Yang Jin-long, Liu Feng-mei, Wang Dong, Ge Hong-wei. Affinity Propagation Based Measurement Partition Algorithm for Multiple Extended Target Tracking[J]. Journal of Radars, 2015, 4(4): 452-459. doi: 10.12000/JR15003
Citation: Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067

LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization

DOI: 10.12000/JR18067
Funds:  The National Natural Science Foundation of China (61501098), The China Postdoctoral Science Foundation (2015M570778), the High Resolution Earth Observation Youth Foundation (GFZX04061502)
  • Received Date: 2018-08-31
  • Rev Recd Date: 2018-12-15
  • Publish Date: 2018-12-28
  • Linear Array Synthetic Aperture Radar (LASAR) is a novel and promising radar imaging technique. It is difficult to achieve high-resolution LASAR three-dimensional (3D) imaging using the traditional imaging methods based on match filter, because of limitations by the sizes of the linear array antenna and the platform. In this paper, by exploiting the prior distribution of the LASAR echoes and the observed scene, an LASAR high-resolution 3D algorithm based on sparse Bayesian regularization is proposed. The algorithm first combines the Bayesian principle and maximum likelihood estimation theory, and then a sparse Bayesian minimum cost function is constructed for LASAR target recovery. Second, using an iterative regularization reconstruction method, high-resolution imaging of LASAR sparse targets is achieved by solving a joint-norms optimization problem. In addition, for the problem of a large amount of sparse Bayesian regularization imaging, combined with the position prediction fast imaging idea, the threshold segmentation algorithm is used to extract the strong target of sparse coarse imaging, and then the algorithm operation efficiency is improved. Simulation and experiment results are presented to confirm the effectiveness of the algorithm.

     

  • [1]
    Liao K F, Zhang X L, and Shi J. Plane-wave synthesis and RCS extraction via 3-D linear array SAR[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 994–997. DOI: 10.1109/LAWP.2015.2389264
    [2]
    Han K Y, Wang Y P, Tan W X, et al. Efficient Pseudopolar format algorithm for down-looking linear-array SAR 3-D imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 572–576. DOI: 10.1109/LGRS.2014.2351792
    [3]
    Zhuge X and Yarovoy A G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 509–518. DOI: 10.1109/TGRS.2010.2053038
    [4]
    Wei S J, Zhang X L, Shi J, et al. Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study[J]. Progress in Electromagnetics Research, 2013, 135: 161–181. DOI: 10.2528/PIER12082305
    [5]
    彭文杰. 基于压缩感知的阵列SAR三维成像方法研究[D]. [硕士论文], 电子科技大学, 2013.

    Peng Wen-jie. Array SAR3D imaging method based on compressed sensing[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [6]
    Donoho D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. DOI: 10.1109/TIT.2006.871582
    [7]
    Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9/10): 589–592. DOI: 10.1016/j.crma.2008.03.014
    [8]
    Wei S J, Zhang X L, and Shi J. Linear array SAR Imaging via compressed sensing[J]. Progress in Electromagnetics Research, 2011, 117: 299–319. DOI: 10.2528/PIER11033105
    [9]
    Wei S J, Zhang X L, and Shi J. Compressed sensing linear array SAR 3-D imaging via sparse locations prediction[C]. Proceedings of 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1887–1890. DOI: 10.1109/IGARSS.2014.6946825.
    [10]
    Zhang S Q, Zhu Y T, Dong G G, et al. Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1853–1857. DOI: 10.1109/LGRS.2015.2431254
    [11]
    Tan X, Fang Y, Feng X Y, et al.. Sparse linear array three-dimensional imaging approach based on compressed sensing[C]. Proceedings of 2016 IEEE International Conference on Signal and Image Processing, Beijing, China, 2016: 296–299. DOI: 10.1109/SIPROCESS.2016.7888271.
    [12]
    Bao Q, Peng X M, Wang Z R, et al. DLSLA 3-D SAR imaging based on reweighted gridless sparse recovery method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(6): 841–845. DOI: 10.1109/LGRS.2016.2550057
    [13]
    Zhang S Q, Dong G G, and Kuang G Y. Superresolution downward-looking linear array three-dimensional SAR imaging based on two-dimensional compressive sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2184–2196. DOI: 10.1109/JSTARS.2016.2549548
    [14]
    Peng X M, Tan W X, Hong W, et al. Airborne DLSLA 3-D SAR image reconstruction by combination of polar formatting and L1 regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 213–226. DOI: 10.1109/TGRS.2015.2453202
    [15]
    Su W G, Wang H Q, Deng B, et al.. Sparse Bayesian SAR imaging of moving target via the EXCOV method[C]. Proceedings of 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, Australia, 2014: 448–451. DOI: 10.1109/SSP.2014.6884672.
    [16]
    Zou Y Q, Gao X Z, and Li X. Block sparse Bayesian learning based strip map SAR imaging method[C]. Proceedings of the 2016 10th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–4. DOI: 10.1109/EuCAP.2016.7481637.
    [17]
    康乐, 张群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003. DOI: 10.3788/aos201737.0611003

    Kang Le, Zhang Qun, Li Tao-yong, et al. Imaging method of downward-looking three-dimensional synthetic aperture radar based on Bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003. DOI: 10.3788/aos201737.0611003
    [18]
    韦顺军, 田博坤, 张晓玲, 等. 基于半正定规划的压缩感知线阵三维SAR自聚焦成像算法[J]. 雷达学报, 2018, 7(6): 664–675. DOI: 10.12000/JR17103

    Wei Shun-jun, Tian Bo-kun, Zhang Xiao-ling, et al. Compressed sensing linear array sar autofocusing imaging via semi-definite programming[J]. Journal of Radars, 2018, 7(6): 664–675. DOI: 10.12000/JR17103
    [19]
    Yang J G, Thompson J, Huang X T, et al. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983–994. DOI: 10.1109/TGRS.2012.2204891
    [20]
    Xu J, Pi Y, and Cao Z. Bayesian compressive sensing in synthetic aperture radar imaging[J]. IET Radar,Sonar&Navigation, 2012, 6(1): 2–8. DOI: 10.1049/iet-rsn.2010.0375
    [21]
    Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society. Series B(Methodological) , 1996, 58(1): 267–288. DOI: 10.1111/rssb.1996.58.issue-1
    [22]
    Chartrand R and Yin W T. Iteratively reweighted algorithms for compressive sensing[C]. Proceedings of 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, USA, 2008: 3869–3872. DOI: 10.1109/ICASSP.2008.4518498.
    [23]
    Ulander L M H, Hellsten H, and Stenstrom G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. DOI: 10.1109/TAES.2003.1238734
  • Relative Articles

    [1]WANG Bohong, SHEN Biao, MU Wenxing, LIU Tao. Research on Super-resolution Methods for Radar Targets Based on Bat-inspired Spectrogram Correlation and Transformation Models[J]. Journal of Radars, 2025, 14(2): 293-308. doi: 10.12000/JR24239
    [2]GUO Zhongyi, WANG Yanzhe, WANG Yunlai, GUO Kai. Research Advances on the Rotational Doppler Effect of Vortex Electromagnetic Waves[J]. Journal of Radars, 2021, 10(5): 725-739. doi: 10.12000/JR21109
    [3]PEI Jiazheng, HUANG Yong, CHEN Baoxin, GUAN Jian, CAI Mi, CHEN Xiaolong. Long Time Coherent Integration Method Based on Combining Pulse Compression and Radon-Fourier Transform[J]. Journal of Radars, 2021, 10(6): 956-969. doi: 10.12000/JR21068
    [4]WEI Wei, ZHU Daiyin, WU Di. Wavenumber Domain Algorithm Based on the Principle of Chirp Scaling for SAR Imaging[J]. Journal of Radars, 2020, 9(2): 354-362. doi: 10.12000/JR19112
    [5]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [6]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [7]Chen Fangxiang, Yi Wei, Zhou Tao, Kong Lingjiang. Passive Direct Location Determination for Multiple Sources Based on FRFT[J]. Journal of Radars, 2018, 7(4): 523-530. doi: 10.12000/JR18027
    [8]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [9]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [10]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [11]Lin Chunfeng, Huang Chunlin, Su Yi. Target Integration and Detection with the Radon-Fourier Transform for Bistatic Radar[J]. Journal of Radars, 2016, 5(5): 526-530. doi: 10.12000/JR16049
    [12]Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013
    [13]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [14]Tian Rui-qi, Bao Qing-long, Wang Ding-he, Chen Zeng-ping. An Algorithm for Target Parameter Estimation Based on Fractional Fourier and Keystone Transforms[J]. Journal of Radars, 2014, 3(5): 511-517. doi: 10.3724/SP.J.1300.2014.14058
    [15]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [16]Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036
    [17]Guan Xin, Zhong Li-hua, Hu Dong-hui, Ding Chi-biao. A Compensation Algorithm Based on RSPWVD-Hough Transform for Doppler Expansion in Passive Radar[J]. Journal of Radars, 2013, 2(4): 430-438. doi: 10.3724/SP.J.1300.2013.13073
    [18]Deng Dong-hu, Zhang Qun, Luo Ying, Li Song, Zhu Ren-Fei. Resolution and Micro-Doppler Effect in Bi-ISAR System (in English)[J]. Journal of Radars, 2013, 2(2): 152-167. doi: 10.3724/SP.J.1300.2013.13039
    [19]Zheng Jin, You Hong-jian. Change Detection with SAR Images Based on Radon Transform and Jeffrey Divergence[J]. Journal of Radars, 2012, 1(2): 182-189. doi: 10.3724/SP.J.1300.2012.10068
    [20]Yu Bin-bin, Liu Chang, Wang Yan-fei. A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR[J]. Journal of Radars, 2012, 1(1): 69-75. doi: 10.3724/SP.J.1300.2012.20005
  • Cited by

    Periodical cited type(6)

    1. 王纪平,刘衍琦,邓钱钰,郭淑婷,毛新华. 基于PAST的毫米波雷达MIMO阵列幅相误差校正算法. 信号处理. 2024(09): 1633-1647 .
    2. 宁宝俊. 毫米波雷达在斜拉桥索力监测中的应用. 西部交通科技. 2024(07): 157-160 .
    3. 张春杰,陈奇,赵佳琦. 基于注意力机制CNN-LSTM的毫米波雷达点云特征数据预测生成. 电讯技术. 2024(11): 1718-1725 .
    4. 耿同乐. 电流反馈在毫米波雷达信号处理中的应用. 集成电路应用. 2024(11): 26-27 .
    5. 于丹阳,杜磊. 一种基于快速迭代自适应算法的毫米波雷达波达角高精度测量方法. 计量科学与技术. 2024(11): 3-9+21 .
    6. 孙航,张路,季国田. 智能网联汽车标准体系及重点标准研究与展望. 汽车安全与节能学报. 2024(06): 795-812 .

    Other cited types(29)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.8 %FULLTEXT: 30.8 %META: 59.9 %META: 59.9 %PDF: 9.3 %PDF: 9.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.4 %其他: 5.4 %其他: 2.2 %其他: 2.2 %Central District: 0.0 %Central District: 0.0 %China: 0.3 %China: 0.3 %Herndon: 0.0 %Herndon: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Malvern: 0.0 %Malvern: 0.0 %North Point: 0.1 %North Point: 0.1 %San Lorenzo: 0.1 %San Lorenzo: 0.1 %Seattle: 0.1 %Seattle: 0.1 %[]: 0.4 %[]: 0.4 %三亚: 0.1 %三亚: 0.1 %三明: 0.1 %三明: 0.1 %上海: 3.0 %上海: 3.0 %东京: 0.2 %东京: 0.2 %东京都: 0.0 %东京都: 0.0 %东莞: 0.3 %东莞: 0.3 %中卫: 0.1 %中卫: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %九江: 0.0 %九江: 0.0 %伊利诺伊州: 0.0 %伊利诺伊州: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.0 %兰辛: 0.0 %凤凰城: 0.1 %凤凰城: 0.1 %北京: 10.5 %北京: 10.5 %北海: 0.0 %北海: 0.0 %十堰: 0.0 %十堰: 0.0 %华沙: 0.1 %华沙: 0.1 %南京: 2.1 %南京: 2.1 %南充: 0.0 %南充: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.0 %南通: 0.0 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.9 %台北: 0.9 %台州: 0.0 %台州: 0.0 %合肥: 0.5 %合肥: 0.5 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %咸阳: 0.1 %咸阳: 0.1 %哈密: 0.1 %哈密: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.1 %嘉兴: 0.1 %大克罗伊茨: 0.6 %大克罗伊茨: 0.6 %大连: 0.2 %大连: 0.2 %天津: 1.2 %天津: 1.2 %太原: 0.4 %太原: 0.4 %威海: 0.4 %威海: 0.4 %宁波: 0.1 %宁波: 0.1 %安山: 0.1 %安山: 0.1 %安康: 0.3 %安康: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.2 %宣城: 0.2 %宿州: 0.0 %宿州: 0.0 %岳阳: 0.1 %岳阳: 0.1 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广元: 0.0 %广元: 0.0 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开普敦: 0.1 %开普敦: 0.1 %张家口: 0.3 %张家口: 0.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 1.8 %成都: 1.8 %扬州: 0.5 %扬州: 0.5 %抚顺: 0.0 %抚顺: 0.0 %揭阳: 0.0 %揭阳: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %昌迪加尔: 0.0 %昌迪加尔: 0.0 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.1 %朝阳: 0.1 %杜塞尔多夫: 0.0 %杜塞尔多夫: 0.0 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %格林菲尔德: 0.0 %格林菲尔德: 0.0 %桂林: 0.1 %桂林: 0.1 %梅州: 0.0 %梅州: 0.0 %榆林: 0.3 %榆林: 0.3 %武汉: 2.8 %武汉: 2.8 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河内: 0.1 %河内: 0.1 %泉州: 0.0 %泉州: 0.0 %法兰克福: 0.1 %法兰克福: 0.1 %泰州: 0.0 %泰州: 0.0 %泰米尔纳德: 0.3 %泰米尔纳德: 0.3 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.3 %济南: 0.3 %海口: 0.0 %海口: 0.0 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 1.7 %深圳: 1.7 %清远: 0.0 %清远: 0.0 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.0 %湖州: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.8 %漯河: 0.8 %烟台: 0.3 %烟台: 0.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.2 %石家庄: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %纳什维尔: 0.1 %纳什维尔: 0.1 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.5 %绍兴: 0.5 %绵阳: 0.2 %绵阳: 0.2 %胡志明: 0.1 %胡志明: 0.1 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 32.6 %芒廷维尤: 32.6 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.4 %苏州: 0.4 %莫斯科: 0.0 %莫斯科: 0.0 %葫芦岛: 0.0 %葫芦岛: 0.0 %蒙彼利埃: 0.0 %蒙彼利埃: 0.0 %衡阳: 0.3 %衡阳: 0.3 %衢州: 0.1 %衢州: 0.1 %西宁: 9.3 %西宁: 9.3 %西安: 2.1 %西安: 2.1 %许昌: 0.0 %许昌: 0.0 %诺沃克: 0.2 %诺沃克: 0.2 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.1 %赣州: 0.1 %赤峰: 0.0 %赤峰: 0.0 %赫尔辛基: 0.1 %赫尔辛基: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.4 %运城: 0.4 %遵义: 0.1 %遵义: 0.1 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 0.4 %重庆: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 1.1 %长沙: 1.1 %随州: 0.0 %随州: 0.0 %雷德蒙德: 0.1 %雷德蒙德: 0.1 %青岛: 0.4 %青岛: 0.4 %韦斯特罗斯: 0.0 %韦斯特罗斯: 0.0 %韦科: 0.1 %韦科: 0.1 %首尔: 0.0 %首尔: 0.0 %首尔特别: 0.0 %首尔特别: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.0 %马鞍山: 0.0 %驻马店: 0.0 %驻马店: 0.0 %黄冈: 0.1 %黄冈: 0.1 %黄山: 0.0 %黄山: 0.0 %黄石: 0.3 %黄石: 0.3 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaHerndonKao-sungMalvernNorth PointSan LorenzoSeattle[]三亚三明上海东京东京都东莞中卫临汾临沂丹东九江伊利诺伊州伦敦佛山兰州兰辛凤凰城北京北海十堰华沙南京南充南昌南通卡拉奇厦门台北台州合肥吉安呼和浩特咸阳哈密哈尔滨哥伦布唐山嘉兴大克罗伊茨大连天津太原威海宁波安山安康宝鸡宣城宿州岳阳常州常德广元广州库比蒂诺廊坊开普敦张家口张家界徐州德里怀化成都扬州抚顺揭阳新乡无锡昆明昌迪加尔晋城朝阳杜塞尔多夫杭州枣庄格兰特县格林菲尔德桂林梅州榆林武汉汕头沈阳沧州河内泉州法兰克福泰州泰米尔纳德泸州洛阳济南海口淄博淮南淮安深圳清远温州渭南湖州滁州漯河烟台珠海石家庄秦皇岛纳什维尔纽约绍兴绵阳胡志明舟山芒廷维尤芝加哥苏州莫斯科葫芦岛蒙彼利埃衡阳衢州西宁西安许昌诺沃克贵阳赣州赤峰赫尔辛基达州运城遵义邢台邯郸郑州鄂州重庆镇江长春长沙随州雷德蒙德青岛韦斯特罗斯韦科首尔首尔特别香港香港特别行政区马鞍山驻马店黄冈黄山黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3361) PDF downloads(252) Cited by(35)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint