Volume 10 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Chao, WANG Yuanhe, and JIANG Xuefeng. Quantum radar with vortex microwave photons[J]. Journal of Radars, 2021, 10(5): 749–759. doi: 10.12000/JR21095
Citation: ZHANG Chao, WANG Yuanhe, and JIANG Xuefeng. Quantum radar with vortex microwave photons[J]. Journal of Radars, 2021, 10(5): 749–759. doi: 10.12000/JR21095

Quantum Radar with Vortex Microwave Photons

doi: 10.12000/JR21095
Funds:  The National Natural Science Foundation of China (61731011), The Science and Technology Key Project of Guangdong Province (2019B010157001), National Defense Science and Technology Basic Research (JCJQ-ZD-164-12)
More Information
  • Corresponding author: ZHANG Chao, zhangchao@tsinghua.edu.cn
  • Received Date: 2021-07-01
  • Rev Recd Date: 2021-09-06
  • Available Online: 2021-09-09
  • Publish Date: 2021-10-25
  • Quantum Orbital Angular Momentum (OAM) indicates that each Electro-Magnetic (EM) photon of an EM wave carries OAM. In the microwave band, such an EM wave photon is called a vortex microwave photon. Physical properties distinguish between EM waves with vortex and plane wave photons. When illuminating a traditional stealthy target composed of absorbing materials, a vortex microwave photon can achieve higher echo power, thereby improving the Radar Cross Section (RCS), the corresponding receiving signal power, and detection probability. Hence, the vortex microwave photon shows promise in antistealth technology. In this paper, a vortex microwave quantum radar based on the OAM quantum state is proposed. Its basic physical architecture and corresponding mathematical model are given, and the high echo power characteristics of the vortex microwave photon are analyzed using Quantum Electro-Dynamics (QED). The correctness of the theoretical calculation was experimentally verified with an approximate 9 dB improvement in echo power. Moreover, the simulations are performed to clarify the improvement in radar performance, including the receiving power and detection probability, illustrating the capability of the vortex microwave photon when applied to antistealth radar.

     

  • loading
  • [1]
    ZIKIDIS K, SKONDRAS A, and TOKAS C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modelling, 2014, 4(1): 129–165.
    [2]
    GALARREGUI J C I, PEREDA A T, DE FALCÓN J L M, et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6136–6143. doi: 10.1109/TAP.2013.2282915
    [3]
    马井军, 赵明波, 张开锋, 等. 飞机隐身技术及其雷达对抗措施[J]. 国防科技, 2009, 30(3): 38–44,64.

    MA Jingjun, ZHAO Mingbo, ZHANG Kaifeng, et al. Aircraft stealth technology and its radar countermeasures[J]. National Defense Science &Technology, 2009, 30(3): 38–44,64.
    [4]
    ZHANG Chao, CHEN Dong, and JIANG Xuefeng. RCS diversity of electromagnetic wave carrying orbital angular momentum[J]. Scientific Reports, 2017, 7(1): 15412. doi: 10.1038/s41598-017-15250-7
    [5]
    ZHANG Chao, JIANG Jin, and ZHAO Yufei. Euclidean space with orbital angular momentum[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8756875.
    [6]
    张超, 王元赫. 涡旋电磁波轨道角动量传输的量子电动力学分析[J]. 中国科学: 信息科学, 2021, in press. doi: 10.1360/SSI-2021-0066

    ZHANG Chao and WANG Yuanhe. Quantum electro-dynamics analysis of vortex electro-magnetic wave transmission with orbital angular momentum[J]. Scientia Sinica Informationis, 2021, in press. doi: 10.1360/SSI-2021-0066
    [7]
    郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [8]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [9]
    ZHANG Chao, JIANG Xuefeng, and CHEN Dong. Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1020–1029. doi: 10.1109/TAP.2020.3016173
    [10]
    EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142
    [11]
    TANG Bo, GUO Kunyi, WANG Jianping, et al. Resolution performance of the orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975–2978. doi: 10.1109/LAWP.2017.2756094
    [12]
    HARRIS J, GRILLO V, MAFAKHERI E, et al. Structured quantum waves[J]. Nature Physics, 2015, 11(8): 629–634. doi: 10.1038/nphys3404
    [13]
    张超, 徐鹏飞. 电磁波量子态轨道角动量雷达探测和方法[P]. 中国发明专利, ZL201910953845.5, 2019.

    ZHANG Chao and XU Pengfei. Electromagnetic wave quantum state orbital angular momentum radar detection system and method[P]. CN, ZL201910953845.5, 2019.
    [14]
    徐鹏飞. 电磁波轨道角动量量子态研究[D]. [硕士论文], 清华大学, 2020.

    XU Pengfei. Research on orbital angular momentum quantum state[D]. [Master dissertation], Tsinghua University, 2020.
    [15]
    ZHANG Chao, XU Pengfei, and JIANG Xuefeng. Vortex electron generated by microwave photon with orbital angular momentum in a magnetic field[J]. AIP Advances, 2020, 10(10): 105230. doi: 10.1063/5.0019899
    [16]
    ZHANG Chao, XU Pengfei, and JIANG Xuefeng. Detecting superposed orbital angular momentum states in the magnetic field by the crystal diffraction[J]. The European Physical Journal Plus, 2021, 136(1): 60. doi: 10.1140/epjp/s13360-020-01043-x
    [17]
    JACKSON J D. Classical Electrodynamics[M]. New York: Wiley, 1999: 295–351.
    [18]
    HANC J, TULEJA S, and HANCOVA M. Symmetries and conservation laws: Consequences of Noether’s theorem[J]. American Journal of Physics, 2004, 72(4): 428–435. doi: 10.1119/1.1591764
    [19]
    MOLINA-TERRIZA G, TORRES J P, and TORNER L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305–310. doi: 10.1038/nphys607
    [20]
    KATOH M, FUJIMOTO M, MIRIAN N S, et al. Helical phase structure of radiation from an electron in circular motion[J]. Scientific Reports, 2017, 7(1): 6130. doi: 10.1038/s41598-017-06442-2
    [21]
    YAO Yu, LIANG Xianling, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
    [22]
    徐克尊. 高等原子分子物理学[M]. 3版. 合肥: 中国科学技术大学出版社, 2012: 1–181.

    XU Kezun. Advanced Atomic Molecular Physics[M]. 3rd ed. Hefei: University of Science and Technology of China Press, 2012: 1–181.
    [23]
    FEYNMAN R P. Quantum Electrodynamics[M]. Jackson: Westview Press, 1998.
    [24]
    YUZCELIK C K. Radar absorbing material design[R]. NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2003: 1–18.
    [25]
    路宏敏, 赵永久, 朱满座. 电磁场与电磁波基础[M]. 北京: 科学出版社, 2006. doi: https://calhoun.nps.edu/handle/10945/6246.

    LU Hongmin, ZHAO Yongjiu, and ZHU Manzuo. Fundamentals of Electromagnetic Fields and Electromagnetic Waves[M]. Beijing: Science Press, 2006. doi: https://calhoun.nps.edu/handle/10945/6246.
    [26]
    SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008: 190–248.
    [27]
    MACRO Lanzagorta. Quantum Radar[M], Morgan and Claypool Publisher, 2012.
    [28]
    张凯伦. 石墨烯复合材料介电性能及应用研究[D]. [硕士论文], 北京化工大学, 2018: 390–576.

    ZHANG Kailun. Study on dielectric property and applications of graphene composites[D]. [Master dissertation], Beijing University of Chemical Technology, 2018: 390–576.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3607) PDF downloads(441) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint