEIKHI A. GLRT-based CFAR detection in passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 134–159. doi: 10.1109/TAES.2013.6404095.
    [79]
    LIU Jun, LI Hongbin, and HIMED B. Two target detection algorithms for passive multistatic radar[J]. IEEE Transactions on Signal Processing, 2014, 62(22): 5930–5939. doi: 10.1109/TSP.2014.2359637.
    [80]
    HACK D E, PATTON L K, HIMED B, et al. Centralized passive MIMO radar detection without direct-path reference signals[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 3013–3023. doi: 10.1109/TSP.2014.2320462.
    [81]
    GAO Yongchan, LI Hongbin, and HIMED B. Knowledge-aided range-spread target detection for distributed MIMO radar in nonhomogeneous environments[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 617–627. doi: 10.1109/TSP.2016.2625266.
    [82]
    GOGINENI S, SETLUR P, and RANGASWAMY M, et al. Random matrix theory inspired passive bistatic radar detection of low-rank signals[C]. 2015 IEEE Radar Conference (RadarConf), Arlington, USA, 2015: 1656–1659. doi: 10.1109/RADAR.2015.7131264.
    [83]
    SETLUR P, GOGINENI S, and RANGASWAMY M. Spectral characterizations of structured big data covariance matrices[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1745–1750. doi: 10.1109/RADAR.2017.7944489.
    [84]
    GOGINENI S, SETLUR P, RANGASWAMY M, et al. Passive radar detection with noisy reference channel using principal subspace similarity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 18–36. doi: 10.1109/TAES.2017.2730998.
    [85]
    GROSSI E, LOPS M, and VENTURINO L. A novel dynamic programming algorithm for track-before-detect in radar systems[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619. doi: 10.1109/TSP.2013.2251338.
    [86]
    ZHANG Jiancheng, SU Tao, ZHENG Jibin, et al. Novel fast coherent detection algorithm for radar maneuvering target with jerk motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 1792–1803. doi: 10.1109/JSTARS.2017.2651156.
    [87]
    WANG Hui, YI Jianxin, WAN Xianrong, et al. Greedy algorithm- based track-before-detect in radar systems[J]. IEEE Sensors Journal, 2018, 18(17): 7158–7165. doi: 10.1109/JSEN.2018.2853188.
    [88]
    WANG Hui, YI Jianxin, and WAN Xianrong. A fast coherent integration algorithm for maneuvering target detection[J]. IEEE Sensors Journal, 2019, 19(12): 4560–4570. doi: 10.1109/JSEN.2019.2899455.
    [89]
    COLONE F and LOMBARDO P. Polarimetric passive coherent location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1079–1097. doi: 10.1109/TAES.2014.130775.
    [90]
    COLONE F and LOMBARDO P. Non-coherent adaptive detection in passive radar exploiting polarimetric and frequency diversity[J]. IET Radar, Sonar & Navigation, 2016, 10(1): 15–23. doi: 10.1049/iet-rsn.2015.0104.
    [91]
    FILIPPINI F and COLONE F. A practical approach to polarimetric adaptive target detection in passive radar[C]. 2017 International Conference on Radar Systems, Belfast, UK, 2017: 1–6. doi: 10.1049/cp.2017.0420.
    [92]
    ZAIMBASHI A, DERAKHTIAN M, and SHEIKHI A. Invariant target detection in multiband FM-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 720–736. doi: 10.1109/TAES.2013.120248.
    [93]
    MARTELLI T, COLONE F, TILLI E, et al. Multi-frequency target detection techniques for DVB-T based passive radar sensors[J]. Sensors, 2016, 16(10): 1594. doi: 10.3390/s16101594.
    [94]
    MARTELLI T, COLONE F, TILLI E, et al. Maritime surveillance via multi-frequency DVB-T based passive radar[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 540–545. doi: 10.1109/RADAR.2017.7944262.
    [95]
    YI Jianxin, WAN Xianrong, LEUNG H, et al. MIMO passive radar tracking under a single frequency network[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1661–1671. doi: 10.1109/JSTSP.2015.2464188.
    [96]
    CHOI S, CROUSE D, WILLETT P, et al. Multistatic target tracking for passive radar in a DAB/DVB network: Initiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2460–2469. doi: 10.1109/TAES.2015.130270.
    [97]
    CHOI S, CROUSE D F, WILLETT P, et al. Approaches to Cartesian data association passive radar tracking in a DAB/DVB network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 649–663. doi: 10.1109/TAES.2013.120431.
    [98]
    LI Xiaohua, BAUM M, WILLETT P, et al. Evaluation of the PMHT approach for passive radar tracking with unknown transmitter associations[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–7.
    [99]
    LI Xiaohua, ZHAO Chenxu, LU Xiaofeng, et al. DA-PMHT for multistatic passive radar multitarget tracking in dense clutter environment[J]. IEEE Access, 2019, 7: 49316–49326. doi: 10.1109/ACCESS.2019.2907789.
    [100]
    SHI Yifang and SONG T L. Sequential processing JIPDA for multitarget tracking in clutter using multistatic passive radar[C]. The 19th International Conference on Information Fusion, Heidelberg, Germany, 2016: 1–8.
    [101]
    STINCO P, GRECO M S, GINI F, et al. ComRadE: Cognitive passive tracking in symbiotic IEEE 802.22 systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 1023–1034. doi: 10.1109/TAES.2017.2667498.
    [102]
    STINCO P, GRECO M S, and GINI F. Spectrum sensing and sharing for cognitive radars[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 595–602. doi: 10.1049/iet-rsn.2015.0372.
    [103]
    KUSCHEL H, UMMENHOFER M, LOMBARDO P, et al. Passive radar components of ARGUS 3D[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(3): 15–25. doi: 10.1109/MAES.2014.6805362.
    [104]
    FRÄNKEN D and ZEEB O. Advances in real-time tracking and data fusion using multiple passive radar sensors[C]. The 20th International Radar Symposium, Ulm, Germany, 2019: 1–10.
    [105]
    STEJSKAL V, KUSCHEL H, BRENNER T, et al. DETOUR trials: The mission and its results[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–14. doi: 10.23919/IRS.2017.8008191.
    [106]
    FRÄNKEN D and ZEEB O. Real-time creation of a target situation picture with the Hensoldt passive radar system[C]. The 21st International Conference on Information Fusion, Cambridge, UK, 2018: 500–506. doi: 10.23919/ICIF.2018.8455609.
    [107]
    OLIVADESE D, GIUSTI E, PETRI D, et al. Passive ISAR with DVB-T signals[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(8): 4508–4517. doi: 10.1109/TGRS.2012.2236339.
    [108]
    MARTORELLA M and GIUSTI E. Theoretical foundation of passive bistatic ISAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1647–1659. doi: 10.1109/TAES.2014.130181.
    [109]
    PISCIOTTANO I, CRISTALLINI D, and PASTINA D. Maritime target imaging via simultaneous DVB-T and DVB-S passive ISAR[J]. IET Radar, Sonar & Navigation, 2019, 13(9): 1479–1487. doi: 10.1049/iet-rsn.2018.5622.
    [110]
    PISCIOTTANO I, SANTI F, PASTINA D, et al. DVB-S based passive polarimetric ISAR-methods and experimental validation[J]. IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3037091.
    [111]
    GROMEK D, KULPA K, and SAMCZYŃSKI P. Experimental results of passive SAR imaging using DVB-T illuminators of opportunity[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8): 1124–1128. doi: 10.1109/LGRS.2016.2571901.
    [112]
    FANG Yue, ATKINSON G, SAYIN A, et al. Improved passive SAR imaging with DVB-T transmissions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5066–5076. doi: 10.1109/TGRS.2020.2972156.
    [113]
    GROMEK D, RADECKI K, DROZDOWICZ J, et al. Passive SAR imaging using DVB-T illumination for airborne applications[J]. IET Radar, Sonar & Navigation, 2019, 13(2): 213–221. doi: 10.1049/iet-rsn.2018.5123.
    [114]
    NITHIROCHANANONT U, ANTONIOU M, and CHERNIAKOV M. Passive multi-static SAR-experimental results[J]. IET Radar, Sonar & Navigation, 2019, 13(2): 222–228. doi: 10.1049/iet-rsn.2018.5226.
    [115]
    SANTI F, BUCCIARELLI M, PASTINA D, et al. Passive multistatic SAR with GNSS transmitters and using joint bi/multi-static CLEAN technique[C]. 2016 IEEE Radar Conference (RadarConf), Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485109.
    [116]
    QIU Wei, GIUSTI E, BACCI A, et al. Compressive sensing-based algorithm for passive bistatic ISAR with DVB-T signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2166–2180. doi: 10.1109/TAES.2015.130761.
    [117]
    QU Lele, LIU Yu, AN Shimiao, et al. Multi-static airborne passive SAR imaging using cross-validation-based SOMP algorithm[J]. The Journal of Engineering, 2019, 2019(20): 7092–7095. doi: 10.1049/joe.2019.0587.
    [118]
    BOURNAKA G, BARUZZI A, HECKENBACH J, et al. Experimental validation of beamforming techniques for localization of moving target in passive radar[C]. 2015 IEEE Radar Conference (RadarConf), Arlington, USA, 2015: 1710–1713. doi: 10.1109/RADAR.2015.7131274.
    [119]
    EDRICH M, SCHROEDER A, and MEYER F. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system[J].IET Radar, Sonar & Navigation, 2014, 8(2): 114–122. doi: 10.1049/iet-rsn.2013.0162.
    [120]
    EDRICH M, LUTZ S, and HOFFMANN F. Passive radar at Hensoldt: A review to the last decade[C]. The 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–10. doi: 10.23919/IRS.2019.8768186.
    [121]
    DI LALLO A, FARINA A, FULCOLI R, et al. AULOS: Finmeccanica family of passive sensors[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 24–29. doi: 10.1109/MAES.2017.160037.(请联系作者确认doi信息)
    [122]
    MARTELLI T, COLONE F, and CARDINALI R. Eco-friendly dual-band AULOS® passive radar for air and maritime surveillance applications[C]. 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 2018: 1–6. doi: 10.1109/EE1.2018.8385267.
    [123]
    Patria. MUSCL, transportable and rugged passive radar[EB/OL]. https://www.patriagroup.com/products/passive-rf-sensors-product-family, 2020.
    [124]
    RZEWUSKI S, WIELGO M, KULPA K, et al. Multistatic passive radar based on WIFI-results of the experiment[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 230–234. doi: 10.1109/RADAR.2013.6651990.
    [125]
    RIBÓ S, ARCO J C, OLIVERAS S, et al. Experimental results of an X-Band PARIS receiver using Digital Satellite TV opportunity signals scattered on the sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5704–5711. doi: 10.1109/TGRS.2013.2292007.
    [126]
    RAJA ABDULLAH R S A, SALAH A A, ISMAIL A, et al. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal[J]. IET Radar, Sonar & Navigation, 2016, 10(3): 577–585. doi: 10.1049/iet-rsn.2015.0346.
    [127]
    COLONE F, MARTELLI T, BONGIOANNI C, et al. WiFi-based PCL for monitoring private airfields[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 22–29. doi: 10.1109/MAES.2017.160022.
    [128]
    PASTINA D, SANTI F, PIERALICE F, et al. Maritime moving target long time integration for GNSS-based passive bistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 3060–3083. doi: 10.1109/TAES.2018.2840298.
    [129]
    SANTI F, PASTINA D, ANTONIOU M, et al. GNSS-based multistatic passive radar imaging of ship targets[C]. 2020 IEEE International Radar Conference (RADAR), Washington, USA, 2020: 601–606. doi: 10.1109/RADAR42522.2020.9114638.
    [130]
    万显荣, 赵志欣, 柯亨玉, 等. 基于DRM数字调幅广播的高频外辐射源雷达实验研究[J]. 雷达学报, 2012, 1(1): 11–18. doi: 10.3724/SP.J.1300.2013.20001.

    WAN Xianrong, ZHAO Zhixin, KE Hengyu, et al. Experimental research of HF passive radar based on DRM digital AM broadcasting[J]. Journal of Radars, 2012, 1(1): 11–18. doi: 10.3724/SP.J.1300.2013.20001.
    [131]
    ZHAO Zhixin, WAN Xianrong, ZHANG Delei, et al. An experimental study of HF passive bistatic radar via hybrid sky-surface wave mode[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(1): 415–424. doi: 10.1109/TAP.2012.2213062.
    [132]
    YI Jianxin, WAN Xianrong, CHENG Feng, et al. Computationally efficient RF interference suppression method with closed-form maximum likelihood estimator for HF surface wave over-the-horizon radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 2361–2372. doi: 10.1109/TGRS.2012.2210903.
    [133]
    谢锐, 万显荣, 洪丽娜, 等. 电离层行进式扰动对外辐射源天地波雷达系统的影响[J]. 电波科学学报, 2014, 29(6): 1098–1104, 1152. doi: 10.13443/j.cjors.2013103102.

    XIE Rui, WAN Xianrong, HONG Li’na, et al. Effects of the travelling ionospheric disturbance on sky-surface wave passive radar system[J]. Chinese Journal of Radio Science, 2014, 29(6): 1098–1104, 1152. doi: 10.13443/j.cjors.2013103102.
    [134]
    ZHAO Zhixin, WAN Xianrong, YI Jianxin, et al. Radio frequency interference mitigation in OFDM based passive bistatic radar[J]. AEU – International Journal of Electronics and Communications, 2016, 70(1): 70–76. doi: 10.1016/j.aeue.2015.10.004.
    [135]
    谢锐, 万显荣, 赵志欣, 等. 外辐射源天地波雷达定位方法及精度分析[J]. 电波科学学报, 2014, 29(3): 442–449. doi: 10.13443/j.cjors.2013060902.

    XIE Rui, WAN Xianrong, ZHAO Zhixin, et al. Localization method and accuracy analysis in hybrid sky-surface wave passive radar[J]. Chinese Journal of Radio Science, 2014, 29(3): 442–449. doi: 10.13443/j.cjors.2013060902.
    [136]
    张强, 万显荣, 傅䶮, 等. 基于CDR数字音频广播的外辐射源雷达信号模糊函数分析与处理[J]. 雷达学报, 2014, 3(6): 702–710. doi: 10.12000/JR14050.

    ZHANG Qiang, WAN Xianrong, FU Yan, et al. Ambiguity function analysis and processing for passive radar based on CDR digital audio broadcasting[J]. Journal of Radars, 2014, 3(6): 702–710. doi: 10.12000/JR14050.
    [137]
    FU Yan, WAN Xianrong, ZHANG Xun, et al. Side peak interference mitigation in FM-based passive radar via detection identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 778–788. doi: 10.1109/TAES.2017.2665079.
    [138]
    YI Jianxin, WAN Xianrong, LEUNG H, et al. Joint placement of transmitters and receivers for distributed MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 122–134. doi: 10.1109/TAES.2017.2649338.
    [139]
    LÜ Min, YI Jianxin, WAN Xianrong, et al. Cochannel interference in DTMB-Based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2138–2149. doi: 10.1109/TAES.2018.2882959.
    [140]
    WEN Jinfang, YI Jianxin, and WAN Xianrong. Sparse representation for target parameter estimation in CDR-based passive radar[J]. IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2020.2991743.
    [141]
    LIU Yuqi, WAN Xianrong, TANG Hui, et al. Digital television based passive bistatic radar system for drone detection[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1493–1497. doi: 10.1109/RADAR.2017.7944443.
    [142]
    SHU Kan, YI Jianxin, WAN Xianrong, et al. A hybrid tracking algorithm for multistatic passive radar[J]. IEEE Systems Journal, in  press. doi: 10.1109/JSYST.2020.2994009
    [143]
    LÜ Min, YI Jianxin, WAN Xianrong, et al. Target tracking in time-division-multifrequency-based passive radar[J]. IEEE Sensors Journal, 2020, 20(8): 4382–4394. doi: 10.1109/JSEN.2020.2964291.
    [144]
    FANG Gao, YI Jianxin, WAN Xianrong, et al. Experimental research of multistatic passive radar with a single antenna for drone detection[J]. IEEE Access, 2018, 6: 33542–33551. doi: 10.1109/ACCESS.2018.2844556.
    [145]
    SALAH A A, RAJA ABDULLAH R S A, ISMAIL A, et al. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications[J]. Electronics Letters, 2014, 50(7): 545–547. doi: 10.1049/el.2014.0237.
    [146]
    KLÖCK C, WINKLER V, and EDRICH M. LTE-signal processing for passive radar air traffic surveillance[C]. The 18th International Radar Symposium (IRS), Prague, Czech Republic, 2017: 1–9. doi: 10.23919/IRS.2017.8008105.
    [147]
    王本静, 易建新, 万显荣, 等. LTE外辐射源雷达帧间模糊带分析与抑制[J]. 雷达学报, 2018, 7(4): 514–522. doi: 10.12000/JR18025.

    WANG Benjing, YI Jianxin, WAN Xianrong, et al. Inter-frame ambiguity analysis and suppression of LTE signal for passive radar[J]. Journal of Radars, 2018, 7(4): 514–522. doi: 10.12000/JR18025.
    [148]
    DAN Yangpeng, YI Jianxin, WAN Xianrong, et al. LTE-based passive radar for drone detection and its experimental results[J]. The Journal of Engineering, 2019, 2019(20): 6910–6913. doi: 10.1049/joe.2019.0583.
    [149]
    万显荣, 刘同同, 易建新, 等. LTE外辐射源雷达系统设计及目标探测实验研究[J]. 雷达学报. 2020, 9(6): 967–973.

    WAN Xianrong, LIU Tongtong, YI Jianxin, et al. System design and target detection experiments for LTE-based passive radar[J]. Journal of Radar. 2020, 9(6): 967–973.
    [150]
    FRÄNKEN D and ZEEB O. Tracking and data fusion with the Hensoldt passive radar system[C]. The 22nd International Microwave and Radar Conference, Poznan, Poland, 2018: 404–407. doi: 10.23919/MIKON.2018.8405238.
    [151]
    CONTE E, D’ADDIO E, FARINA A, et al. Multistatic radar detection: Synthesis and comparison of optimum and suboptimum receivers[J]. IEE Proceedings F - Communications, Radar and Signal Processing, 1983, 130(6): 484–494. doi: 10.1049/ip-f-1:19830078.
    [152]
    ZHANG Xin, LI Hongbin, and HIMED B. Multistatic detection for passive radar with direct-path interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(2): 915–92. doi: 10.1109/TAES.2017.2667223.
    [153]
    MALANOWSKI M and KULPA K. Two methods for target localization in multistatic passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 572–580. doi: 10.1109/TAES.2012.6129656.
    [154]
    NOROOZI A and SEBT M A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1660–1671. doi: 10.1109/TAES.2017.2669558.
    [155]
    NOROOZI A and SEBT M A. Algebraic solution for three-dimensional TDOA/AOA localisation in multiple-input- multiple-output passive radar[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 21–29. doi: 10.1049/iet-rsn.2017.0117.
    [156]
    KLEIN M and MILLET N. Multireceiver passive radar tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(10): 26–36. doi: 10.1109/MAES.2012.6373909.
    [157]
    BATTISTELLI G, CHISCI L, MORROCCHI S, et al. Robust multisensor multitarget tracker with application to passive multistatic radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3450–3472. doi: 10.1109/TAES.2012.6324726.
    [158]
    KUSCHEL H, HECKENBACH J, and SCHELL J. Deployable multiband passive/active radar for air defense (DMPAR)[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(9): 37–45. doi: 10.1109/MAES.2013.6617097.
    [159]
    RADMARD M, KARBASI S M, and NAYEBI M N. Data fusion in MIMO DVB-T-Based passive coherent location[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1725–1737. doi: 10.1109/TAES.2013.6558015.
    [160]
    STINCO P, GRECO M S, GINI F, et al. Posterior Cramér–Rao lower bounds for passive bistatic radar tracking with uncertain target measurements[J]. Signal Processing, 2013, 93(12): 3528–3540. doi: 10.1016/j.sigpro.2013.02.021.
    [161]
    XIE Rui, WAN Xianrong, HONG Sheng, et al. Joint optimization of receiver placement and illuminator selection for a multiband passive radar network[J]. Sensors, 2017, 17(6): 1378. doi: 10.3390/s17061378.
    [162]
    DEL-REY-MAESTRE N, JARABO-AMORES M P, MATA-MOYA D, et al. Machine learning techniques for coherent CFAR detection based on statistical modeling of UHF passive ground clutter[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 104–118. doi: 10.1109/JSTSP.2017.2780798.
    [163]
    CLEMENTE C, PARRY T, GALSTON G, et al. GNSS based passive bistatic radar for micro-Doppler based classification of helicopters: Experimental validation[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1104–1108. doi: 10.1109/RADAR.2015.7131159.
    [164]
    YONEL B, MASON E, and YAZICI B. Deep learning for passive synthetic aperture radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 90–103. doi: 10.1109/JSTSP.2017.2784181.
    [165]
    MANNO-KOVACS A, GIUST E, BERIZZI F, et al. Image based robust target classification for passive ISAR[J]. IEEE Sensors Journal, 2019, 19(1): 268–276. doi: 10.1109/JSEN.2018.2876911.
    [166]
    姚诗颖, 易建新, 万显荣, 等. 基于多层感知器的外辐射源雷达多帧联合检测[J/OL]. 电波科学学报. https://doi.org/10.13443/j.cjors.2020022301, 2020.

    YAO Shiying, YI Jianxin, WAN Xianrong, et al. Multi-frame joint detection for passive radar based on multi-layer perceptron[J/OL]. Chinese Journal of Radio Science. https://doi.org/10.13443/j.cjors.2020022301, 2020.
  • Relative Articles

    [1]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [2]WANG Mingyang, LIU Xuxu, LI Yulin, LI Suqi, WANG Bailu. Dynamic Adversarial Risk Estimation Based on Labeled Multi-Bernoulli Tracker[J]. Journal of Radars, 2024, 13(1): 270-282. doi: 10.12000/JR23207
    [3]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [4]CHEN Hui, DU Shuangyan, LIAN Feng, HAN Chongzhao. Track-MT3: A Novel Multitarget Tracking Algorithm Based on Transformer Network[J]. Journal of Radars, 2024, 13(6): 1202-1219. doi: 10.12000/JR24164
    [5]SHI Chenguang, TANG Zhicheng, DING Lintao, ZHOU Jianjiang. Joint Optimization of Transmit Power and Dwell Time for Asynchronous Multi-target Tracking in Heterogeneous Multiple Radar Networks with Imperfect Detection[J]. Journal of Radars, 2023, 12(3): 563-575. doi: 10.12000/JR23044
    [6]ZENG Yajun, WANG Jun, WEI Shaoming, SUN Jinping, LEI Peng. Review of the Method for Distributed Multi-sensor Multi-target Tracking(in English)[J]. Journal of Radars, 2023, 12(1): 197-213. doi: 10.12000/JR22111
    [7]SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240
    [8]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [9]WANG Zengfu, SHAO Yi, QI Dengliang, JIN Shuling. Consistency-based Air Target Height Estimation and Location in Distributed Space-based Radar Network[J]. Journal of Radars, 2023, 12(6): 1249-1262. doi: 10.12000/JR23157
    [10]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [11]DUAN Keqing, LI Yufan, YANG Xingjia, QIU Zizhou, WANG Yongliang. Reduced Degrees of Freedom in Space-Time Adaptive Processing for Space-based Early Warning Radar[J]. Journal of Radars, 2022, 11(5): 871-883. doi: 10.12000/JR22075
    [12]XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196
    [13]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [14]DA Kai, YANG Ye, ZHU Yongfeng, FU Qiang. Multitarget Tracking Using Distributed Radar with Partially Overlapping Fields of Views[J]. Journal of Radars, 2022, 11(3): 459-468. doi: 10.12000/JR21183
    [15]LIU Chao, WANG Yueji. Review of Multi-Target Tracking Technology for Marine Radar[J]. Journal of Radars, 2021, 10(1): 100-115. doi: 10.12000/JR20081
    [16]Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
    [17]Wei Qiang, Liu Zhong. A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone[J]. Journal of Radars, 2017, 6(1): 34-42. doi: 10.12000/JR16125
    [18]Wang Xiangli, Yi Wei, Kong Lingjiang. Joint Beam Selection and Dwell Time Allocation for Multi-target Tracking in Phased Array Radar System[J]. Journal of Radars, 2017, 6(6): 602-610. doi: 10.12000/JR17045
    [19]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [20]Wu Wei, Yin Cheng-you. An Improved SMC-PHD Filter for Multiple Targets Tracking[J]. Journal of Radars, 2012, 1(4): 406-413. doi: 10.3724/SP.J.1300.2012.20094
  • Cited by

    Periodical cited type(5)

    1. 汪思源,曲毅,陈怡君. 基于U-Net的涡旋电磁波雷达成像方法. 空军工程大学学报. 2024(03): 77-85 .
    2. 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . 本站查看
    3. 毛德庆,杨建宇,杨明杰,张永超,张寅,黄钰林. IAA-Net:一种实孔径扫描雷达迭代自适应角超分辨成像方法. 雷达学报. 2024(05): 1073-1091 . 本站查看
    4. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 .
    5. 袁航,罗迎,陈怡君,苏令华. 基于反正弦圆环天线阵列的二维成像. 北京航空航天大学学报. 2023(06): 1487-1494 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 31.9 %FULLTEXT: 31.9 %META: 57.8 %META: 57.8 %PDF: 10.3 %PDF: 10.3 %FULLTEXTMETAPDF

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views(5468) PDF downloads(633) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    • 表  1  ALOS-2 PALSAR-2参数信息
      Table  1.  Parameter information of ALOS-2 PALSAR-2
      日期(2016年)垂直有效波数(rad/m)时间基线(天)距离向/方位向分辨率(m)中心入射角 (°)极化方式
      0616—0630 (BL1)0.013~0.015
      0630—0714 (BL2)0.010~0.011142.86/2.9738.99Full
      0811—0825 (BL3)0.009~0.010
      下载: 导出CSV 
      | 显示表格
    • 表  2  单基线PolInSAR模型参数解算结果
      Table  2.  Model parameter results of single baseline PolInSAR inversion
      模型参数BL1BL2BL3
      Sscene0.690.780.78
      Cscene9.8810.0811.14
      下载: 导出CSV 
      | 显示表格
    • 表  3  3个干涉对的相干特性P值以及森林高度值
      Table  3.  Coherence characteristic P-value and forest heights for three interferometric pairs
      林分样地编号BL1 P值 / 森林高度(m)BL2 P值 / 森林高度(m)BL3 P值 / 森林高度(m)多基线融合结果(m)实测森林高度(m)
      10.130 / 17.820.113 / 17.020.081 / 16.8917.8214.43
      20.116 / 14.380.104 / 15.300.091 / 16.5214.3814.20
      30.092 / 12.460.075 / 15.830.135 / 11.3411.349.80
      40.103 / 15.210.111 / 15.340.119 / 14.1914.1916.00
      50.106 / 6.860.106 / 7.240.131 / 8.318.3110.70
      60.110 / 12.980.083 / 14.670.118 / 11.8911.8913.50
      70.114 / 13.350.096 / 15.300.101 / 16.1013.3513.43
      80.079 / 14.290.106 / 16.150.117 / 16.2216.2216.95
      90.069 / 12.120.090 / 17.630.060 / 12.3017.6320.10
      100.104 / 12.330.089 / 13.670.102 / 11.7212.3315.60
      110.075 / 18.340.103 / 16.750.154 / 10.1610.1613.30
      120.113 / 9.080.134 / 9.460.106 / 12.699.4611.00
      130.086 / 13.760.096 / 9.070.109 / 16.0016.0016.40
      140.197 / 10.170.230 / 8.710.186 / 9.518.716.00
      150.103 / 14.590.064 / 19.170.128 / 15.4015.4014.70
      下载: 导出CSV 
      | 显示表格