Volume 11 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
CUI Guolong, FAN Tao, KONG Yukai, et al. Pseudo-random agility technology for interpulse waveform parameters in airborne radar[J]. Journal of Radars, 2022, 11(2): 213–226. doi: 10.12000/JR21189
Citation: CUI Guolong, FAN Tao, KONG Yukai, et al. Pseudo-random agility technology for interpulse waveform parameters in airborne radar[J]. Journal of Radars, 2022, 11(2): 213–226. doi: 10.12000/JR21189

Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar

DOI: 10.12000/JR21189
Funds:  The National Natural Science Foundation of China (61771109, U19B2017, 62101097), The Chang Jiang Scholars Program, China Postdoctoral Science Foundation (2020M680147, 2021T140096)
More Information
  • Corresponding author: CUI Guolong, cuiguolong@uestc.edu.cn
  • Received Date: 2021-11-26
  • Accepted Date: 2022-03-16
  • Rev Recd Date: 2022-03-10
  • Available Online: 2022-03-18
  • Publish Date: 2022-04-11
  • The pseudo-random agility technology for interpulse waveform parameters in airborne radar increases the complexity and uncertainty of radar waveform and improves its anti-clutter and anti-interference ability by optimizing the pulse repetition interval, initial phase, frequency, and amplitude, which is one of the main developmental directions of airborne radar technology. The pseudo-random agility of interpulse parameters makes multi-pulse coherent accumulation and modeling of clutter spectrum characteristics difficult. In this paper, a pseudo-random agility signal model of interpulse parameters is established. Furthermore, a non-uniform parameter coherent processing method is proposed, and the anti-interference performance is analyzed. Based on the analysis, the clutter echo model of airborne radar with random pulse repetition interval is studied, and a joint transmitter-receiver filter design is proposed for strong clutter processing. Finally, numerical simulation is conducted to verify the results.

     

  • loading
  • [1]
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008.
    [2]
    STIMSON G W. Introduction to Airborne Radar[M]. 2nd ed. Mendham: SciTech Publishing, Inc. , 1998.
    [3]
    AUBRY A, DE MAIO A, JIANG Bo, et al. Ambiguity function shaping for cognitive radar via complex quartic optimization[J]. IEEE Transactions on Signal Processing, 2013, 61(22): 5603–5619. doi: 10.1109/TSP.2013.2273885
    [4]
    ALHUJAILI K, MONGA V, and RANGASWAMY M. Quartic gradient descent for tractable radar slow-time ambiguity function shaping[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1474–1489. doi: 10.1109/TAES.2019.2934336
    [5]
    NAGHSH M M, SOLTANALIAN M, STOICA P, et al. A doppler robust design of transmit sequence and receive filter in the presence of signal-dependent interference[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 772–785. doi: 10.1109/TSP.2013.2288082
    [6]
    全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11

    QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar waveform countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
    [7]
    LONG Xingwang, LI Kun, TIAN Jing, et al. Ambiguity function analysis of random frequency and PRI agile signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 382–396. doi: 10.1109/TAES.2020.3016851
    [8]
    吴耀君. 脉间频率捷变雷达抗干扰研究[D]. [硕士论文], 西安电子科技大学, 2018.

    WU Yaojun. Research on anti-jamming performance of frequency agility radar[D]. [Master dissertation], Xidian University, 2018.
    [9]
    HUANG Tianyao, LIU Yimin, MENG Huadong, et al. Cognitive random stepped frequency radar with sparse recovery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 858–870. doi: 10.1109/TAES.2013.120443
    [10]
    DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [11]
    崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [12]
    LIN K. Anti-jamming MTI radar using variable pulse-codes[D]. [Master dissertation], Massachusetts Institute of Technology, 2002.
    [13]
    苏峰, 高梅国, 田黎育, 等. 基于脉间码型捷变的相位编码旁瓣抑制方法[J]. 北京理工大学学报, 2009, 29(5): 441–445.

    SU Feng, GAO Meiguo, TIAN Liyu, et al. Sidelobe suppression of phase-coded radar signal based on interpulse code agility[J]. Transactions of Beijing Institute of Technology, 2009, 29(5): 441–445.
    [14]
    ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1330. doi: 10.1109/TAES.2013.6494414
    [15]
    XIONG Wei, WANG Xinhai, and ZHANG Gong. Cognitive waveform design for anti-velocity deception jamming with adaptive initial phases[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5.
    [16]
    吴健. 基于波形分集的雷达抗有源欺骗干扰技术研究[D]. [硕士学位], 电子科技大学, 2015: 48–64.

    WU Jian. Research of technology against radar active deception jamming based on waveform diversity[D]. [Master dissertation], University of Electronic Science and Technology of China, 2015: 48–64.
    [17]
    YANG Ya, WU Jian, CUI Guolong, et al. Optimized phase-coded waveform design against velocity deception[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 400–404.
    [18]
    葛鹏. 基于知识辅助的雷达波形设计算法研究[D]. [博士论文], 电子科技大学, 2017: 60–97.

    GE Peng. Research on methods of knowledge-aided radar waveform design[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017: 60–97.
    [19]
    张洋, 位寅生. 基于认知的抗折叠扩展杂波波形设计方法[J]. 系统工程与电子技术, 2018, 40(10): 2216–2222. doi: 10.3969/j.issn.1001-506X.2018.10.09

    ZHANG Yang and WEI Yinsheng. Waveform design of range-folded spread clutter mitigation based on cognition[J]. Systems Engineering and Electronics, 2018, 40(10): 2216–2222. doi: 10.3969/j.issn.1001-506X.2018.10.09
    [20]
    葛萌萌, 余显祥, 严正欣, 等. 脉间波形幅相联合设计抗欺骗干扰方法[J]. 电子科技大学学报, 2021, 50(4): 481–487. doi: 10.12178/1001-0548.2021075

    GE Mengmeng, YU Xianxiang, YAN Zhengxin, et al. Optimized amplitude-phase waveform against deceptive jamming[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 481–487. doi: 10.12178/1001-0548.2021075
    [21]
    AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [22]
    黄琼丹, 李勇, 卢光跃. 脉间Costas跳频脉内多载波混沌相位编码雷达信号设计与分析[J]. 电子与信息学报, 2015, 37(6): 1483–1489. doi: 10.11999/JEIT140653

    HUANG Qiongdan, LI Yong, and LU Guangyue. Design and analysis of inter-pulse costas frequency hopping and intra-pulse multi-carrier chaotic phase coded radar signal[J]. Journal of Electronics &Information Technology, 2015, 37(6): 1483–1489. doi: 10.11999/JEIT140653
    [23]
    TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [24]
    GE Mengmeng, YU Xianxiang, YAN Zhengxin, et al. Joint cognitive optimization of transmit waveform and receive filter against deceptive interference[J]. Signal Processing, 2021, 185: 108084. doi: 10.1016/j.sigpro.2021.108084
    [25]
    TANG Bo, LI Jun, ZHANG Yu, et al. Design of MIMO radar waveform covariance matrix for clutter and jamming suppression based on space time adaptive processing[J]. Signal Processing, 2016, 121: 60–69. doi: 10.1016/j.sigpro.2015.10.033
    [26]
    TANG Bo, TUCK J, and STOICA P. Polyphase waveform design for MIMO radar space time adaptive processing[J]. IEEE Transactions on Signal Processing, 2020, 68: 2143–2154. doi: 10.1109/TSP.2020.2983833
    [27]
    CUI Guolong, FU Yue, YU Xianxiang, et al. Robust transmitter-receiver design in the presence of signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1871–1882. doi: 10.1109/TAES.2018.2805147
    [28]
    YU Xianxiang, CUI Guolong, YANG Jing, et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 522–536. doi: 10.1109/TVT.2019.2951399
    [29]
    FAN Tao, GE Mengmeng, GAN Na, et al. Transmit-receive design for non-uniform pulse repetition interval airborne radar in the presence of signal-dependent clutter[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [30]
    MAIER M W. Non-uniform PRI pulse-Doppler radar[C]. The 1993 (25th) Southeastern Symposium on System Theory, Tuscaloosa, USA, 1993: 164–168.
    [31]
    FAN Tao, KONG Yukai, WANG Mingxing, et al. Doppler filter bank design for non-uniform PRI radar in signal-dependent clutter[C]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–5.
    [32]
    KAVEH M and COOPER G R. Average ambiguity function for a randomly staggered pulse sequence[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(3): 410–413. doi: 10.1109/TAES.1976.308245
    [33]
    LIU Zhen, WEI Xizhang, and LI Xiang. Aliasing-free moving target detection in random pulse repetition interval radar based on compressed sensing[J]. IEEE Sensors Journal, 2013, 13(7): 2523–2534. doi: 10.1109/JSEN.2013.2249762
    [34]
    刘振, 魏玺章, 黎湘. 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法[J]. 雷达学报, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063

    LIU Zhen, WEI Xizhang, and LI Xiang. Novel method of unambiguous moving target detection in pulse-Doppler radar with random pulse repetition interval[J]. Journal of Radars, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063
    [35]
    KONG Yukai, CUI Guolong, GUO Shisheng, et al. Coherent radar detection framework with non-uniform pulse repetition intervals[J]. IEEE Access, 2020, 8: 18645–18657. doi: 10.1109/ACCESS.2019.2963374
    [36]
    LU Yuxiang, TANG Ziyue, ZHANG Yuanpeng, et al. Maximum unambiguous frequency of random PRI radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
    [37]
    JAO J K and GOGGINS W B. Efficient, closed-form computation of airborne pulse-Doppler radar clutter[C]. Proceedings of IEEE International Radar Conference, Arlington, USA, 1985: 17–22.
    [38]
    MORCHIN W C. Airborne Early Warning Radar[M]. Boston: Artech House, 1990.
    [39]
    FAN Tao, YU Xianxiang, GAN Na, et al. Transmit-receive design for airborne radar with nonuniform pulse repetition intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4067–4084. doi: 10.1109/TAES.2021.3090915
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2051) PDF downloads(302) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint