ZHANG Dalin, YI Wei, and KONG Lingjiang. Optimal joint allocation of multijammer resources for jamming netted radar system[J]. Journal of Radars, 2021, 10(4): 595–606. doi: 10.12000/JR21071
Citation: ZHANG Chao, WANG Yuanhe, and JIANG Xuefeng. Quantum radar with vortex microwave photons[J]. Journal of Radars, 2021, 10(5): 749–759. doi: 10.12000/JR21095

Quantum Radar with Vortex Microwave Photons

DOI: 10.12000/JR21095
Funds:  The National Natural Science Foundation of China (61731011), The Science and Technology Key Project of Guangdong Province (2019B010157001), National Defense Science and Technology Basic Research (JCJQ-ZD-164-12)
More Information
  • Corresponding author: ZHANG Chao, zhangchao@tsinghua.edu.cn
  • Received Date: 2021-07-01
  • Rev Recd Date: 2021-09-06
  • Available Online: 2021-09-09
  • Publish Date: 2021-10-25
  • Quantum Orbital Angular Momentum (OAM) indicates that each Electro-Magnetic (EM) photon of an EM wave carries OAM. In the microwave band, such an EM wave photon is called a vortex microwave photon. Physical properties distinguish between EM waves with vortex and plane wave photons. When illuminating a traditional stealthy target composed of absorbing materials, a vortex microwave photon can achieve higher echo power, thereby improving the Radar Cross Section (RCS), the corresponding receiving signal power, and detection probability. Hence, the vortex microwave photon shows promise in antistealth technology. In this paper, a vortex microwave quantum radar based on the OAM quantum state is proposed. Its basic physical architecture and corresponding mathematical model are given, and the high echo power characteristics of the vortex microwave photon are analyzed using Quantum Electro-Dynamics (QED). The correctness of the theoretical calculation was experimentally verified with an approximate 9 dB improvement in echo power. Moreover, the simulations are performed to clarify the improvement in radar performance, including the receiving power and detection probability, illustrating the capability of the vortex microwave photon when applied to antistealth radar.

     

  • [1]
    ZIKIDIS K, SKONDRAS A, and TOKAS C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modelling, 2014, 4(1): 129–165.
    [2]
    GALARREGUI J C I, PEREDA A T, DE FALCÓN J L M, et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6136–6143. doi: 10.1109/TAP.2013.2282915
    [3]
    马井军, 赵明波, 张开锋, 等. 飞机隐身技术及其雷达对抗措施[J]. 国防科技, 2009, 30(3): 38–44,64.

    MA Jingjun, ZHAO Mingbo, ZHANG Kaifeng, et al. Aircraft stealth technology and its radar countermeasures[J]. National Defense Science &Technology, 2009, 30(3): 38–44,64.
    [4]
    ZHANG Chao, CHEN Dong, and JIANG Xuefeng. RCS diversity of electromagnetic wave carrying orbital angular momentum[J]. Scientific Reports, 2017, 7(1): 15412. doi: 10.1038/s41598-017-15250-7
    [5]
    ZHANG Chao, JIANG Jin, and ZHAO Yufei. Euclidean space with orbital angular momentum[C]. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8756875.
    [6]
    张超, 王元赫. 涡旋电磁波轨道角动量传输的量子电动力学分析[J]. 中国科学: 信息科学, 2021, in press. doi: 10.1360/SSI-2021-0066

    ZHANG Chao and WANG Yuanhe. Quantum electro-dynamics analysis of vortex electro-magnetic wave transmission with orbital angular momentum[J]. Scientia Sinica Informationis, 2021, in press. doi: 10.1360/SSI-2021-0066
    [7]
    郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [8]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970
    [9]
    ZHANG Chao, JIANG Xuefeng, and CHEN Dong. Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 1020–1029. doi: 10.1109/TAP.2020.3016173
    [10]
    EDFORS O and JOHANSSON A J. Is orbital angular momentum (OAM) based radio communication an unexploited area?[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 1126–1131. doi: 10.1109/TAP.2011.2173142
    [11]
    TANG Bo, GUO Kunyi, WANG Jianping, et al. Resolution performance of the orbital-angular-momentum-based imaging radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2975–2978. doi: 10.1109/LAWP.2017.2756094
    [12]
    HARRIS J, GRILLO V, MAFAKHERI E, et al. Structured quantum waves[J]. Nature Physics, 2015, 11(8): 629–634. doi: 10.1038/nphys3404
    [13]
    张超, 徐鹏飞. 电磁波量子态轨道角动量雷达探测和方法[P]. 中国发明专利, ZL201910953845.5, 2019.

    ZHANG Chao and XU Pengfei. Electromagnetic wave quantum state orbital angular momentum radar detection system and method[P]. CN, ZL201910953845.5, 2019.
    [14]
    徐鹏飞. 电磁波轨道角动量量子态研究[D]. [硕士论文], 清华大学, 2020.

    XU Pengfei. Research on orbital angular momentum quantum state[D]. [Master dissertation], Tsinghua University, 2020.
    [15]
    ZHANG Chao, XU Pengfei, and JIANG Xuefeng. Vortex electron generated by microwave photon with orbital angular momentum in a magnetic field[J]. AIP Advances, 2020, 10(10): 105230. doi: 10.1063/5.0019899
    [16]
    ZHANG Chao, XU Pengfei, and JIANG Xuefeng. Detecting superposed orbital angular momentum states in the magnetic field by the crystal diffraction[J]. The European Physical Journal Plus, 2021, 136(1): 60. doi: 10.1140/epjp/s13360-020-01043-x
    [17]
    JACKSON J D. Classical Electrodynamics[M]. New York: Wiley, 1999: 295–351.
    [18]
    HANC J, TULEJA S, and HANCOVA M. Symmetries and conservation laws: Consequences of Noether’s theorem[J]. American Journal of Physics, 2004, 72(4): 428–435. doi: 10.1119/1.1591764
    [19]
    MOLINA-TERRIZA G, TORRES J P, and TORNER L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305–310. doi: 10.1038/nphys607
    [20]
    KATOH M, FUJIMOTO M, MIRIAN N S, et al. Helical phase structure of radiation from an electron in circular motion[J]. Scientific Reports, 2017, 7(1): 6130. doi: 10.1038/s41598-017-06442-2
    [21]
    YAO Yu, LIANG Xianling, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
    [22]
    徐克尊. 高等原子分子物理学[M]. 3版. 合肥: 中国科学技术大学出版社, 2012: 1–181.

    XU Kezun. Advanced Atomic Molecular Physics[M]. 3rd ed. Hefei: University of Science and Technology of China Press, 2012: 1–181.
    [23]
    FEYNMAN R P. Quantum Electrodynamics[M]. Jackson: Westview Press, 1998.
    [24]
    YUZCELIK C K. Radar absorbing material design[R]. NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2003: 1–18.
    [25]
    路宏敏, 赵永久, 朱满座. 电磁场与电磁波基础[M]. 北京: 科学出版社, 2006. doi: https://calhoun.nps.edu/handle/10945/6246.

    LU Hongmin, ZHAO Yongjiu, and ZHU Manzuo. Fundamentals of Electromagnetic Fields and Electromagnetic Waves[M]. Beijing: Science Press, 2006. doi: https://calhoun.nps.edu/handle/10945/6246.
    [26]
    SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008: 190–248.
    [27]
    MACRO Lanzagorta. Quantum Radar[M], Morgan and Claypool Publisher, 2012.
    [28]
    张凯伦. 石墨烯复合材料介电性能及应用研究[D]. [硕士论文], 北京化工大学, 2018: 390–576.

    ZHANG Kailun. Study on dielectric property and applications of graphene composites[D]. [Master dissertation], Beijing University of Chemical Technology, 2018: 390–576.
  • Relative Articles

    [1]LIAO Xiaorong, SUN Guohao, ZHONG Suchuan, YU Xianxiang, LI Ming. Joint Optimization of Radar and Jammer Space-time Cooperative Beamforming for a Multitasking Dynamic Scene[J]. Journal of Radars, 2024, 13(3): 613-628. doi: 10.12000/JR23243
    [2]YANG Shixing, ZHANG Guoxin, LIANG Yunfei, YI Wei, KONG Lingjiang. Moving Targets Detection with Low-bit Quantization in Distributed Radar on Moving Platforms[J]. Journal of Radars, 2024, 13(3): 584-600. doi: 10.12000/JR23240
    [3]LIU Xin, ZHU Haibin, LIU Zongqiang, XUE Changhu, MU Yaxin, QU Xiaodong, YE Shengbo, XIA Zhenghuan, FANG Guangyou. The Design and Joint Positioning Method of an ultra-wideband Through-wall Radar System for Distributed Wireless Networking[J]. Journal of Radars, 2024, 13(4): 747-760. doi: 10.12000/JR23239
    [4]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [5]SHI Chenguang, TANG Zhicheng, ZHOU Jianjiang, YAN Junkun, WANG Ziwei. Joint Collaborative Radar Selection and Transmit Resource Allocation in Multiple Distributed Radar Networks with Imperfect Detection Performance[J]. Journal of Radars, 2024, 13(3): 565-583. doi: 10.12000/JR23081
    [6]GUO Rui, ZHANG Yue, TIAN Biao, XIAO Yu, HU Jun, XU Shiyou, CHEN Zengping. Review of the Technology, Development and Applications of Holographic Staring Radar[J]. Journal of Radars, 2023, 12(2): 389-411. doi: 10.12000/JR22153
    [7]SHI Chenguang, DONG Jing, ZHOU Jianjiang. Joint Transmit Power and Dwell Time Allocation for Multitarget Tracking in Radar Networks under Spectral Coexistence[J]. Journal of Radars, 2023, 12(3): 590-601. doi: 10.12000/JR22146
    [8]QI Cheng, XIE Junwei, ZHANG Haowei, DING Zihang, YANG Xiao. Element Configuration Optimization of Hybrid Distributed PA-MIMO Radar System Based on Target Detection[J]. Journal of Radars, 2023, 12(3): 576-589. doi: 10.12000/JR22159
    [9]YI Wei, YUAN Ye, LIU Guanghong, GE Jianjun, KONG Lingjiang, YANG Jianyu. Recent Advances in Multi-radar Collaborative Surveillance: Cognitive Tracking and Resource Scheduling Algorithms[J]. Journal of Radars, 2023, 12(3): 471-499. doi: 10.12000/JR23036
    [10]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [11]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [12]SONG Xiaocheng, LI Zhi, REN Haiwei, YI Wei. Threat-driven Resource Allocation Algorithm for Distributed Netted Phased Array Radars[J]. Journal of Radars, 2023, 12(3): 629-641. doi: 10.12000/JR22240
    [13]WANG Yuedong, GU Yijing, LIANG Yan, WANG Zengfu, ZHANG Huixia. Deep Game of Escorting Suppressive Jamming and Networked Radar Power Allocation[J]. Journal of Radars, 2023, 12(3): 642-656. doi: 10.12000/JR23023
    [14]XIAO Peng, YU Zhitong, CHEN Zhuoqi, CUI Xiangbin, ZHAO Bo, LANG Shinan, LI Meng, HU Luojia, HUANG Yan, LIU Min, WANG Cheng, CHEN Liang, LIU Lu, SUI Xiaohong, YUAN Chunzhu. Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(3): 479-498. doi: 10.12000/JR21196
    [15]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [16]ZHANG Guoxin, YI Wei, KONG Lingjiang. Direct Position Determination for Massive MIMO System with One-bit Quantization[J]. Journal of Radars, 2021, 10(6): 970-981. doi: 10.12000/JR21062
    [17]GAO Xiangying, ZHAO Yongjun, LIU Zhixin, LIU Chengcheng. Robust Source Localization Using TDOA and FDOA with Receiver Location Errors [J]. Journal of Radars, 2020, 9(5): 916-924. doi: 10.12000/JR20039
    [18]PEI Jiazheng, HUANG Yong, DONG Yunlong, HE You, CHEN Xiaolong. Track-Before-Detect Algorithm Based on Improved Auxiliary Particle PHD Filter under Clutter Background[J]. Journal of Radars, 2019, 8(3): 355-365. doi: 10.12000/JR18060
    [19]Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142
    [20]Shi Chen-guang, Wang Fei, Zhou Jian-jiang, Chen Jun. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization (in English)[J]. Journal of Radars, 2014, 3(4): 465-473. doi: 10.3724/SP.J.1300.2014.13140
  • Cited by

    Periodical cited type(13)

    1. 胡继军,韩伟,张国玉,周希娃,贺杨婷,廖春兰. 基于多站数据融合的参数精估计方法. 遥测遥控. 2024(02): 109-123 .
    2. 赵宏宇,武忠国,李廷鹏,杨晓帆,陈冬冬. 射频信号合成与数字域信号合成的等效性分析. 电子信息对抗技术. 2024(03): 21-26 .
    3. 廖晓容,孙国皓,钟苏川,余显祥,李明. 面向多任务动态场景的雷达与干扰空时协同波束联合优化方法. 雷达学报. 2024(03): 613-628 . 本站查看
    4. 邹玮琦,牛朝阳,刘伟,王艳云,湛嘉祺. 面向组网雷达干扰任务的多机伴随式编队航迹预规划方法. 系统工程与电子技术. 2024(08): 2807-2819 .
    5. 刘溥熙,赵欣怡,尤明,田栢苓,马龙. 面向组网雷达干扰任务的多无人机协同动态决策方法研究. 战术导弹技术. 2024(06): 14-25 .
    6. 袁野,杨剑,刘辛雨,易伟,孔令讲. 基于任务效用最大化的多雷达协同任务规划算法. 雷达学报. 2023(03): 550-562 . 本站查看
    7. 王跃东,顾以静,梁彦,王增福,张会霞. 伴随压制干扰与组网雷达功率分配的深度博弈研究. 雷达学报. 2023(03): 642-656 . 本站查看
    8. 时晨光,董璟,周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法. 雷达学报. 2023(03): 590-601 . 本站查看
    9. 齐铖,谢军伟,张浩为,丁梓航,杨潇. 基于目标检测的混合分布式PA-MIMO雷达系统阵元优化部署. 雷达学报. 2023(03): 576-589 . 本站查看
    10. 纪慧颖,潘明海,张元时,喻庆豪. 基于遗传-蚁群融合算法的干扰资源分配方法. 系统工程与电子技术. 2023(07): 2098-2107 .
    11. 陆德江,王星,陈游,胡星. 联合多种资源协同干扰组网雷达系统的自适应调度方法. 系统工程与电子技术. 2023(09): 2744-2754 .
    12. 梁猛,檀雷,陈飞,梁斌,杨帅. 协同干扰技术应用研究. 航天电子对抗. 2023(04): 44-48+64 .
    13. 李健涛,王轲昕,刘凯,张天贤. 基于深度强化学习的干扰资源分配方法. 现代雷达. 2023(10): 44-51 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.3 %其他: 17.3 %其他: 0.9 %其他: 0.9 %China: 0.3 %China: 0.3 %Hanoi: 0.0 %Hanoi: 0.0 %India: 0.0 %India: 0.0 %Kao-sung: 0.0 %Kao-sung: 0.0 %Korea Republic of: 0.3 %Korea Republic of: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 0.8 %[]: 0.8 %上海: 0.7 %上海: 0.7 %上饶: 0.1 %上饶: 0.1 %东京: 0.1 %东京: 0.1 %东莞: 0.0 %东莞: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %京畿道: 0.5 %京畿道: 0.5 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %信阳: 0.1 %信阳: 0.1 %元朗新墟: 0.0 %元朗新墟: 0.0 %克孜勒苏: 0.0 %克孜勒苏: 0.0 %包头: 0.0 %包头: 0.0 %北京: 12.2 %北京: 12.2 %北海: 0.1 %北海: 0.1 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 1.7 %南京: 1.7 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %商丘: 0.1 %商丘: 0.1 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %大庆: 0.1 %大庆: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.0 %天津: 0.0 %威尔明顿: 0.1 %威尔明顿: 0.1 %官坑: 0.1 %官坑: 0.1 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.0 %崇左: 0.0 %巴中: 0.3 %巴中: 0.3 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %常州: 0.1 %常州: 0.1 %广州: 0.6 %广州: 0.6 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %徐州: 0.1 %徐州: 0.1 %恩施: 0.0 %恩施: 0.0 %成都: 1.0 %成都: 1.0 %成都市新都区: 0.0 %成都市新都区: 0.0 %新乡: 0.4 %新乡: 0.4 %无锡: 0.4 %无锡: 0.4 %昆明: 0.0 %昆明: 0.0 %昭通: 0.1 %昭通: 0.1 %杭州: 1.3 %杭州: 1.3 %株洲: 0.0 %株洲: 0.0 %武汉: 0.7 %武汉: 0.7 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.0 %沈阳: 0.0 %沧州: 0.1 %沧州: 0.1 %泸州: 0.0 %泸州: 0.0 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.3 %玉林: 0.3 %益山: 0.3 %益山: 0.3 %石家庄: 0.4 %石家庄: 0.4 %红河: 0.3 %红河: 0.3 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.2 %绍兴: 0.2 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %美国新泽西锡考克斯: 0.3 %美国新泽西锡考克斯: 0.3 %芒廷维尤: 14.5 %芒廷维尤: 14.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %苏州市: 0.1 %苏州市: 0.1 %衡水: 0.2 %衡水: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 1.0 %西安: 1.0 %西安市: 0.0 %西安市: 0.0 %西藏林芝: 0.1 %西藏林芝: 0.1 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %连云港: 0.0 %连云港: 0.0 %郑州: 1.5 %郑州: 1.5 %金华: 0.0 %金华: 0.0 %长沙: 0.2 %长沙: 0.2 %雅加达: 0.2 %雅加达: 0.2 %青岛: 0.1 %青岛: 0.1 %驻马店: 0.0 %驻马店: 0.0 %鹰潭: 0.1 %鹰潭: 0.1 %其他其他ChinaHanoiIndiaKao-sungKorea Republic ofViet Nam[]上海上饶东京东莞丹东丽水京畿道佛山保定信阳元朗新墟克孜勒苏包头北京北海华盛顿州南京南宁南平南昌南通厦门台北台州合肥呼和浩特哈尔滨商丘圣彼得堡大庆大连天津威尔明顿官坑宝鸡宣城宿迁岳阳崇左巴中巴中市巴州区常州广州张家口张家口市徐州恩施成都成都市新都区新乡无锡昆明昭通杭州株洲武汉汕头沈阳沧州泸州洛阳济南深圳温州湖州湘潭漯河潍坊玉林益山石家庄红河纽约绍兴美国伊利诺斯芝加哥美国新泽西锡考克斯芒廷维尤芝加哥苏州苏州市衡水西宁西安西安市西藏林芝贵港运城连云港郑州金华长沙雅加达青岛驻马店鹰潭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4378) PDF downloads(545) Cited by(26)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint