LI Zhi, TANG Chengyao, DAI Yongpeng, et al. Multirotor UAV-borne vital signs sensing using 4D imaging radar[J]. Journal of Radars, 2025, 14(1): 62–72. doi: 10.12000/JR24128
Citation: ZHANG Peng, YAN Junkun, GAO Chang, et al. Integrated transmission resource management scheme for multifunctional radars in dynamic electromagnetic environments[J]. Journal of Radars, 2025, 14(2): 456–469. doi: 10.12000/JR24230

Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments

DOI: 10.12000/JR24230 CSTR: 32380.14.JR24230
Funds:  The National Natural Science Foundation of China (62471356, 62101350, 62192714), Industry University-Research Cooperation of the 8th Research Institute of China Aerospace Science and Technology Corporation (SAST2023-068)
More Information
  • Corresponding author: YANJunkun, jkyan@xidian.edu.cn
  • Received Date: 2024-11-19
  • Rev Recd Date: 2025-03-10
  • Available Online: 2025-03-14
  • Publish Date: 2025-03-27
  • Traditional multifunctional radar systems optimize transmission resources solely based on target characteristics. However, this approach poses challenges in dynamic electromagnetic environments owing to the intelligent time-varying nature of jamming and the mismatch between traditional optimization models and real-world scenarios. To address these limitations, this paper proposes a data-driven integrated transmission resource management scheme designed to enhance the Multiple Target Tracking (MTT) performance of multifunctional radars in complex and dynamic electromagnetic environments. The proposed scheme achieves this by enabling online perception and utilization of dynamic jamming information. The scheme initially establishes a Markov Decision Process (MDP) to mathematically model the risks associated with radar interception and adversarial jamming. This MDP provides a structured approach to perceive jamming information, which is then integrated into the calculation of MTT. The integrated resource management challenge is formulated as an optimization problem with constraints on the action space. To solve this problem effectively, a greedy sorting backtracking algorithm is introduced. Simulation results demonstrate the efficacy of the proposed method, demonstrating its ability to significantly reduce the probability of radar interception in dynamic jamming environments. Furthermore, the method mitigates the impact of jamming on radar performance during adversarial interference, thereby improving MTT performance.

     

  • [1]
    MORELANDE M R, KREUCHER C M, and KASTELLA K. A Bayesian approach to multiple target detection and tracking[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1589–1604. doi: 10.1109/TSP.2006.889470.
    [2]
    BLACKMAN S S. Multiple-Target Tracking with Radar Applications[M]. Dedham: Artech House, 1986: 1–449.
    [3]
    STONE L D, STREIT R L, CORWIN T L, et al. Bayesian Multiple Target Tracking[M]. 2nd ed. Boston: Artech House, 2014: 107–160.
    [4]
    HUE C, LE CADRE J P, and PÉREZ P. Sequential Monte Carlo methods for multiple target tracking and data fusion[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 309–325. doi: 10.1109/78.978386.
    [5]
    WANG Xiangli, YI Wei, XIE Mingchi, et al. A joint beam and dwell time allocation strategy for multiple target tracking based on phase array radar system[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–5. doi: 10.23919/ICIF.2017.8009856.
    [6]
    戴金辉, 严俊坤, 王鹏辉, 等. 基于目标容量的网络化雷达功率分配方案[J]. 电子与信息学报, 2021, 43(9): 2688–2694. doi: 10.11999/JEIT200873.

    DAI Jinhui, YAN Junkun, WANG Penghui, et al. Target capacity based power allocation scheme in radar network[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2688–2694. doi: 10.11999/JEIT200873.
    [7]
    YUAN Ye, YI Wei, and KONG Lingjiang. Joint tracking sequence and dwell time allocation for multi-target tracking with phased array radar[J]. Signal Processing, 2022, 192: 108374. doi: 10.1016/j.sigpro.2021.108374.
    [8]
    NARYKOV A S, KRASNOV O A, and YAROVOY A. Algorithm for resource management of multiple phased array radars for target tracking[C]. 2013 16th International Conference on Information Fusion, Istanbul, Turkey, 2013: 1258–1264.
    [9]
    YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519.
    [10]
    SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston: Artech House, 1999: 1–60.
    [11]
    SHI Chenguang, WANG Yijie, SALOUS S, et al. Joint transmit resource management and waveform selection strategy for target tracking in distributed phased array radar network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2762–2778. doi: 10.1109/TAES.2021.3138869.
    [12]
    ZHANG Haowei, LIU Weijian, ZHANG Qiliang, et al. Joint resource optimization for a distributed MIMO radar when tracking multiple targets in the presence of deception jamming[J]. Signal Processing, 2022, 200: 108641. doi: 10.1016/j.sigpro.2022.108641.
    [13]
    AILIYA, YI Wei, and VARSHNEY P K. Adaptation of frequency hopping interval for radar anti-jamming based on reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 12434–12449. doi: 10.1109/TVT.2022.3197425.
    [14]
    LI Kang, JIU Bo, WANG Penghui, et al. Radar active antagonism through deep reinforcement learning: A way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186: 108130. doi: 10.1016/j.sigpro.2021.108130.
    [15]
    ZHANG Peng, YAN Junkun, PU Wenqiang, et al. Multi-dimensional resource management scheme for multiple target tracking under dynamic electromagnetic environment[J]. IEEE Transactions on Signal Processing, 2024, 72: 2377–2393. doi: 10.1109/TSP.2024.3390119.
    [16]
    YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504.
    [17]
    YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147.
    [18]
    LI Nengjing and ZHANG Yiting. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110–1120. doi: 10.1109/7.395232.
    [19]
    VAN TREES H L. Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise[M]. New York: John Wiley & Sons, 2001: 294–307.
    [20]
    SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008: 313–370.
    [21]
    SUKHAREVSKY O I, VASILETS V A, and ZALEVSKY G S. Electromagnetic wave scattering by aerial and ground radar objects[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, USA, 2015: 162–167. DOI: 10.1109/RADAR.2015.7130989.
    [22]
    BERTSEKAS D P. Reinforcement Learning and Optimal Control[M]. Nashua: Athena Scientific, 2019: 1–40.
    [23]
    SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 37–58.
    [24]
    NERI F. Introduction to Electronic Defense Systems[M]. 2nd ed. Henderson: SciTech Publishing, 2006: 259–368.
    [25]
    STINCO P, GRECO M, GINI F, et al. Cognitive radars in spectrally dense environments[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 20–27. doi: 10.1109/MAES.2016.150193.
    [26]
    SELVI E, BUEHRER R M, MARTONE A, et al. Reinforcement learning for adaptable bandwidth tracking radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3904–3921. doi: 10.1109/TAES.2020.2987443.
    [27]
    KOCHENDERFER M J, WHEELER T A, and WRAY K H. Algorithms for Decision Making[M]. Cambridge: MIT Press, 2022: 311–326.
    [28]
    严俊坤, 纠博, 刘宏伟, 等. 一种针对多目标跟踪的多基雷达系统聚类与功率联合分配算法[J]. 电子与信息学报, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470.

    YAN Junkun, JIU Bo, LIU Hongwei, et al. Joint cluster and power allocation algorithm for multiple targets tracking in multistatic radar systems[J]. Journal of Electronics & Information Technology, 2013, 35(8): 1875–1881. doi: 10.3724/SP.J.1146.2012.01470.
    [29]
    LISI F, FORTUNATI S, GRECO M S, et al. Enhancement of a state-of-the-art RL-based detection algorithm for massive MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5925–5931. doi: 10.1109/TAES.2022.3168033.
  • Relative Articles

    [1]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [2]LIU Yuzhou, CAI Tianyi, LI Yachao, SONG Xuan, WANG Xuanqi, AN Peiyun. A Range and Azimuth Combined Two-dimensional NCS Algorithm for Spaceborne-missile Bistatic Forward-looking SAR[J]. Journal of Radars, 2023, 12(6): 1202-1214. doi: 10.12000/JR23144
    [3]REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111
    [4]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [5]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [6]LI Zhiyuan, GUO Jiayi, ZHANG Yueting, HUANG Lijia, LI Jie, WU Yirong. A Novel Autofocus Algorithm for Ship Targets in SAR Images Based on the Adaptive Momentum Estimation Optimizer and Space-variant Minimum Entropy Criteria[J]. Journal of Radars, 2022, 11(1): 83-94. doi: 10.12000/JR21159
    [7]CHEN Jianlai, XIONG Yi, XU Gang, ZHANG Junchao, YANG Degui, LIANG Buge. Nonlinear Trajectory Synthetic Aperture Radar Imaging and Autofocus Algorithm Based on Sub-image Nonlinear Chirp Scaling[J]. Journal of Radars, 2022, 11(6): 1098-1109. doi: 10.12000/JR22171
    [8]QIU Xiaolan, JIAO Zekun, PENG Lingxiao, CHEN Jiankun, GUO Jiayi, ZHOU Liangjiang, CHEN Longyong, DING Chibiao, XU Feng, DONG Qiulei, LYU Shouye. SARMV3D-1.0: Synthetic Aperture Radar Microwave Vision 3D Imaging Dataset[J]. Journal of Radars, 2021, 10(4): 485-498. doi: 10.12000/JR21112
    [9]CHEN Xiaoxiang, XING Mengdao. An Ultra-high-resolution Microwave Photonic-based SAR Image Method Based on Space-variant Motion Error Analysis[J]. Journal of Radars, 2019, 8(2): 205-214. doi: 10.12000/JR18121
    [10]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [11]Tian He, Li Daojing. Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR[J]. Journal of Radars, 2018, 7(6): 717-729. doi: 10.12000/JR18101
    [12]Lu Xinfei, Xia Jie, Yin Zhiping, Chen Weidong. High-resolution Radar Imaging Using 2D Deconvolution with Sparse Echo Denoising[J]. Journal of Radars, 2018, 7(3): 285-293. doi: 10.12000/JR17108
    [13]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [14]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [15]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [16]Chen Wenfeng, Li Shaodong, Yang Jun, Ma Xiaoyan. Multiple Measurement Vectors ISAR Imaging Algorithm Based on a Class of Linearized Bregman Iteration[J]. Journal of Radars, 2016, 5(4): 389-401. doi: 10.12000/JR16057
    [17]Guo Jiang-zhe, Zhu Dai-yin, Mao Xin-hua. FPGA Implementation of a SAR Two-dimensional Autofocus Approach[J]. Journal of Radars, 2016, 5(4): 444-452. doi: 10.12000/JR15092
    [18]Wu Min, Zhang Lei, Liu Songyang, Xing Mengdao. OFDM-ISAR Sparse Optimization Imaging and Motion Compensation[J]. Journal of Radars, 2016, 5(1): 72-81. doi: 10.12000/JR16017
    [19]Zhao Yi-chao, Zhu Yu-tao, Su Yi, Yang Meng. Two-dimensional Fast ESPRIT Algorithm for Linear Array SAR Imaging[J]. Journal of Radars, 2015, 4(5): 591-599. doi: 10.12000/JR15065
    [20]Wang Jian-feng, Lin Yun, Guo Sheng-long, Yu Ling-juan, Hong Wen. Circular SAR Optimization Imaging Method of Buildings[J]. Journal of Radars, 2015, 4(6): 698-707. doi: 10.12000/JR15069
  • Cited by

    Periodical cited type(1)

    1. 朱雪慧, 余泽太, 覃潇潇, 杨河林. 基于动态RCS的舰船雷达回波仿真与分析. 雷达科学与技术. 2019(05): 543-549 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 59.4 %META: 59.4 %PDF: 16.5 %PDF: 16.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.0 %其他: 3.0 %其他: 0.8 %其他: 0.8 %San Jose: 0.8 %San Jose: 0.8 %Seattle: 0.8 %Seattle: 0.8 %上海: 2.3 %上海: 2.3 %信阳: 2.3 %信阳: 2.3 %北京: 11.3 %北京: 11.3 %合肥: 1.5 %合肥: 1.5 %咸阳: 0.8 %咸阳: 0.8 %哥伦布: 1.5 %哥伦布: 1.5 %嘉兴: 0.8 %嘉兴: 0.8 %宁波: 0.8 %宁波: 0.8 %常州: 1.5 %常州: 1.5 %平顶山: 0.8 %平顶山: 0.8 %广州: 1.5 %广州: 1.5 %开封: 4.5 %开封: 4.5 %弗吉: 0.8 %弗吉: 0.8 %弗吉尼亚州: 1.5 %弗吉尼亚州: 1.5 %张家口: 3.8 %张家口: 3.8 %成都: 2.3 %成都: 2.3 %扬州: 3.0 %扬州: 3.0 %无锡: 2.3 %无锡: 2.3 %昆明: 3.0 %昆明: 3.0 %武汉: 0.8 %武汉: 0.8 %温州: 0.8 %温州: 0.8 %漯河: 2.3 %漯河: 2.3 %石家庄: 4.5 %石家庄: 4.5 %芒廷维尤: 24.1 %芒廷维尤: 24.1 %芝加哥: 2.3 %芝加哥: 2.3 %西宁: 0.8 %西宁: 0.8 %西安: 6.0 %西安: 6.0 %诺沃克: 3.0 %诺沃克: 3.0 %迈阿密: 0.8 %迈阿密: 0.8 %邯郸: 1.5 %邯郸: 1.5 %鄂州: 0.8 %鄂州: 0.8 %重庆: 0.8 %重庆: 0.8 %长沙: 0.8 %长沙: 0.8 %其他其他San JoseSeattle上海信阳北京合肥咸阳哥伦布嘉兴宁波常州平顶山广州开封弗吉弗吉尼亚州张家口成都扬州无锡昆明武汉温州漯河石家庄芒廷维尤芝加哥西宁西安诺沃克迈阿密邯郸鄂州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(79) PDF downloads(22) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint