Citation: | Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108 |
[1] |
Griffiths H D. New direction in bistatic radar[C]. IEEE RADAR Conference, Rome, 2008: 1-6.
|
[2] |
万显荣, 易建新, 程丰, 等. 单频网分布式外辐射源雷达技术[J]. 雷达学报, 2014, 3(6): 623-631. Wan Xian-rong, Yi Jian-xin, Cheng Feng, et al.. Single frequency network based distributed passive radar technology[J]. Journal of Radars, 2014, 3(6): 623-631.
|
[3] |
Chen Q, Tan B, Woodbridge K, et al.. Indoor target tracking using high Doppler resolution passive Wi-Fi radar[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015: 5565-5569.
|
[4] |
Falcone P, Colone F, Macera A, et al.. Two-dimensional location of moving targets within local areas using WiFi-based multistatic passive radar[J]. IET Radar, Sonar Navigation, 2014, 8(2): 123-131.
|
[5] |
Colone F, Pastina D, Falcone P, et al.. WiFi-based passive ISAR for high-resolution cross-range profiling of moving targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3486-3501.
|
[6] |
Falcone P, Bongioanni C, and Lombardo P. WiFi-based passive bistatic radar: data processing schemes and experimental results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1061-1079.
|
[7] |
Colone F, Woodbridge K, Guo H, et al.. Ambiguity function analysis of wireless lan transmissions for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 240-264.
|
[8] |
Chetty K, Smith G E, and Woodbridge K. Through-The-Wall sensing of personnel using passive bistatic WiFi radar at standoff distances[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1218-1226.
|
[9] |
饶云华, 朱逢园, 张修志, 等. WiFi 外辐射源雷达信号模糊函数及副峰抑制分析[J]. 雷达学报, 2012, 1(3): 225-231. Rao Yun-hua, Zhu Feng-yuan, Zhang Xiu-zhi, et al.. Ambiguity function analysis and side peaks suppression of passive radar[J]. Journal of Radars, 2012, 1(3): 225-231.
|
[10] |
万显荣, 唐慧, 王俊芳, 等. DTMB外辐射源雷达参考信号纯度对探测性能的影响分析[J]. 系统工程与电子技术, 2013, 35(4): 725-729. WAN Xian-rong, Tang Hui, Wang Jun-fang, et al.. Influence of reference signal purity on target detection performance in DTMB-based passive radar[J]. Systems Engineering and Electronics, 2013, 35(4): 725-729.
|
[11] |
Mazhar H and Hassan S A. Analysis of target multipaths in WiFi-based passive radars[J]. IET Radar, Sonar Navigation, 2016, 10(1): 140-145.
|
[12] |
吴海洲, 陶然, 单涛. 数字电视辐射源雷达基于空域滤波的直达波获取[J]. 兵工学报, 2009, 30(2): 226-230. Wu Hai-zhou, Tao Ran, and Shan Tao. Direct-path signal obtaining to digital video broadcasting transmitter radar based on the spatial filtering[J]. Acta Armamentarii, 2009, 30(2): 226-230.
|
[13] |
万显荣, 岑博, 易建新, 等. 中国移动多媒体广播外辐射源雷达参考信号获取方法研究[J]. 电子与信息学报, 2012, 34(2): 338-343. Wan Xian-rong, Cen Bo, Yi Jian-xin, et al.. Reference signal extraction methods for CMMB-based passive bistatic radar[J]. Journal of Electronics Information Technology, 2012, 34(2): 338-343.
|
[14] |
Harms H A, Davis L M, and Palmer J. Understanding the signal structure in DVB-T signals for passive radar detection[C]. IEEE Radar Conference, Washington DC, 2010: 532-537.
|
[15] |
Chetty K, Smith G, Guo H, et al.. Target detection in high clutter using passive bistatic WiFi radar[C]. IEEE Radar Conference, Pasadena, 2009: 1-5.
|
[16] |
IEEE Std 802.11g-2003. Telecommunications and information exchange between systems local and metropolitan area networks specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications-Amendment 4: Furtherhigher-speed physical layer extension in the 2.4 GHz Band[S]. New York: Institue of Electrical and Electronics Engineers, Inc., 2003.
|
[17] |
Nasraoui L, Atallah L N, and Siala M. An efficient reduced-complexity two-stage differential sliding correlation approach for OFDM synchronization in the multipath channel[C]. 2012 IEEE Wireless Communications and Networking Conference (WCNC),Paris,2012: 2059-2063.
|
[1] | YANG Lei, HUO Xin, SHEN Ruiyang, SONG Hao, HU Zhongwei. Credible Inference of Near-field Sparse Array Synthesis for Three-dimensional Millimeter-wave Imagery[J]. Journal of Radars, 2024, 13(5): 1092-1108. doi: 10.12000/JR24097 |
[2] | LIN Yuqing, QIU Xiaolan, PENG Lingxiao, LI Hang, DING Chibiao. Non-line-of-sight Target Relocation by Multipath Model in SAR 3D Urban Area Imaging[J]. Journal of Radars, 2024, 13(4): 777-790. doi: 10.12000/JR24057 |
[3] | WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101 |
[4] | MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001 |
[5] | REN Zishuai, ZHANG Zhao, GAO Yuxin, GUO Rui. Three-dimensional Imaging of Tomographic SAR Based on Adaptive Elevation Constraint[J]. Journal of Radars, 2023, 12(5): 1056-1068. doi: 10.12000/JR23111 |
[6] | HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149 |
[7] | JIANG Yanwen, FAN Hongqi, LI Shuangxun. A Sparse Bayesian Learning Approach for Vortex Electromagnetic Wave Three-dimensional Imaging in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 718-724. doi: 10.12000/JR21151 |
[8] | ZHENG Tong, JIANG Libing, WANG Zhuang. Three-dimensional Multiple-Input Multiple-Output Radar Imaging Method Based on Integration of Multi-snapshot Images[J]. Journal of Radars, 2020, 9(4): 739-752. doi: 10.12000/JR19069 |
[9] | SUN Dou, LU Dongwei, XING Shiqi, YANG Xiao, LI Yongzhen, WANG Xuesong. Full-polarization SAR Joint Multidimensional Reconstruction Based on Sparse Reconstruction[J]. Journal of Radars, 2020, 9(5): 865-877. doi: 10.12000/JR20092 |
[10] | ZHAO Wanwan, WANG Pengbo, MEN Zhirong, LI Chunsheng. Imaging Method for Co-prime-sampling Space-borne SAR Based on 2D Sparse-signal Reconstruction[J]. Journal of Radars, 2020, 9(1): 131-142. doi: 10.12000/JR19086 |
[11] | SHI Jun, QUE Yujia, ZHOU Zenan, ZHOU Yuanyuan, ZHANG Xiaoling, SUN Mingfang. Near-field Millimeter Wave 3D Imaging and Object Detection Method[J]. Journal of Radars, 2019, 8(5): 578-588. doi: 10.12000/JR18089 |
[12] | Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109 |
[13] | Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056 |
[14] | Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Near-field 3D SAR Imaging Techniques Using a Scanning MIMO Array[J]. Journal of Radars, 2018, 7(6): 676-684. doi: 10.12000/JR18102 |
[15] | Tian He, Li Daojing. Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR[J]. Journal of Radars, 2018, 7(6): 717-729. doi: 10.12000/JR18101 |
[16] | Jin Tian, Song Yongping. Sparse Imaging of Building Layouts in Ultra-wideband Radar[J]. Journal of Radars, 2018, 7(3): 275-284. doi: 10.12000/JR18031 |
[17] | Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067 |
[18] | Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011 |
[19] | He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119 |
[20] | Wang Jie, Shen Ming-wei, Wu Di, Zhu Dai-yin. An Efficient STAP Algorithm for Nonsidelooking Airborne Radar Based on Mainlobe Clutter Compensation[J]. Journal of Radars, 2014, 3(2): 235-240. doi: 10.3724/SP.J.1300.2014.13122 |
1. | 董孟琛,杨剑,李传祥,李伙明. 一种基于复合滤波的海面雷达距离多普勒图像去噪算法. 火箭军工程大学学报. 2025(01): 13-20 . ![]() | |
2. | 汪翔,王彦斌,汪育苗,崔国龙. 基于图神经网络的多尺度特征融合雷达目标检测方法. 雷达科学与技术. 2025(01): 39-47 . ![]() | |
3. | 施端阳,林强,胡冰,杜小帅. 基于YOLO的航管一次雷达目标检测方法. 系统工程与电子技术. 2024(01): 143-151 . ![]() | |
4. | 周利,胡杰民,付连庆,凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法. 系统工程与电子技术. 2024(04): 1247-1254 . ![]() | |
5. | 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . ![]() | |
6. | 许述文,何绮,茹宏涛. 基于无监督图互信息最大化的海面小目标异常检测. 电子与信息学报. 2024(07): 2712-2720 . ![]() | |
7. | 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 . ![]() | |
8. | 薛安克,毛克成,张乐. 多分类器联合虚警可控的海上小目标检测方法. 电子与信息学报. 2023(07): 2528-2536 . ![]() | |
9. | 施赛楠,姜丽,李东宸,吴旭姿. 基于双重虚警控制XGBoost的海面小目标检测. 雷达科学与技术. 2023(03): 314-323+328 . ![]() | |
10. | 刘安邦,施赛楠,杨静,曹鼎. 基于虚警可控梯度提升树的海面小目标检测. 南京信息工程大学学报(自然科学版). 2022(03): 341-347 . ![]() | |
11. | 许述文,茹宏涛. 基于标签传播算法的海面漂浮小目标检测方法. 电子与信息学报. 2022(06): 2119-2126 . ![]() | |
12. | 关键,伍僖杰,丁昊,刘宁波,董云龙,张鹏飞. 基于对角积分双谱的海面慢速小目标检测方法. 电子与信息学报. 2022(07): 2449-2460 . ![]() | |
13. | 施端阳,林强,胡冰,张馨予. 深度学习在雷达目标检测中的应用综述. 雷达科学与技术. 2022(06): 589-605 . ![]() | |
14. | 伍僖杰,丁昊,刘宁波,关键. 基于时频脊-Radon变换的海面小目标检测方法. 信号处理. 2021(09): 1599-1611 . ![]() |