Citation: | XIAO Peng, YU Zhitong, CHEN Zhuoqi, et al. Orbital radar sounding of earth’s ice sheets: Opportunities and challenges[J]. Journal of Radars, 2022, 11(3): 479–498. doi: 10.12000/JR21196 |
[1] |
PÖRTNER H O, ROBERTS D C, MASSON-DELMOTTE V, et al. IPCC special report on the ocean and cryosphere in a changing climate[R/OL]. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf, 2019.
|
[2] | |
[3] |
FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth[J]. Nature Geoscience, 2019, 12(3): 168–173. doi: 10.1038/s41561-019-0300-3
|
[4] |
LIU Yan, MOORE J C, CHENG Xiao, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3263–3268. doi: 10.1073/pnas.1415137112
|
[5] |
STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis[R]. 2014. doi: 10.1017/CBO9781107415324.
|
[6] |
车涛, 李新, 李新武, 等. 冰冻圈遥感: 助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484–493. doi: 10.16418/j.issn.1000-3045.20200323001
CHE Tao, LI Xin, LI Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of earth’s three poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484–493. doi: 10.16418/j.issn.1000-3045.20200323001
|
[7] |
崔祥斌, 孙波, 张向培, 等. 极地冰盖冰雷达探测技术的发展综述[J]. 极地研究, 2009, 21(4): 322–335.
CUI Xiangbin, SUN Bo, ZHANG Xiangpei, et al. A review of ice radar’s technical development in polar ice sheet investigation[J]. Chinese Journal of Polar Research, 2009, 21(4): 322–335.
|
[8] |
VAUGHAN D G and ARTHERN R. Why is it hard to predict the future of ice sheets?[J]. Science, 2007, 315(5818): 1503–1504. doi: 10.1126/science.1141111
|
[9] |
IVINS E R. Ice sheet stability and sea level[J]. Science, 2009, 324(5929): 888–889. doi: 10.1126/science.1173958
|
[10] |
KENNICUTT M C, CHOWN S L, CASSANO J J, et al. Polar research: Six priorities for Antarctic science[J]. Nature, 2014, 512(7512): 23–25. doi: 10.1038/512023a
|
[11] |
JOUGHIN I, SMITH B E, and MEDLEY B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica[J]. Science, 2014, 344(6185): 735–738. doi: 10.1126/science.1249055
|
[12] |
BELL R E, FERRACCIOLI F, CREYTS T T, et al. Widespread persistent thickening of the east Antarctic ice sheet by freezing from the base[J]. Science, 2011, 331(6024): 1592–1595. doi: 10.1126/science.1200109
|
[13] |
WAITE A H. Ice depth soundings with ultra-high frequency radio waves in the Arctic and Antarctic, and some observed over-ice altimeter errors[R]. Technical Report 2092, 1959.
|
[14] |
EVANS S. Radio techniques for the measurement of ice thickness[J]. Polar Record, 1963, 11(73): 406–410. doi: 10.1017/S0032247400053523
|
[15] |
SIEGERT M J. On the origin, nature and uses of Antarctic ice-sheet radio-echo layering[J]. Progress in Physical Geography:Earth and Environment, 1999, 23(2): 159–179. doi: 10.1191/030913399671124903
|
[16] |
DREWRY D J. Antarctica: Glaciological and Geophysical Folio[M]. Cambridge, U.K.: Scott Polar Research Institute, University of Cambridge, 1983. ISBN: 0901021040.
|
[17] |
CHUAH T S. Design and development of a coherent radar depth sounder for measurement of Greenland ice sheet thickness[R]. RSL Technical. Report 10470–5, 1997. https://cresis.ku.edu/sites/default/files/biblio/TechRpt151.pdf.
|
[18] |
GOGINENI S, TAMMANA D, BRAATEN D, et al. Coherent radar ice thickness measurements over the Greenland ice sheet[J]. Journal of Geophysical Research, 200l, 106(D24): 33761–33772.
|
[19] |
BAMBER J L, LAYBERRY R L, and GOGINENI S P. A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors[J]. Journal of Geophysical Research, 2001, 106(D24): 33773–33780. doi: 10.1029/2001JD900054
|
[20] |
PADEN J, MOZAFFAR S, DUNSON D, et al. Multiband multistatic synthetic aperture radar for measuring ice sheet basal conditions[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 139.
|
[21] |
MATSUOKA K, FURUKAWA T, FUJITA S, et al. Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey[J]. Journal of Geophysical Research, 2003, 108(B10): 2499. doi: 10.1029/2003JB002425
|
[22] |
STUDINGER M, KOENIG L, MARTIN S, et al. Operation icebridge: Using instrumented aircraft to bridge the observational gap between icesat and icesat-2[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1918–1919.
|
[23] |
杨树瑚, 顾祈明, 张云, 等. 利用冰雷达诊断南极冰盖底部环境的研究综述[J]. 极地研究, 2016, 28(2): 277–286. doi: 10.13679/j.jdyj.2016.2.277
YANG Shuhu, GU Qiming, ZHANG Yun, et al. A review of the use of ice penetrating radar to diagnose the subglacial environments[J]. Chinese Journal of Polar Research, 2016, 28(2): 277–286. doi: 10.13679/j.jdyj.2016.2.277
|
[24] |
WANG Bangbing, TIAN Gang, CUI Xiangbin, et al. The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES[J]. Applied Geophysics, 2008, 5(3): 230–237. doi: 10.1007/s11770-008-0029-z
|
[25] |
SUN Bo, SIEGERT M J, MUDD S M, et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic ice sheet[J]. Nature, 2009, 459(7247): 690–693. doi: 10.1038/nature08024
|
[26] |
CUI Xiangbin, GREENBAUM J S, BEEM L H, et al. The first fixed-wing aircraft for Chinese Antarctic expeditions: Airframe, modifications, scientific instrumentation and applications[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 1–13. doi: 10.2113/JEEG23.1.1
|
[27] |
CUI Xiangbin, JEOFRY H, GREENBAUM J S, et al. Bed topography of princess Elizabeth Land in East Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765–2774. doi: 10.5194/essd-12-2765-2020
|
[28] |
FRETWELL P, PRITCHARD H D, VAUGHAN D G, et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica[J]. The Cryosphere Discussions, 2012, 6: 4305–4361. doi: 10.5194/tcd-6-4305-2012
|
[29] |
MORLIGHEM M, RIGNOT E, BINDER T, et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet[J]. Nature Geoscience, 2020, 13(2): 132–137. doi: 10.1038/s41561-019-0510-8
|
[30] |
MACKIE E J, SCHROEDER D M, CAERS J, et al. Antarctic topographic realizations and geostatistical modeling used to map Subglacial Lakes[J]. Journal of Geophysical Research, 2020, 125(3): e2019JF005420. doi: 10.1029/2019JF005420
|
[31] |
GCOS. The global observing system for climate: Implementation needs (GCOS-200)[EB/OL]. https://library.wmo.int/doc_num.php?explnum_id=3417, 2016.
|
[32] |
VERTENSTEIN M, CRAIG T, MIDDLETON A, et al. CESM 1.0. 4 user’s guide[R/OL]. http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/book1.html, 2012.
|
[33] |
万修全, 刘泽栋, 沈飙, 等. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482–491. doi: 10.11867/j.issn.1001-8166.2014.04.0482
WAN Xiuquan, LIU Zedong, SHEN Biao, et al. Introduction to the community earth system model and application to high performance computing[J]. Advances in Earth Science, 2014, 29(4): 482–491. doi: 10.11867/j.issn.1001-8166.2014.04.0482
|
[34] |
林岩銮, 王磊, 苏洁, 等. 全球气候系统中冰冻圈的模拟研究[M]. 北京: 科学出版社, 2019: 145–147.
LIN Yanluan, WANG Lei, SU Jie, et al. Simulation of Cryosphere in Global Climate System[M]. Beijing: Science Press, 2019: 145–147.
|
[35] |
GOGINENI S, PRESCOTT G, BRAATEN D, et al. Polar radar for ice sheet measurements[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1607–1609.
|
[36] | |
[37] | |
[38] | |
[39] |
ZOU Yongliao, ZHU Yan, BAI Yunfei, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812–823. doi: 10.1016/j.asr.2020.11.005
|
[40] |
PICARDI G, BICCARI D, SEU R, et al. MARSIS: Mars advanced radar for subsurface and ionosphere sounding[R/OL]. https://sci.esa.int/documents/33745/35957/1567254616449-PicardiWeb.pdf, 2004.
|
[41] |
SEU R, BICCARI D, OROSEI R, et al. SHARAD: The MRO 2005 shallow radar[J]. Planetary and Space Science, 2004, 52(1/3): 157–166. doi: 10.1016/j.pss.2003.08.024
|
[42] |
HEGGY E, ROSEN P A, BEATTY R, et al. Orbiting arid subsurface and ice sheet sounder (OASIS): Exploring desert aquifers and polar ice sheets and their role in current and paleo-climate evolution[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 3483–3486.
|
[43] |
FREEMAN A, PI Xiaoqing, and HEGGY E. Radar sounding through the Earth's ionosphere at 45 MHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5833–5842. doi: 10.1109/TGRS.2017.2715838
|
[44] |
HEGGY E, ROSEN P A, BEATTY R, et al. Exploring desert aquifers and polar ice sheets and their responses to climate evolution: OASIS mission concept[C]. The 1st Springer Conference of the Arabian Journal of Geosciences, Tunisia, 2018: 7–10.
|
[45] |
HEGGY E. Exploring deserts response to climate change from the orbiting arid subsurface and ice sheet sounder (OASIS)[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 655–656.
|
[46] |
SANDER K F and REED G A L. Transmission and Propagation of Electromagnetic Waves[M]. Cambridge, UK: Cambridge University Press, 1986: 13–19.
|
[47] |
MATSUOKA T, FUJITA S, and MAE S. Effect of temperature on dielectric properties of ice in the range 5–39 GHz[J]. Journal of Applied Physics, 1996, 80(10): 5884–5890. doi: 10.1063/1.363582
|
[48] |
MÄTZLER C and WEGMÜLLER U. Dielectric properties of freshwater ice at microwave frequencies[J]. Journal of Physics D:Applied Physics, 1987, 20(12): 1623–1630. doi: 10.1088/0022-3727/20/12/013
|
[49] |
CORR H, MOORE J C, and NICHOLLS K W. Radar absorption due to impurities in Antarctic ice[J]. Geophysical Research Letters, 1993, 20(11): 1071–1074. doi: 10.1029/93GL01395
|
[50] |
MATSUOKA K, MACGREGOR J A, and PATTYN F. Predicting radar attenuation within the Antarctic ice sheet[J]. Earth and Planetary Science Letters, 2012, 359/360: 173–183. doi: 10.1016/j.jpgl.2012.10.018
|
[51] |
PATTYN F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model[J]. Earth and Planetary Science Letters, 2010, 295(3/4): 451–461. doi: 10.1016/j.jpgl.2010.04.025
|
[52] |
HINDMARSH R C A and LE MEUR E. Dynamical processes involved in the retreat of marine ice sheets[J]. Journal of Glaciology, 2001, 47(157): 271–282. doi: 10.3189/172756501781832269
|
[53] | |
[54] |
SCHROEDER D M, BIENERT N L, CULBERG R, et al. Glaciological constraints on link budgets for orbital radar sounding of Earth's ice sheets[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 647–650.
|
[55] |
CULBERG R and SCHROEDER D M. Firn clutter constraints on the design and performance of orbital radar ice sounders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6344–6361. doi: 10.1109/TGRS.2020.2976666
|
[56] |
ULABY F T and DOBSON M C. Handbook of Radar Scattering Statistics for Terrain[M]. Norwood, USA: Artech House, 1989: 287–288.
|
[57] |
稂时楠. 极地高分辨率冰雷达成像与数据处理方法研究[D]. 北京: 中国科学院大学, 2015: 19–20. https://d.wanfangdata.com.cn/thesis/Y2851481.
LANG Shinan. Research on the Imaging and Signal Processing of High-resolution Ice-sounding Radar[D]. Beijing: The University of Chinese Academy of Sciences, 2015: 19–20. https://d.wanfangdata.com.cn/thesis/Y2851481.
|
[58] |
CARRER L, GEREKOS C, BOVOLO F, et al. Distributed radar sounder: A novel concept for subsurface investigations using sensors in formation flight[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9791–9809. doi: 10.1109/TGRS.2019.2929422
|
[59] |
HAYNES M S, BEAUCHAMP R M, KHAZENDAR A, et al. Debris: Distributed element beamformer radar for ice and subsurface sounding[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 651–654.
|
[60] |
BRUZZONE L, BOVOLO F, CARRER L, et al. STRATUS: A new mission concept for monitoring the subsurface of polar and arid regions[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 661–664.
|
[61] |
GOGINENI S, YAN S, SONG P, et al. UWB MIMO radars for sounding and imaging of ice on the Earth and other celestial bodies[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 657–660.
|
[62] |
GOGINENI P, SIMPSON C R, YAN Jiebang, et al. A CubeSat train for radar sounding and imaging of Antarctic ice sheet[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4138–4141.
|
[63] |
HEIMILLER R C, BELYEA J E, and TOMLINSON P G. Distributed array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 831–839. doi: 10.1109/TAES.1983.309395
|
[64] |
CHRISTIANSON K, JACOBEL R W, HORGAN H J, et al. Basal conditions at the grounding zone of Whillans ice stream, west Antarctica, from ice-penetrating radar[J]. Journal of Geophysical Research, 2016, 121(11): 1954–1983. doi: 10.1002/2015JF003806
|
[65] |
XIAO Peng, GUO Wei, LIU Bo, et al. A spaceborne multistatic radar sounding system for the tomographic observation of polar ice sheets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3502205. doi: 10.1109/LGRS.2020.3043356
|
[66] |
NASA-ISRO SAR (NISAR) mission science users’ handbook[R]. 2018. https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf?_ga=2.129501448.504649304.1621295245-843208160.1541002583.
|
[67] |
CARBONE A, COSTA G, FEHRINGER M, et al. The biomass system - overview and development status[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 775–778.
|
[68] |
HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for Earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi: 10.1109/TGRS.2018.2837673
|
[69] |
张威, 尹冉冉, 沈俊. TerreStar卫星移动通信系统[J]. 数字通信世界, 2012(1): 32–34. doi: 10.3969/j.issn.1672-7274.2012.01.007
ZHANG Wei, YIN Ranran, and SHEN Jun. TerreStar satellite mobile communication system[J]. Digital Communication World, 2012(1): 32–34. doi: 10.3969/j.issn.1672-7274.2012.01.007
|
[70] |
BREIT H, YOUNIS M, BALSS U, et al. Bistatic synchronization and processing of TanDEM-X data[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2424–2427.
|
[71] |
LIANG Da, Liu Kaiyu, Zhang Heng, Z et al. An advanced non-interrupted phase synchronization scheme with internal calibration for LuTan-1[C]. The 13th European Conference on Synthetic Aperture Radar, 2021. https://ieeexplore.ieee.org/document/9472743.
|
[72] |
ŚWIERAD D, HÄFNER S, VOGT S, et al. Ultra-stable clock laser system development towards space applications[J]. Scientific Reports, 2016, 6(1): 33973. doi: 10.1038/srep33973
|
[73] |
LEZIUS M, WILKEN T, DEUTSCH C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381–1387. doi: 10.1364/optica.3.001381
|
[74] |
MCGREW W F, ZHANG X, FASANO R, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87–90. doi: 10.1038/s41586-018-0738-2
|
[75] |
HINKLEY N, SHERMAN J A, PHILLIPS N B, et al. An atomic clock with 10–18 instability[J]. Science, 2013, 341(6151): 1215–1218. doi: 10.1126/science.1240420
|
[76] |
NICHOLSON T L, CAMPBELL S L, HUTSON R B, et al. Systematic evaluation of an atomic clock at 2×10−18 total uncertainty[J]. Nature Communications, 2015, 6(1): 6896. doi: 10.1038/ncomms7896
|
[77] |
MITTERMAYER J, KRIEGER G, BOJARSKI A, et al. MirrorSAR: An HRWS add-on for single-pass multi-baseline SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, in press, 2021.
|
[78] |
PERAL E, TANELLI S, STATHAM S, et al. Raincube - A new paradigm to observe weather processes[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4978–4981.
|