Citation: | WANG Yuedong, GU Yijing, LIANG Yan, et al. Deep game of escorting suppressive jamming and networked radar power allocation[J]. Journal of Radars, 2023, 12(3): 642–656. doi: 10.12000/JR23023 |
[1] |
郝宇航, 蒋威, 王增福, 等. 分布式MIMO体制天波超视距雷达仿真系统[J/OL]. 系统工程与电子技术. https://kns.cnki.net/kcms/detail/11.2422.TN.20220625.1328.008.html, 2022.
HAO Yuhang, JIANG Wei, WANG Zengfu, et al. A distributed MIMO sky-wave over-the-horizon-radar simulation system[J/OL]. Systems Engineering and Electronics. https://kns.cnki.net/kcms/detail/11.2422.TN.20220625.1328.008.html, 2022.
|
[2] |
潘泉, 王增福, 梁彦, 等. 信息融合理论的基本方法与进展(II)[J]. 控制理论与应用, 2012, 29(10): 1233–1244. doi: 10.7641/j.issn.1000-8152.2012.10.CCTA111336
PAN Quan, WANG Zengfu, LIANG Yan, et al. Basic methods and progress of information fusion (II)[J]. Control Theory &Applications, 2012, 29(10): 1233–1244. doi: 10.7641/j.issn.1000-8152.2012.10.CCTA111336
|
[3] |
WANG Yuedong, LIANG Yan, ZHANG Huixia, et al. Domain knowledge-assisted deep reinforcement learning power allocation for MIMO radar detection[J]. IEEE Sensors Journal, 2022, 22(23): 23117–23128. doi: 10.1109/JSEN.2022.3211606
|
[4] |
闫实, 贺静, 王跃东, 等. 基于强化学习的多机协同传感器管理[J]. 系统工程与电子技术, 2020, 42(8): 1726–1733. doi: 10.3969/j.issn.1001-506X.2020.08.12
YAN Shi, HE Jing, WANG Yuedong et al. Multi-airborne cooperative sensor management based on reinforcement learning[J]. Systems Engineering and Electronics, 2020, 42(8): 1726–1733. doi: 10.3969/j.issn.1001-506X.2020.08.12
|
[5] |
YAN Junkun, JIAO Hao, PU Wenqiang, et al. Radar sensor network resource allocation for fused target tracking: a brief review[J]. Information Fusion, 2022, 86/87: 104–115. doi: 10.1016/j.inffus.2022.06.009
|
[6] |
严俊坤, 陈林, 刘宏伟, 等. 基于机会约束的MIMO雷达多波束稳健功率分配算法[J]. 电子学报, 2019, 47(6): 1230–1235. doi: 10.3969/j.issn.0372-2112.2019.06.007
YAN Junkun, CHEN Lin, LIU Hongwei, et al. Chance constrained based robust multibeam power allocation algorithm for MIMO radar[J]. Acta Electronica Sinica, 2019, 47(6): 1230–1235. doi: 10.3969/j.issn.0372-2112.2019.06.007
|
[7] |
时晨光, 董璟, 周建江. 频谱共存下面向多目标跟踪的组网雷达功率时间联合优化算法[J]. 雷达学报, 2023, 12(3): 590–601. doi: 10.12000/JR22146
SHI Chenguang, DONG Jing, and ZHOU Jianjiang. Joint transmit power and dwell time allocation for multitarget tracking in radar networks under spectral coexistence[J]. Journal of Radars, 2023, 12(3): 590–601. doi: 10.12000/JR22146
|
[8] |
程婷, 恒思宇, 李中柱. 基于脉冲交错的分布式雷达组网系统波束驻留调度[J]. 雷达学报, 2023, 12(3): 616–628. doi: 10.12000/JR22211
CHENG Ting, HENG Siyu, and LI Zhongzhu. Real-time dwell scheduling algorithm for distributed phased array radar network based on pulse interleaving[J]. Journal of Radars, 2023, 12(3): 616–628. doi: 10.12000/JR22211
|
[9] |
孙俊, 张大琳, 易伟. 多机协同干扰组网雷达的资源调度方法[J]. 雷达科学与技术, 2022, 20(3): 237–244, 254. doi: 10.3969/j.issn.1672-2337.2022.03.001
SUN Jun, ZHANG Dalin, and YI Wei. Resource allocation for multi-Jammer cooperatively jamming netted radar systems[J]. Radar Science and Technology, 2022, 20(3): 237–244, 254. doi: 10.3969/j.issn.1672-2337.2022.03.001
|
[10] |
张大琳, 易伟, 孔令讲. 面向组网雷达干扰任务的多干扰机资源联合优化分配方法[J]. 雷达学报, 2021, 10(4): 595–606. doi: 10.12000/JR21071
ZHANG Dalin, YI Wei, and KONG Lingjiang. Optimal joint allocation of multijammer resources for jamming netted radar system[J]. Journal of Radars, 2021, 10(4): 595–606. doi: 10.12000/JR21071
|
[11] |
黄星源, 李岩屹. 基于双Q学习算法的干扰资源分配策略[J]. 系统仿真学报, 2021, 33(8): 1801–1808. doi: 10.16182/j.issn1004731x.joss.20-0253
HUANG Xingyuan and LI Yanyi. The allocation of jamming resources based on double Q-learning algorithm[J]. Journal of System Simulation, 2021, 33(8): 1801–1808. doi: 10.16182/j.issn1004731x.joss.20-0253
|
[12] |
段燕辉. 雷达智能抗干扰决策方法研究[D]. [硕士论文], 西安电子科技大学, 2021.
DUAN Yanhui. Research on radar intelligent anti-jamming decision method[D]. [Master dissertation], Xidian University, 2021.
|
[13] |
宋佰霖, 许华, 齐子森, 等. 一种基于深度强化学习的协同通信干扰决策算法[J]. 电子学报, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814
SONG Bailin, XU Hua, QI Zisen, et al. A collaborative communication jamming decision algorithm based on deep reinforcement learning[J]. Acta Electronica Sinica, 2022, 50(6): 1301–1309. doi: 10.12263/DZXB.20210814
|
[14] |
肖悦, 张贞凯, 杜聪. 基于改进麻雀搜索算法的雷达功率与带宽联合分配算法[J]. 战术导弹技术, 2022(5): 38–43, 92. doi: 10.16358/j.issn.1009-1300.20220077
XIAO Yue, ZHANG Zhenkai, and DU Cong. Joint power and bandwidth allocation of radar based on improved sparrow search algorithm[J]. Tactical Missile Technology, 2022(5): 38–43, 92. doi: 10.16358/j.issn.1009-1300.20220077
|
[15] |
靳标, 邝晓飞, 彭宇, 等. 基于合作博弈的组网雷达分布式功率分配方法[J]. 航空学报, 2022, 43(1): 324776. doi: 10.7527/S1000-6893.2020.24776
JIN Biao, KUANG Xiaofei, PENG Yu, et al. Distributed power allocation method for netted radar based on cooperative game theory[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324776. doi: 10.7527/S1000-6893.2020.24776
|
[16] |
SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Non-cooperative game-theoretic distributed power control technique for radar network based on low probability of intercept[J]. IET Signal Processing, 2018, 12(8): 983–991. doi: 10.1049/iet-spr.2017.0355
|
[17] |
李伟, 王泓霖, 郑家毅, 等. 博弈条件下雷达波形设计策略研究[J]. 电子与信息学报, 2019, 41(11): 2654–2660. doi: 10.11999/JEIT190114
LI Wei, WANG Honglin, ZHENG Jiayi, et al. Research on radar waveform design strategy under game condition[J]. Journal of Electronics &Information Technology, 2019, 41(11): 2654–2660. doi: 10.11999/JEIT190114
|
[18] |
HE Jin, WANG Yuedong, LIANG Yan, et al. Learning-based airborne sensor task assignment in unknown dynamic environments[J]. Engineering Applications of Artificial Intelligence, 2022, 111: 104747. doi: 10.1016/j.engappai.2022.104747
|
[19] |
MU Xingchi, ZHAO Xiaohui, and LIANG Hui. Power allocation based on reinforcement learning for MIMO system with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7622–7633. doi: 10.1109/TVT.2020.2993275
|
[20] |
RUMMERY G A and NIRANJAN M. On-Line Q-learning Using Connectionist Systems[M]. Cambridge, UK: Cambridge University, 1994: 6–7.
|
[21] |
LI Jun and SHEN Xiaofeng. Robust jamming resource allocation for cooperatively suppressing multi-station radar systems in multi-jammer systems[C]. 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 2022: 1–8.
|
[22] |
YAO Zekun, TANG Chuanbin, WANG Chao, et al. Cooperative jamming resource allocation model and algorithm for netted radar[J]. Electronics Letters, 2022, 58(22): 834–836. doi: 10.1049/ell2.12611
|
[23] |
ZHANG Dalin, SUN Jun, YI Wei, et al. Joint jamming beam and power scheduling for suppressing netted radar system[C]. 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 2021: 1–6.
|
[24] |
夏成龙, 李祥, 刘辰烨, 等. 基于深度强化学习的智能干扰方法研究[J]. 电声技术, 2022, 46(5): 144–149. doi: 10.16311/j.audioe.2022.05.035
XIA Chenglong, LI Xiang, LIU Chenye, et al. Reserch of intelligent interference methods based on deep reinforcement learning[J]. Audio Engineering, 2022, 46(5): 144–149. doi: 10.16311/j.audioe.2022.05.035
|
[25] |
LIU Weijian, WANG Yongliang, LIU Jun, et al. Performance analysis of adaptive detectors for point targets in subspace interference and Gaussian noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 429–441. doi: 10.1109/TAES.2017.2760718
|
[26] |
王国良, 申绪涧, 汪连栋, 等. 基于秩K融合规则的组网雷达系统干扰效果评估[J]. 系统仿真学报, 2009, 21(23): 7678–7680. doi: 10.16182/j.cnki.joss.2009.23.017
WANG Guoliang, SHEN Xujian, WANG Liandong, et al. Effect evaluation for noise blanket jamming against netted radars Based on Rank-K information fusion rules[J]. Journal of System Simulation, 2009, 21(23): 7678–7680. doi: 10.16182/j.cnki.joss.2009.23.017
|
[27] |
SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. Cambridge: MIT Press, 2018: 327–331.
|
[28] |
SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL]. https://arxiv.53yu.com/abs/1707.06347, 2017.
|
[29] |
WU Zhaodong, HU Shengliang, LUO Yasong, et al. Optimal distributed cooperative jamming resource allocation for multi-missile threat scenario[J]. IET Radar, Sonar & Navigation, 2022, 16(1): 113–128. doi: 10.1049/rsn2.12168
|
[30] |
BARTON D K. Radar System Analysis and Modeling[M]. Boston: Artech House, 2004: 88–89.
|
1. | 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 . ![]() | |
2. | 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 . ![]() | |
3. | 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 . ![]() | |
4. | 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 . ![]() | |
5. | 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . ![]() | |
6. | 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . ![]() | |
7. | 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 . ![]() | |
8. | 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 . ![]() | |
9. | 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 . ![]() | |
10. | 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . ![]() | |
11. | 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 . ![]() | |
12. | 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . ![]() | |
13. | 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 . ![]() |