Citation: | NIE Lin, WEI Shunjun, LI Jiahui, et al. Active blanket jamming suppression method for spaceborne SAR images based on regional feature refinement perceptual learning[J]. Journal of Radars, 2024, 13(5): 985–1003. doi: 10.12000/JR24072 |
[1] |
杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099.
YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099.
|
[2] |
吴一戎, 朱敏慧. 合成孔径雷达技术的发展现状与趋势[J]. 遥感技术与应用, 2000, 15(2): 121–123. doi: 10.3969/j.issn.1004-0323.2000.02.012.
WU Yirong and ZHU Minhui. The developing status and trends of synthetic aperture radar[J]. Remote Sensing Technology and Application, 2000, 15(2): 121–123. doi: 10.3969/j.issn.1004-0323.2000.02.012.
|
[3] |
邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
|
[4] |
王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维SAR成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101.
WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101.
|
[5] |
ZHANG Hao, WEI Shunjun, WANG Mou, et al. FUAS-Net: Feature-oriented unsupervised network for FMCW radar interference suppression[J]. IEEE Transactions on Microwave Theory and Techniques, 2024, 72(4): 2602–2619. doi: 10.1109/TMTT.2023.3318669.
|
[6] |
WANG Mou, WEI Shunjun, ZHOU Zichen, et al. Efficient ADMM framework based on functional measurement model for mmW 3-D SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226417. doi: 10.1109/TGRS.2022.3165541.
|
[7] |
WANG Mou, WEI Shunjun, ZHOU Zichen, et al. CTV-Net: Complex-valued TV-driven network with nested topology for 3-D SAR imaging[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5588–5602. doi: 10.1109/TNNLS.2022.3208252.
|
[8] |
林晓烘. 星载合成孔径雷达干扰与抗干扰技术研究[D]. [博士论文], 国防科学技术大学, 2014.
LIN Xiaohong. Study on jamming and anti-jamming techniques for spaceborne synthetic aperture radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2014.
|
[9] |
黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
|
[10] |
LAMONT-SMITH T, HILL R D, HAYWARD S D, et al. Filtering approaches for interference suppression in low-frequency SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(4): 338–344. doi: 10.1049/ip-rsn:20050092.
|
[11] |
韩朝赟, 岑熙, 崔嘉禾, 等. 纹理异常感知SAR自监督学习干扰抑制方法[J]. 雷达学报, 2023, 12(1): 154–172. doi: 10.12000/JR22168.
HAN Zhaoyun, CEN Xi, CUI Jiahe, et al. Self-supervised learning method for SAR interference suppression based on abnormal texture perception[J]. Journal of Radars, 2023, 12(1): 154–172. doi: 10.12000/JR22168.
|
[12] |
ZHOU Feng, WU Renbiao, XING Mengdao, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 75–79. doi: 10.1109/LGRS.2006.887033.
|
[13] |
LIU Zhiling, LIAO Guisheng, and YANG Zhiwei. Time variant RFI suppression for SAR using iterative adaptive approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1424–1428. doi: 10.1109/LGRS.2013.2259575.
|
[14] |
SU Jia, TAO Haihong, TAO Mingliang, et al. Narrow-band interference suppression via RPCA-based signal separation in time-frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 5016–5025. doi: 10.1109/JSTARS.2017.2727520.
|
[15] |
HUANG Yan, LIAO Guisheng, XU Jingwei, et al. Narrowband RFI suppression for SAR system via efficient parameter-free decomposition algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3311–3322. doi: 10.1109/TGRS.2018.2797946.
|
[16] |
REIGBER A and FERRO-FAMIL L. Interference suppression in synthesized SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 45–49. doi: 10.1109/LGRS.2004.838419.
|
[17] |
YANG Huizhang, LI Kun, LI Jie, et al. BSF: Block subspace filter for removing narrowband and wideband radio interference artifacts in single-look complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211916. doi: 10.1109/TGRS.2021.3096538.
|
[18] |
YANG Huizhang, HE Yaomin, DU Yanlei, et al. Two-dimensional spectral analysis filter for removal of LFM radar interference in spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5219016. doi: 10.1109/TGRS.2021.3132495.
|
[19] |
YANG Huizhang, LANG Ping, LU Xingyu, et al. Robust block subspace filtering for efficient removal of radio interference in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5206812. doi: 10.1109/TGRS.2024.3369021.
|
[20] |
陈爽. 基于深度学习的雷达有源欺骗干扰识别方法[D]. [硕士论文], 电子科技大学, 2023. doi: 10.27005/d.cnki.gdzku.2023.001330.
CHEN Shuang. Identification method of radar active deception jamming based on deep learning[D]. [Master dissertation], University of Electronic Science and Technology of China, 2023. doi: 10.27005/d.cnki.gdzku.2023.001330.
|
[21] |
陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
|
[22] |
张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12(4): 882–891. doi: 10.12000/JR23104.
ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12(4): 882–891. doi: 10.12000/JR23104.
|
[23] |
FAN Weiwei, ZHOU Feng, TAO Mingliang, et al. Interference mitigation for synthetic aperture radar based on deep residual network[J]. Remote Sensing, 2019, 11(14): 1654. doi: 10.3390/rs11141654.
|
[24] |
CHEN Shengyi, SHANGGUAN Wangyi, TAGHIA J, et al. Automotive radar interference mitigation based on a generative adversarial network[C]. 2020 IEEE Asia-Pacific Microwave Conference, Hong Kong, China, 2020: 728–730. doi: 10.1109/APMC47863.2020.9331379.
|
[25] |
SHEN Jiayuan, HAN Bing, PAN Zongxu, et al. Radio frequency interference suppression in SAR system using prior-induced deep neural network[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 943–946. doi: 10.1109/IGARSS46834.2022.9883464.
|
[26] |
WEI Yanyan, ZHANG Zhao, ZHANG Haijun, et al. A coarse-to-fine multi-stream hybrid deraining network for single image deraining[C]. 2019 IEEE International Conference on Data Mining, Beijing, China, 2019: 628–637. doi: 10.1109/ICDM.2019.00073.
|
[27] |
WU Haiyan, QU Yanyun, LIN Shaohui, et al. Contrastive learning for compact single image dehazing[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10546–10555. doi: 10.1109/CVPR46437.2021.01041.
|
[28] |
HONG Ming, XIE Yuan, LI Cuihua, et al. Distilling image dehazing with heterogeneous task imitation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 3459–3468. doi: 10.1109/CVPR42600.2020.00352.
|
[29] |
CUI Xin, WANG Cong, REN Dongwei, et al. Semi-supervised image deraining using knowledge distillation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8327–8341. doi: 10.1109/TCSVT.2022.3190516.
|
[30] |
LI Ning, LV Zongsen, and GUO Zhengwei. Observation and mitigation of mutual RFI between SAR satellites: A case study between Chinese GaoFen-3 and European Sentinel-1A[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5112819. doi: 10.1109/TGRS.2022.3170363.
|
[31] |
YANG Huizhang, TAO Mingliang, CHEN Shengyao, et al. On the mutual interference between spaceborne SARs: Modeling, characterization, and mitigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8470–8485. doi: 10.1109/TGRS.2020.3036635.
|
[32] |
曲婧华. 有源噪声调制干扰的仿真及性能分析[J]. 空军工程大学学报: 自然科学版, 2007, 8(1): 44–46.
QU Jinghua. Simulation and analysis of complex active noise modulation jamming[J]. Journal of Air Force Engineering University: Natural Science Edition, 2007, 8(1): 44–46.
|
[33] |
殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102.
YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radars[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102.
|
[34] |
房明星, 王杰贵, 雷磊. SAR雷达二维噪声卷积调制干扰研究[J]. 现代防御技术, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025.
FANG Mingxing, WANG Jiegui, and LEI Lei. Study on 2D noise convolution modulation jamming to SAR[J]. Modern Defense Technology, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025.
|
[35] |
黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.
HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.
|
[36] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|
[37] |
OYEDOTUN O K, AL ISMAEIL K, and AOUADA D. Why is everyone training very deep neural network with skip connections?[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5961–5975. doi: 10.1109/TNNLS.2021.3131813.
|
[38] |
ZHANG Hongguang, DAI Yuchao, LI Hongdong, et al. Deep stacked hierarchical multi-patch network for image deblurring[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5971–5979. doi: 10.1109/CVPR.2019.00613.
|
[39] |
ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14816–14826. doi: 10.1109/CVPR46437.2021.01458.
|
[40] |
BARRON J T. A general and adaptive robust loss function[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4326–4334. doi: 10.1109/CVPR.2019.00446.
|
[41] |
SEIF G and ANDROUTSOS D. Edge-based loss function for single image super-resolution[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 1468–1472. doi: 10.1109/ICASSP.2018.8461664.
|
[42] |
朱铮涛, 黎绍发, 陈华平. 基于图像熵的自动聚焦函数研究[J]. 光学精密工程, 2004, 12(5): 537–542. doi: 10.3321/j.issn:1004-924X.2004.05.014.
ZHU Zhengtao, LI Shaofa, and CHEN Huaping. Research on auto-focused function based on the image entropy[J]. Optics and Precision Engineering, 2004, 12(5): 537–542. doi: 10.3321/j.issn:1004-924X.2004.05.014.
|
[43] |
王凡, 倪晋平, 董涛, 等. 结合视觉注意力机制和图像锐度的无参图像质量评价方法[J]. 应用光学, 2018, 39(1): 51–56. doi: 10.5768/JAO201839.0102002.
WANG Fan, NI Jinping, DONG Tao, et al. No-reference image quality assessment method based on visual attention mechanism and sharpness metric approach[J]. Journal of Applied Optics, 2018, 39(1): 51–56. doi: 10.5768/JAO201839. 0102002.
|
[44] |
王俊平, 李锦. 图像对比度增强研究的进展[J]. 电子科技, 2013, 26(5): 160–165. doi: 10.16180/j.cnki.issn1007-7820.2013.05.045.
WANG Junping and LI Jin. Development and prospect of image contrast enhancement[J]. Electronic Science & Technology, 2013, 26(5): 160–165. doi: 10.16180/j.cnki.issn1007-7820.2013.05.045.
|
[45] |
HORÉ A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 2366–2369. doi: 10.1109/ICPR.2010.579.
|
[46] |
BAKUROV I, BUZZELLI M, SCHETTINI R, et al. Structural similarity index (SSIM) revisited: A data-driven approach[J]. Expert Systems with Applications, 2022, 189: 116087. doi: 10.1016/j.eswa.2021.116087.
|
[47] |
GUPTA N and AGARWAL B B. Suspicious activity classification in classrooms using deep learning[J]. Engineering, Technology & Applied Science Research, 2023, 13(6): 12226–12230. doi: 10.48084/etasr.6228.
|
[48] |
WU Bichen, DAI Xiaoliang, ZHANG Peizhao, et al. FBNet: Hardware-aware efficient ConvNet design via differentiable neural architecture search[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 10726–10734. doi: 10.1109/CVPR.2019.01099.
|
[49] |
CHEN Zhao, JIANG Yin, ZHANG Xiaoyu, et al. ResNet18DNN: Prediction approach of drug-induced liver injury by deep neural network with ResNet18[J]. Briefings in Bioinformatics, 2022, 23(1): bbab503. doi: 10.1093/bib/bbab503.
|
[50] |
TAN Mingxing, CHEN Bo, PANG Ruoming, et al. MnasNet: Platform-aware neural architecture search for mobile[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2815–2823. doi: 10.1109/CVPR.2019.00293.
|
[51] |
张晓明, 王莎莎. 针对窄带干扰抑制的数字陷波器设计[J]. 无线电工程, 2008, 38(5): 24–25, 52. doi: 10.3969/j.issn.1003-3106.2008.05.008.
ZHANG Xiaoming and WANG Shasha. Methods for IIR digital notch filter to suppress narrow-band interference[J]. Radio Engineering, 2008, 38(5): 24–25, 52. doi: 10.3969/j.issn.1003-3106.2008.05.008.
|
[52] |
刘江, 李健聪, 蔡伯根, 等. 基于自适应陷波滤波的列车卫星定位窄带干扰防护[J]. 铁道学报, 2022, 44(5): 49–59. doi: 10.3969/j.issn.1001-8360.2022.05.007.
LIU Jiang, LI Jiancong, CAI Bogen, et al. Narrow-band interference protection for satellite-based train positioning based on adaptive notch filter[J]. Journal of the China Railway Society, 2022, 44(5): 49–59. doi: 10.3969/j.issn.1001-8360.2022.05.007.
|
[53] |
LI Xia, WU Jianlong, LIN Zhouchen, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]. 15th European Conference, Munich, Germany, 2018: 262–277. doi: 10.1007/978-3-030-01234-2_16.
|
[54] |
DENG Sen, WEI Mingqiang, WANG Jun, et al. Detail-recovery image deraining via context aggregation networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14548–14557. doi: 10.1109/CVPR42600.2020.01457.
|