GAO Xiangying, ZHAO Yongjun, LIU Zhixin, et al. Robust source localization using TDOA and FDOA with receiver location errors[J]. Journal of Radars, 2020, 9(5): 916–924. doi: 10.12000/JR20039
Citation: GAO Xiangying, ZHAO Yongjun, LIU Zhixin, et al. Robust source localization using TDOA and FDOA with receiver location errors[J]. Journal of Radars, 2020, 9(5): 916–924. doi: 10.12000/JR20039

Robust Source Localization Using TDOA and FDOA with Receiver Location Errors 

DOI: 10.12000/JR20039
Funds:  The National Natural Science Foundation of China (61703433)
More Information
  • To address the low location accuracy and poor robustness of existing methods, error correction to improve the Stage 2 of the original Two-Stage Weighted Least Squares (TSWLS)-based methods is proposed, which involves a robust moving source localization method with high accuracy based on Time Difference Of Arrival (TDOA) and Frequency Difference Of Arrival (FDOA) in the presence of receiver location errors. This newly proposed Stage 2 performs Taylor expansion on the nuisance variables introduced in Stage 1 to construct the error correction equation, thereby avoiding the rank deficiency problem and nonlinear mathematical operations in the original TSWLS-based methods; and improving the robustness and location accuracy of the method. Theoretical analysis indicates that the proposed method can attain the Cramer-Rao Lower Bound (CRLB) under small noise condition. Simulation results show the proposed method has stronger localization robustness and better anti-noise performance over the existing methods under the common level of receiver location and measurement error.

     

  • [1]
    田中成, 刘聪锋. 无源定位技术[M]. 北京: 国防工业出版社, 2015: 8–12.

    TIAN Zhongcheng and LIU Congfeng. Passive Locating Technology[M]. Beijing: National Defense Industry Press, 2015: 8–12.
    [2]
    孙霆, 董春曦. 传感器参数误差下的运动目标TDOA/FDOA无源定位算法[J]. 航空学报, 2020, 41(2): 323317. doi: 10.7527/S1000-7527.2019.23317

    SUN Ting and DONG Chunxi. TDOA/FDOA passive localization algorithm for moving target with sensor parameter errors[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 323317. doi: 10.7527/S1000-7527.2019.23317
    [3]
    LIU Congfeng, YANG Jie, and WANG Fengshuai. Joint TDOA and AOA location algorithm[J]. Journal of Systems Engineering and Electronics, 2013, 24(2): 183–188. doi: 10.1109/JSEE.2013.00023
    [4]
    CHEN Xin, WANG Ding, LIU Ruirui, et al. Structural total least squares algorithm for locating multiple disjoint sources based on AOA/TOA/FOA in the presence of system error[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(7): 917–936. doi: 10.1631/FITEE.&1700735
    [5]
    LIU Zhixin, HU Dexiu, ZHAO Yongjun, et al. Computationally efficient TDOA, FDOA and differential Doppler rate estimation algorithm for passive emitter localization[J]. Digital Signal Processing, 2020, 96: 102598. doi: 10.1016/j.dsp.2019.102598
    [6]
    LIU Zhixin, WANG Rui, and ZHAO Yongjun. Computationally efficient TDOA and FDOA estimation algorithm in passive emitter localisation[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1731–1740. doi: 10.1049/&iet-rsn.2019.0101
    [7]
    KIM D G, PARK G H, KIM H N, et al. Computationally efficient TDOA/FDOA estimation for unknown communication signals in electronic warfare systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 77–89. doi: 10.1109/TAES.2017.2735118
    [8]
    YU H, HYANG G, and GAO J. Constrained total least-squares localisation algorithm using time difference of arrival and frequency difference of arrival measurements with sensor location uncertainties[J]. IET Radar, Sonar & Navigation, 2012, 6(9): 891–899.
    [9]
    HO K C, LU Xiaoning, and KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684–696. doi: 10.1109/TSP.2006.885744
    [10]
    NOROOZI A, OVEIS A H, HOSSEINI S M, et al. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Wireless Communications Letters, 2018, 7(3): 352–355. doi: 10.1109/LWC.2017.2777995
    [11]
    LIU Yang, GUO Fucheng, YANG Le, et al. An improved algebraic solution for TDOA localization with sensor position errors[J]. IEEE Communications Letters, 2015, 19(12): 2218–2221. doi: 10.1109/LCOMM.2015.2486769
    [12]
    刘洋, 杨乐, 郭福成, 等. 基于定位误差修正的运动目标TDOA/FDOA无源定位方法[J]. 航空学报, 2015, 36(5): 1617–1626.

    LIU Yang, YANG Le, GUO Fucheng, et al. Moving targets TDOA/FDOA passive localization algorithm based on localization error refinement[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(5): 1617–1626.
    [13]
    SORENSON H W. Parameter Estimation: Principles and Problems[M]. New York: Marcel Dekker Inc., 1980.
    [14]
    LIU Zhixin, HU Dexiu, ZHAO Yongsheng, et al. An algebraic method for moving source localization using TDOA, FDOA, and differential Doppler rate measurements with receiver location errors[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 25. doi: 10.1186/s13634-019-0621-9
    [15]
    LIU Zhixin, HU Dexiu, ZHAO Yongsheng, et al. An improved closed-form method for moving source localization using TDOA, FDOAs, differential Doppler rate measurements[J]. IEICE Transactions on Communications, 2019, E102. B(6): 1219–1228. doi: 10.1587/transcom.&2018ebp3249
  • Cited by

    Periodical cited type(4)

    1. 邓杏松,亓亮,朱元江,杨帆,蒋智辰,刘志永. 基于观测站精确距离信息的多站时差定位方法. 系统工程与电子技术. 2024(08): 2592-2599 .
    2. 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位. 吉林大学学报(工学版). 2023(02): 593-600 .
    3. 汤建龙,解佳龙,薛成均. 利用高斯牛顿迭代的时频差无源定位算法. 西安电子科技大学学报. 2023(01): 19-28+47 .
    4. 关浩亮,张顺生,王文钦. 基于频控阵的无源定位对抗技术. 雷达学报. 2021(06): 833-841 . 本站查看

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2250) PDF downloads(136) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint