Citation: | LI Zhongyu, GUI Liang, HAI Yu, et al. Ultrahigh-resolution ISAR micro-Doppler suppression methodology based on variational mode decomposition and mode optimization[J]. Journal of Radars, 2024, 13(4): 852–865. doi: 10.12000/JR24043 |
[1] |
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 239–241.
BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Techniques[M]. Beijing: Publishing House of Electronics Industry, 2005: 239–241.
|
[2] |
李源. 逆合成孔径雷达理论与对抗[M]. 北京: 国防工业出版社, 2013: 48–55.
LI Yuan. Inverse Synthetic Aperture Radar Theory and Confrontation[M]. Beijing: National Defense Industry Press, 2013: 48–55.
|
[3] |
杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2013.20010.
|
[4] |
张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049.
ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049.
|
[5] |
LIU Zheng and SUN Huixia. Micro-Doppler analysis and application of radar targets[C]. IEEE International Conference on Information and Automation, Changsha, China, 2008: 1343–1347. doi: 10.1109/ICINFA.2008.4608210.
|
[6] |
张群, 罗迎, 何劲. 雷达目标微多普勒效应研究概述[J]. 空军工程大学学报: 自然科学版, 2011, 12(2): 22–26. doi: 10.3969/j.issn.1009-3516.2011.02.005.
ZHANG Qun, LUO Ying, and HE Jin. Overview of research on micro-Doppler effect of radar targets[J]. Journal of Air Force Engineering University: Natural Science Edition, 2011, 12(2): 22–26. doi: 10.3969/j.issn.1009-3516.2011.02.005.
|
[7] |
CHEN V C. Analysis of radar micro-Doppler with time-frequency transform[C]. The 10th IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, USA, 2000: 463–466. doi: 10.1109/SSAP.2000.870167.
|
[8] |
WANG Anle, ZHENG Daikun, DU Shirui, et al. Microwave photonic radar system with ultra-flexible frequency-domain tunability[J]. Optics Express, 2021, 29(9): 13887–13898. doi: 10.1364/OE.423952.
|
[9] |
LUO Xiong, WANG Anle, WO Jianghai, et al. Microwave photonic video imaging radar with widely tunable bandwidth for monitoring diverse airspace targets[J]. Optics Communications, 2019, 451: 296–300. doi: 10.1016/j.optcom.2019.06.073.
|
[10] |
CHEN V C, TAHMOUSH D, and MICELI W J. Radar Micro-Doppler Signatures: Processing and Applications[M]. Stevenage: The Institution of Engineering and Technology, 2014: 187–225. doi: 10.1049/pbra034e.
|
[11] |
CHEN V C, LI Fayin, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402.
|
[12] |
TUSZYNSKI M, WOJTKIEWICZ A, and KLEMBOWSKI W. Bimodal clutter MTI filter for staggered PRF radars[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 176–180. doi: 10.1109/RADAR.1990.201158.
|
[13] |
万显荣, 谢德强, 易建新, 等. 基于STFT谱图滑窗相消的微动杂波去除方法[J]. 雷达学报, 2022, 11(5): 794–804. doi: 10.12000/JR22157.
WAN Xianrong, XIE Deqiang, YI Jianxin, et al. Micro-Doppler clutter removal method based on the cancelation of sliding STFT spectrogram[J]. Journal of Radars, 2022, 11(5): 794–804. doi: 10.12000/JR22157.
|
[14] |
WANG Yong, ZHOU Xingyu, LU Xiaofei, et al. An approach of motion compensation and ISAR imaging for micro-motion targets[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 68–80. doi: 10.23919/JSEE.2021.000008.
|
[15] |
何其芳, 张群, 罗迎, 等. 正弦调频Fourier-Bessel变换及其在微动目标特征提取中的应用[J]. 雷达学报, 2018, 7(5): 593–601. doi: 10.12000/JR17069.
HE Qifang, ZHANG Qun, LUO Ying, et al. A sinusoidal frequency modulation Fourier-Bessel transform and its application to micro-Doppler feature extraction[J]. Journal of Radars, 2018, 7(5): 593–601. doi: 10.12000/JR17069.
|
[16] |
符吉祥, 邢孟道, 徐丹, 等. 一种基于微波光子超高分辨雷达机翼振动参数估计方法[J]. 雷达学报, 2019, 8(2): 232–242. doi: 10.12000/JR19001.
FU Jixiang, XING Mengdao, XU Dan, et al. Vibration-parameters estimation method for airplane wings based on microwave-photonics ultrahigh-resolution radar[J]. Journal of Radars, 2019, 8(2): 232–242. doi: 10.12000/JR19001.
|
[17] |
STANKOVIC L, DJUROVIC I, and THAYAPARAN T. Separation of target rigid body and micro-Doppler effects in ISAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1496–1506. doi: 10.1109/TAES.2006.314590.
|
[18] |
LI Kaiming, LIANG Xianjiao, ZHANG Qun, et al. Micro-Doppler signature extraction and ISAR imaging for target with micromotion dynamics[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 411–415. doi: 10.1109/LGRS.2010.2081660.
|
[19] |
CHOI I, KANG K, KIM K, et al. Use of ICA to separate micro-Doppler signatures in ISAR images of aircraft that has fast-rotating parts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 234–246. doi: 10.1109/TAES.2021.3098110.
|
[20] |
BAI Xueru, XING Mengdao, ZHOU Feng, et al. Imaging of micromotion targets with rotating parts based on empirical-mode decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3514–3523. doi: 10.1109/TGRS.2008.2002322.
|
[21] |
FLANDRIN P, RILLING G, and GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112–114. doi: 10.1109/LSP.2003.821662.
|
[22] |
GAO Yunchao, GE Guangtao, SHENG Zhengyan, et al. Analysis and solution to the mode mixing phenomenon in EMD[C]. International Congress on Image and Signal Processing, Sanya, China, 2008: 223–227. doi: 10.1109/CISP.2008.193.
|
[23] |
YUAN Bin, CHEN Zengping, and XU Shiyou. Micro-Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1285–1298. doi: 10.1109/TGRS.2013.2249588.
|
[24] |
DRAGOMIRETSKIY K and ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. doi: 10.1109/TSP.2013.2288675.
|
[25] |
杨利超. 超高分辨ISAR成像技术研究[D]. [博士论文], 西安电子科技大学, 2021. doi: 10.27389/d.cnki.gxadu.2021.000089.
YANG Lichao. Study on ISAR ultrahigh-resolution imaging techniques[D]. [Ph.D. dissertation], Xidian University, 2021. doi: 10.27389/d.cnki.gxadu.2021.000089.
|
[26] |
邵帅. 高分辨ISAR成像与精细化运动补偿技术研究[D]. [博士论文], 西安电子科技大学, 2020. doi: 10.27389/d.cnki.gxadu.2020.003431.
SHAO Shuai. Study on high resolution ISAR imaging and fine motion compensation techniques[D]. [Ph.D. dissertation], Xidian University, 2020. doi: 10.27389/d.cnki.gxadu.2020.003431.
|
[27] |
YANG Degui, LI Jin, LIANG Buge, et al. A multi-rotor drone micro-motion parameter estimation method based on CVMD and SVD[J]. Remote Sensing, 2022, 14(14): 3326. doi: 10.3390/rs14143326.
|
[28] |
DAS S and SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4–31. doi: 10.1109/TEVC.2010.2059031.
|
[29] |
EICHEL P H and JAKOWATZ C V. Phase-gradient algorithm as an optimal estimator of the phase derivative[J]. Optics Letters, 1989, 14(20): 1101–1103. doi: 10.1364/OL.14.001101.
|
[1] | FU Hongwei, ZHANG Zhang, LUO Yu, ZHOU Zhichao, CHEN Zhanye, JIAN Xin, CHA Hao. Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect[J]. Journal of Radars. doi: 10.12000/JR24219 |
[2] | WANG Xianmei, LIU Xiangbo, REN Yuzheng, LU Yang, ZHANG Haijun. Review of Research on Artificial Intelligence-Driven Joint Radar Communication[J]. Journal of Radars. doi: 10.12000/JR24252 |
[3] | LIU Kangsheng, LING Qing, YAN Wenjun, ZHANG Limin, YU Keyuan, LIU Hengyan. Weak Labeling-specific Emitter Identification Algorithm Based on the Weakly Supervised Wav-KAN Network[J]. Journal of Radars, 2025, 14(2): 338-352. doi: 10.12000/JR24248 |
[4] | LI Yi, DU Lan, ZHOU Ke’er, DU Yuang. Deep Network for SAR Target Recognition Based on Attribute Scattering Center Convolutional Kernel Modulation[J]. Journal of Radars, 2024, 13(2): 443-456. doi: 10.12000/JR24001 |
[5] | CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140 |
[6] | DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065 |
[7] | ZHAO Yurui, HUANG Zhitao, WANG Xiang. A Review of Specific Emitter Identification Based on Phase Space Reconstruction[J]. Journal of Radars, 2023, 12(4): 713-737. doi: 10.12000/JR23057 |
[8] | HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119 |
[9] | JIANG Weidong, XUE Lingyan, ZHANG Xinyu. Data Separability Metric to Evaluate Radar Target Recognition[J]. Journal of Radars, 2023, 12(4): 860-881. doi: 10.12000/JR23125 |
[10] | LYU Yixuan, WANG Zhirui, WANG Peijin, LI Shengyang, TAN Hong, CHEN Kaiqiang, ZHAO Liangjin, SUN Xian. Scattering Information and Meta-learning Based SAR Images Interpretation for Aircraft Target Recognition[J]. Journal of Radars, 2022, 11(4): 652-665. doi: 10.12000/JR22044 |
[11] | CHEN Siwei, CUI Xingchao, LI Mingdian, TAO Chensong, LI Haoliang. SAR Image Active Jamming Type Recognition Based on Deep CNN Model[J]. Journal of Radars, 2022, 11(5): 897-908. doi: 10.12000/JR22143 |
[12] | TAN Kaiwen, ZHANG Limin, YAN Wenjun, XU Congan, LING Qing, LIU Hengyan. A Semi-supervised Emitter Identification Method for Imbalanced Category[J]. Journal of Radars, 2022, 11(4): 713-727. doi: 10.12000/JR22043 |
[13] | SUI Jinping, LIU Zhen, LIU Li, LI Xiang. Progress in Radar Emitter Signal Deinterleaving[J]. Journal of Radars, 2022, 11(3): 418-433. doi: 10.12000/JR21147 |
[14] | WANG Jingjing, LIU Zheng, XIE Rong, RAN Lei. HRRP Target Recognition Method for Full Polarimetric Radars by Combining Cameron Decomposition and Fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944-955. doi: 10.12000/JR21099 |
[15] | QUAN Sinong, FAN Hui, DAI Dahai, WANG Wei, XIAO Shunping, WANG Xuesong. Recognition of Ships and Chaff Clouds Based on Sophisticated Polarimetric Target Decomposition[J]. Journal of Radars, 2021, 10(1): 61-73. doi: 10.12000/JR20123 |
[16] | LI Lianlin, CUI Tiejun. Recent Progress in Intelligent Electromagnetic Sensing[J]. Journal of Radars, 2021, 10(2): 183-190. doi: 10.12000/JR21049 |
[17] | SUN Liting, HUANG Zhitao, WANG Xiang, WANG Fenghua, LI Baoguo. Overview of Radio Frequency Fingerprint Extraction in Specific Emitter Identification(in English)[J]. Journal of Radars, 2020, 9(6): 1014-1031. doi: 10.12000/JR19115 |
[18] | XU Yasheng, DING Chibiao, REN Wenjuan, XU Guangluan. Multi-feature Combination Track-to-track Association Based on Histogram Statistics Feature[J]. Journal of Radars, 2019, 8(1): 25-35. doi: 10.12000/JR18028 |
[19] | Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108 |
[20] | RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061 |
1. | 陶春贵,王松,郭兰英,徐争元. 基于角度修正的频率和波达方向联合估计. 山西大同大学学报(自然科学版). 2024(04): 63-68 . ![]() |