SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149
Citation: PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10(6): 956–969. doi: 10.12000/JR21068

Long Time Coherent Integration Method Based on Combining Pulse Compression and Radon-Fourier Transform

DOI: 10.12000/JR21068 CSTR: 32380.14.JR21068
Funds:  The National Natural Science Foundation of China (61871391, U1933135), The National Defense Science Foundation under Grant (2019-JCJQ-JJ-058), Shandong Province Higher Education Youth Innovation Science and Technology Support Program (2019KJN026), Shandong Provincial Natural Science Foundation, grant number (ZR202102190211)
More Information
  • In the traditional coherent radar signal processing, the cascaded processing with pulse compression followed by coherent integration cannot achieve the maximum accumulation of high-speed target’s echo energy in theory. In addition, the result of the cascaded processing is characterized by deviation in the target peak position, accompanied by problems, such as the broadening of the main lobe, a decrease in the gain, and an increase in the side lobes. Therefore, this paper proposes a long time coherent integration method combining Pulse Compression and Radon-Fourier Transform (PC-RFT). This method utilizes the correlation between signals to combine matched filter and RFT. To maximize the target gain, the fast time (intra-pulse time) and slow time (inter-pulse time) dimensions are combined to compensate for the intra-pulse and inter-pulse Doppler shifts. The experimental results show that the two-dimensional joint processing outperforms the cascaded processing.

     

  • [1]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. McGraw-Hill Education and Publishing House of Electronics Industry, 2014: 180–225.
    [2]
    TAO Ran, ZHANG Ning, and WANG Yunchu. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12–22. doi: 10.1049/iet-rsn.2009.0265
    [3]
    SUO Pangcun, TAO Shan, TAO Ran, et al. Detection of high-speed and accelerated target based on the linear frequency modulation radar[J]. IET Radar, Sonar & Navigation, 2014, 8(1): 37–47. doi: 10.1049/iet-rsn.2013.0001
    [4]
    CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transaction on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [5]
    CHEN Xiaolong, GUAN Jian, CHEN Weishi, et al. Sparse long-time coherent integration-based detection method for radar low-observable maneuvering target[J]. IET Radar, Sonar and Navigation, 2020, 14(4): 538–546. doi: 10.1049/iet-Isn.2019.0313
    [6]
    陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 1016798/j.issn.1003-0530.2020.12.001

    CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Summary of long-time integration techniques for weak targets of MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 1016798/j.issn.1003-0530.2020.12.001
    [7]
    关键, 陈小龙, 于晓涵. 雷达高速高机动目标长时间相参积累检测方法[J]. 信号处理, 2017, 33(3A): 1–8. doi: 10.16798/j.issn.1003-0530.2017.3A.001

    GUAN Jian, CHEN Xiao-long, and YU Xiao-han. Long-time coherent integration-based detection method forhigh-apeedand highly maneuvering radar target[J]. Journal of Signal Proceasing, 2017, 33(3A): 1–8. doi: 10.16798/j.issn.1003-0530.2017.3A.001
    [8]
    陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weiehi, RAO Yunhua, et al. Progrecs and proapecte of radar target detection and recognition technology for flying birda and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    [9]
    LI Yang, ZENG Tao, LONG Teng, et al. Range migration compensation and Doppler ambiguity resolution by Keystone transform[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
    [10]
    REED I S, GAGLIARDI R M, and STOTTS L B. Optical moving target detection with 3-D matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 327–336. doi: 10.1109/7.7174
    [11]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251
    [12]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645
    [13]
    YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [14]
    QIAN Lichang, XU Jia, XIA Xianggen, et al. Fast implementation of generalised Radon-Fourier transform for manoeuvring radar target detection[J]. Electronics Letters, 2012, 48(22): 1427–1428. doi: 10.1049/el.2012.2255
    [15]
    LIN Lanjin, SUN Guohao, CHENG Ziyang, et al. Long-time coherent integration for maneuvering target detection based on ITRT-MRFT[J]. IEEE Sensors Journal, 2020, 20(7): 3718–3731. doi: 10.1109/JSEN.2019.2960323
    [16]
    LI Xiaolong, CUI Guolong, YI Wei, et al. Sequence-reversing transform-based coherent integration for high-speed target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1573–1580. doi: 10.1109/TAES.2017.2668018
    [17]
    CHEN Shuailin, LUO Feng, ZHANG Linrang, et al. Coherent integration detection method for maneuvering target based on dynamic programming[J]. AEU - International Journal of Electronics and Communications, 2017, 73: 46–49. doi: 10.1016/j.aeue.2016.12.021
    [18]
    ZHOU Gongjian, XU Zeyu, and YANG Yuchao. Coherent integration for targets with constant Cartesian velocities based on accurate range model[J]. Digital Signal Processing, 2021, 116: 103092. doi: 10.1016/j.dsp.2021.103092
    [19]
    丁鹭飞, 耿富录, 陈建春. 雷达原理. 第5版[M]. 电子工业出版社, 2014: 381–385.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 381–385.
    [20]
    段毅, 商哲然, 谭贤四, 等. 面向雷达高速目标检测的RFT快速实现方法[J]. 系统工程与电子技术, 2018, 40(6): 1233–1240. doi: 10.3969/j.issn.1001-506X.2018.06.07

    DUAN Yi, SHANG Zheran, TAN Xiansi, et al. Fast implementation of RFT for radar hypersonic targets detection[J]. Systems Engineering and Electronics, 2018, 40(6): 1233–1240. doi: 10.3969/j.issn.1001-506X.2018.06.07
    [21]
    钱李昌, 许稼, 孙文峰, 等. 基于雷达脉冲重复间隔设计的Radon-Fourier变换盲速旁瓣抑制[J]. 电子与信息学报, 2012, 34(11): 2608–2614. doi: 10.3724/SP.J.1146.2012.00724

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Blind speed side lobe suppression in Radon-Fourier transform based on radar pulse recurrence interval design[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2608–2614. doi: 10.3724/SP.J.1146.2012.00724
    [22]
    钱李昌, 许稼, 孙文峰, 等. 基于宽带时空Radon-Fourier变换的高速微弱目标检测方法[J]. 电子与信息学报, 2013, 35(1): 15–23. doi: 10.3724/SP.J.1146.2012.01094

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Wideband time-space Radon-Fourier transform for high-speed and weak target detection[J]. Journal of Electronics &Information Technology, 2013, 35(1): 15–23. doi: 10.3724/SP.J.1146.2012.01094
    [23]
    陈潜, 付朝伟, 刘俊豪, 等. 基于随机脉冲重复间隔Radon-Fourier变换的相参积累[J]. 电子与信息学报, 2015, 37(5): 1085–1090. doi: 10.11999/JEIT140818

    CHEN Qian, FU Chaowei, LIU Junhao, et al. Coherent integration based on random pulse repetition interval Radon-Fourier transform[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1085–1090. doi: 10.11999/JEIT140818
    [24]
    吴兆平, 符渭波, 苏涛, 等. 基于快速Radon-Fourier变换的雷达高速目标检测[J]. 电子与信息学报, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180

    WU Zhaoping, FU Weibo, SU Tao, et al. High speed radar target detection based on fast Radon-Fourier transform[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180
    [25]
    钱李昌, 许稼, 孙文峰, 等. 基于多载频MIMO雷达的Radon-Fourier变换盲速旁瓣抑制[J]. 航空学报, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Blind speed side lobe suppression in Radon-Fourier transform based on MIMO radar with multi-carrier frequency[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073
    [26]
    林春风, 黄春琳, 粟毅. 双基地雷达Radon-Fourier变换弱目标积累检测[J]. 雷达学报, 2016, 5(5): 526–530. doi: 10.12000/JR16049

    LIN Chunfeng, HUANG Chunlin, and SU Yi. Target integration and detection with the Radon-Fourier transform for bistatic radar[J]. Journal of Radars, 2016, 5(5): 526–530. doi: 10.12000/JR16049
    [27]
    钱李昌, 许稼, 胡国旭. 非合作无源双基地雷达弱目标长时间积累技术[J]. 雷达学报, 2017, 6(3): 259–266. doi: 10.12000/JR16137

    QIAN Lichang, XU Jia, and HU Guoxu. Long-time integration of a multi-waveform for weak target detection in non-cooperative passive bistatic radar[J]. Journal of Radars, 2017, 6(3): 259–266. doi: 10.12000/JR16137
    [28]
    钱李昌, 许稼, 孙文峰, 等. 宽带Radon-Fourier变换及基于CZT快速实现方法研究[J]. 现代雷达, 2013, 35(4): 39–44. doi: 10.3969/j.issn.1004-7859.2013.04.009

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. A study on wideband Radon-Fourier transform and its fast implementation based on CZT[J]. Modern Radar, 2013, 35(4): 39–44. doi: 10.3969/j.issn.1004-7859.2013.04.009
    [29]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005: 230–231.
    [30]
    COLLINS T and ATKINS P. Nonlinear frequency modulation chirps for active sonar[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(6): 312–316. doi: 10.1049/ip-rsn:19990754
  • Relative Articles

    [1]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [2]KONG Lingjiang, GUO Shisheng, CHEN Jiahui, WU Peilun, CUI Guolong. Overview and Prospects of Multipath Exploitation Radar Target Detection Technology[J]. Journal of Radars, 2024, 13(1): 23-45. doi: 10.12000/JR23134
    [3]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [4]GUAN Jian, LIU Ningbo, WANG Guoqing, DING Hao, DONG Yunlong, HUANG Yong, TIAN Kaixiang, ZHANG Mengyu. Sea-detecting Radar Experiment and Target Feature Data Acquisition for Dual Polarization Multistate Scattering Dataset of Marine Targets(in English)[J]. Journal of Radars, 2023, 12(2): 456-469. doi: 10.12000/JR23029
    [5]DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037
    [6]WU Wenjun, TANG Bo, TANG Jun, HU Yuankui. Waveform Design for Dual-function Radar-communication Systems in Clutter[J]. Journal of Radars, 2022, 11(4): 570-580. doi: 10.12000/JR22105
    [7]ZHANG Chao, WANG Yuanhe, JIANG Xuefeng. Quantum Radar with Vortex Microwave Photons[J]. Journal of Radars, 2021, 10(5): 749-759. doi: 10.12000/JR21095
    [8]LIU Ningbo, DING Hao, HUANG Yong, DONG Yunlong, WANG Guoqing, DONG Kai. Annual Progress of the Sea-detecting X-band Radar and Data Acquisition Program[J]. Journal of Radars, 2021, 10(1): 173-182. doi: 10.12000/JR21011
    [9]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [10]CHEN Shichao, GAO Heting, LUO Feng. Target Detection in Sea Clutter Based on Combined Characteristics of Polarization[J]. Journal of Radars, 2020, 9(4): 664-673. doi: 10.12000/JR20072
    [11]GUAN Jian. Summary of Marine Radar Target Characteristics[J]. Journal of Radars, 2020, 9(4): 674-683. doi: 10.12000/JR20114
    [12]XU Shuwen, BAI Xiaohui, GUO Zixun, SHUI Penglang. Status and Prospects of Feature-based Detection Methods for Floating Targets on the Sea Surface (in English)[J]. Journal of Radars, 2020, 9(4): 684-714. doi: 10.12000/JR20084
    [13]LIU Ningbo, DONG Yunlong, WANG Guoqing, DING Hao, HUANG Yong, GUAN Jian, CHEN Xiaolong, HE You. Sea-detecting X-band Radar and Data Acquisition Program (in English)[J]. Journal of Radars, 2019, 8(5): 656-667. doi: 10.12000/JR19089
    [14]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [15]Wang Longgang, Li Lianlin. Short-range Radar Detection with (M, N)-Coprime Array Configurations(in English)[J]. Journal of Radars, 2016, 5(3): 244-253. doi: 10.12000/JR16022
    [16]Ding Hao, Dong Yunlong, Liu Ningbo, Wang Guoqing, Guan Jian. Overview and Prospects of Research on Sea Clutter Property Cognition[J]. Journal of Radars, 2016, 5(5): 499-516. doi: 10.12000/JR16069
    [17]Hu Cheng, Liu Changjiang, Zeng Tao. Bistatic Forward Scattering Radar Detection and Imaging[J]. Journal of Radars, 2016, 5(3): 229-243. doi: 10.12000/JR16058
    [18]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [19]Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
    [20]Yan Liang, Sun Pei-lin, Yi Lei, Han Ning, Tang Jun. Modeling of Compound Gaussian Sea Clutter Based on Inverse Gaussian Distribution[J]. Journal of Radars, 2013, 2(4): 461-465. doi: 10.3724/SP.J.1300.2013.13083
  • Cited by

    Periodical cited type(6)

    1. 邢孟道,马鹏辉,楼屹杉,孙光才,林浩. 合成孔径雷达快速后向投影算法综述. 雷达学报. 2024(01): 1-22 . 本站查看
    2. 周开心,刘丹阳,朱永锋,张永杰,周剑雄. 强杂波背景下调频步进DBS技术研究. 系统工程与电子技术. 2024(09): 2960-2967 .
    3. 匡辉,于海锋,高贺利,刘磊,刘杰,张润宁. 超高分辨率星载SAR系统多子带信号处理技术研究. 信号处理. 2022(04): 879-888 .
    4. 吕明久,陈文峰,徐芳,赵欣,杨军. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法. 电子与信息学报. 2021(08): 2267-2275 .
    5. 张亦凡,黄平平,徐伟,谭维贤,高志奇. 星载斜视滑动聚束SAR子孔径成像处理算法研究. 信号处理. 2021(08): 1525-1532 .
    6. 吕明久,徐芳,赵丽,陈莉,陈浩. 载频不同分布方式下RSF波形稀疏重构性能分析. 空军预警学院学报. 2020(05): 319-324 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.5 %FULLTEXT: 30.5 %META: 62.3 %META: 62.3 %PDF: 7.2 %PDF: 7.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.0 %其他: 5.0 %其他: 1.0 %其他: 1.0 %Bacoor: 0.2 %Bacoor: 0.2 %China: 1.8 %China: 1.8 %Gwynn Oak: 0.0 %Gwynn Oak: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Saudi Arabia: 0.1 %Saudi Arabia: 0.1 %Singapore: 0.2 %Singapore: 0.2 %Taichung: 0.0 %Taichung: 0.0 %United States: 0.4 %United States: 0.4 %[]: 0.4 %[]: 0.4 %上海: 1.6 %上海: 1.6 %东京都: 0.0 %东京都: 0.0 %东莞: 0.6 %东莞: 0.6 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.2 %临沂: 0.2 %丹东: 0.0 %丹东: 0.0 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.2 %九江: 0.2 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.1 %佛山: 0.1 %保定: 0.2 %保定: 0.2 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.0 %加利福尼亚: 0.0 %北京: 6.5 %北京: 6.5 %十堰: 0.1 %十堰: 0.1 %南京: 2.5 %南京: 2.5 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.2 %南昌: 0.2 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %厦门: 0.0 %厦门: 0.0 %台中: 0.0 %台中: 0.0 %台北: 0.2 %台北: 0.2 %台州: 0.1 %台州: 0.1 %台湾: 0.1 %台湾: 0.1 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.7 %合肥: 0.7 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 0.8 %哈尔滨: 0.8 %商洛: 0.1 %商洛: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %坦佩: 0.0 %坦佩: 0.0 %大同: 0.0 %大同: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.1 %威海: 0.1 %孟买: 0.5 %孟买: 0.5 %宁波: 0.0 %宁波: 0.0 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.4 %宣城: 0.4 %宿州: 0.0 %宿州: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.1 %常州: 0.1 %广元: 0.0 %广元: 0.0 %广州: 0.9 %广州: 0.9 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.7 %开封: 0.7 %张家口: 1.3 %张家口: 1.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.2 %徐州: 0.2 %德州: 0.0 %德州: 0.0 %德里: 0.1 %德里: 0.1 %忻州: 0.0 %忻州: 0.0 %恩施: 0.1 %恩施: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 1.2 %成都: 1.2 %扬州: 0.3 %扬州: 0.3 %新奥尔良: 0.0 %新奥尔良: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %晋城: 0.0 %晋城: 0.0 %曼谷: 0.1 %曼谷: 0.1 %朝阳: 0.2 %朝阳: 0.2 %来宾: 0.0 %来宾: 0.0 %杭州: 4.3 %杭州: 4.3 %柳州: 0.1 %柳州: 0.1 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.9 %武汉: 0.9 %汉中: 0.0 %汉中: 0.0 %江门: 0.0 %江门: 0.0 %沈阳: 0.3 %沈阳: 0.3 %波士顿: 0.0 %波士顿: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.1 %济南: 0.1 %海口: 0.1 %海口: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 1.3 %深圳: 1.3 %温州: 0.2 %温州: 0.2 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %漯河: 0.6 %漯河: 0.6 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %福冈县: 0.1 %福冈县: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.0 %米兰: 0.0 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.0 %绍兴: 0.0 %绵阳: 0.6 %绵阳: 0.6 %芒廷维尤: 25.8 %芒廷维尤: 25.8 %芜湖: 0.1 %芜湖: 0.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.5 %苏州: 0.5 %荆州: 0.0 %荆州: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萍乡: 0.1 %萍乡: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %葵涌: 0.2 %葵涌: 0.2 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.1 %衢州: 0.1 %西宁: 19.4 %西宁: 19.4 %西安: 2.7 %西安: 2.7 %西安市鄠邑区: 0.0 %西安市鄠邑区: 0.0 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %重庆: 0.4 %重庆: 0.4 %银川: 0.1 %银川: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 1.1 %长沙: 1.1 %长治: 0.1 %长治: 0.1 %雷恩: 0.1 %雷恩: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他BacoorChinaGwynn OakKennedy TownSaudi ArabiaSingaporeTaichungUnited States[]上海东京都东莞中山临汾临沂丹东丽水乌鲁木齐九江伦敦佛山保定六安兰州兰辛凤凰城加利福尼亚北京十堰南京南充南宁南昌南通卡拉奇厦门台中台北台州台湾台湾省合肥周口呼和浩特咸阳哈尔滨商洛嘉兴圣彼得堡坦佩大同大连天津太原威海孟买宁波安庆安康宝鸡宣城宿州巴中常州广元广州库比蒂诺开封张家口张家界徐州德州德里忻州恩施惠州成都扬州新奥尔良无锡昆明晋城曼谷朝阳来宾杭州柳州株洲格兰特县桂林武汉汉中江门沈阳波士顿泰米尔纳德洛杉矶洛阳济南海口淮北淮南深圳温州渭南湖州湘潭漯河潍坊玉林盐城石家庄福冈县福州秦皇岛米兰纽约绍兴绵阳芒廷维尤芜湖芝加哥苏州荆州菏泽萍乡葫芦岛葵涌蚌埠衡水衡阳衢州西宁西安西安市鄠邑区诺沃克贵阳运城邯郸郑州重庆银川镇江长春长沙长治雷恩青岛香港香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2207) PDF downloads(275) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint