Hu Ke-bin, Zhang Xiao-ling, Shi Jun, Wei Shun-jun. A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization[J]. Journal of Radars, 2015, 4(1): 60-69. doi: 10.12000/JR15007
Citation: MA Yuxin, HAI Yu, LI Zhongyu, et al. 3D high-resolution imaging algorithm with sparse trajectory for millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 1000–1013. doi: 10.12000/JR23001

3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar

DOI: 10.12000/JR23001
Funds:  The National Natural Science Foundation of China (62171084, 61922023, 62101096), Science and Technology on Electronic Information Control Laboratory Foundation
More Information
  • In recent years, millimeter-wave radar has been widely used in safety detection, nondestructive detection of parts, and medical diagnosis because of its strong penetration ability, small size, and high detection accuracy. However, due to the limitation of hardware transmission bandwidth, achieving ultra-high two-dimensional resolution using millimeter-wave radar is challenging. Two-dimensional high-resolution imaging of altitude and azimuth can be realized using radar platform scanning to form a two-dimensional aperture. However, during the scanning process, the millimeter-wave radar produces sparse tracks in the height dimension, resulting in a sparse sampling of the altitude echo, thus reducing the imaging quality. In this paper, a high-resolution three-dimensional imaging algorithm for millimeter-wave radar based on Hankel transformation matrix filling is proposed to solve this problem. The matrix filling algorithm restores the sparse sampling echo, which guarantees the imaging accuracy of the millimeter-wave radar in the scanning plane. First, the low-rank prior characteristics of the millimeter-wave radar's elevation-range section were analyzed. To solve the problem of missing whole rows and columns of data during sparse trajectory sampling, the echo data matrix was reconstructed using the Hankel transform, and the sparse low-rank prior characteristics of the constructed matrix were analyzed. Furthermore, a matrix filling algorithm based on truncated Schatten-p norm combining low-rank and sparse priors was proposed to fill and reconstruct the echoes to ensure the three-dimensional resolution of the sparse trajectory millimeter-wave radar. Finally, using simulation and several sets of measured data, the proposed method was proved to achieve high-resolution three-dimensional imaging even when only 20%–30% of the height echo was used.

     

  • [1]
    石星. 毫米波雷达的应用和发展[J]. 电讯技术, 2006, 46(1): 1–9. doi: 10.3969/j.issn.1001-893X.2006.01.001

    SHI Xing. Application and development of millimetre-wave radars[J]. Telecommunication Engineering, 2006, 46(1): 1–9. doi: 10.3969/j.issn.1001-893X.2006.01.001
    [2]
    黄昌霸. 车载毫米波雷达目标检测技术研究[D]. [硕士论文], 电子科技大学, 2020.

    HUANG Changba. Research of on-vehicle millimeter wave radar target detection technology[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [3]
    ZHANG Weite, HEREDIA-JUESAS J, DIDDI M, et al. Experimental imaging results of a UAV-mounted downward-looking mm-wave radar[C]. 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, USA, 2019: 1639–1640.
    [4]
    乞耀龙. 近景微波三维成像模型与方法研究[D]. [博士论文], 中国科学院大学, 2012.

    QI Yaolong. Study on the model and method of close-up microwave three-dimensional imaging[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2012.
    [5]
    ESSEN H, LORENZ F, HANTSCHER S, et al. Millimeterwave radar for runway debris detection[C]. 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 2011: 65–68.
    [6]
    ROHMAN B P A, RUDRAPPA M T, SHARGORODSKYY M, et al. Moving human respiration sign detection using mm-wave radar via motion path reconstruction[C]. 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, Bandung, Indonesia, 2021: 196–200.
    [7]
    VERMA P, SHAKYA V S, SHARMA D, et al. MM-wave radar application for autonomous vehicles[C]. 2020 2nd International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 2020: 556–559.
    [8]
    皮亦鸣, 杨建宇, 付毓生, 等. 合成孔径雷达成像原理[M]. 成都: 电子科技大学出版社, 2007: 49–50.

    PI Yiming, YANG Jianyu, FU Yusheng, et al. Synthetic Aperture Radar Imaging Technology[M]. Chengdu: University of Electronic Science and Technology of China Press, 2007: 49–50.
    [9]
    陈文江, 陈麒安, 陈宏铭, 等. 5G毫米波天线阵列模组技术挑战与未来发展趋势[J]. 中国集成电路, 2021, 30(11): 40–45. doi: 10.3969/j.issn.1681-5289.2021.11.008

    CHEN Wenjiang, CHEN Qi’an, CHEN Hongming, et al. Technical challenges and development trend of 5G mm wave antenna array module[J]. China Integrated Circuit, 2021, 30(11): 40–45. doi: 10.3969/j.issn.1681-5289.2021.11.008
    [10]
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [11]
    ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1 -norm regularization—The compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [12]
    OLIVERI G, ROCCA P, and MASSA A. A Bayesian-compressive-sampling-based inversion for imaging sparse scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3993–4006. doi: 10.1109/TGRS.2011.2128329
    [13]
    CANDÈS E J and RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717–772. doi: 10.1007/s10208-009-9045-5
    [14]
    CANDES E J and PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010, 98(6): 925–936. doi: 10.1109/JPROC.2009.2035722
    [15]
    BI Dongjie, LI Xifeng, XIE Xuan, et al. Compressive sensing operator design and optimization for wideband 3-D millimeter-wave imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1): 542–555. doi: 10.1109/TMTT.2021.3100499
    [16]
    WANG Mou, WEI Shunjun, SHI Jun, et al. CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4476–4492. doi: 10.1109/JSTARS.2020.3014696
    [17]
    HU Yue, LIU Xiaohan, and JACOB M. A generalized structured low-rank matrix completion algorithm for MR image recovery[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1841–1851. doi: 10.1109/TMI.2018.2886290
    [18]
    KHALIFA M O, ABDELHAFIZ A H, and ZERGUINE A. Sparse channel estimation using adaptive filtering and compressed sampling[C]. 2013 International Conference on Computing, Electrical and Electronic Engineering (ICCEEE), Khartoum, Sudan, 2013: 144–147.
    [19]
    WENG Zhiyuan and WANG Xin. Low-rank matrix completion for array signal processing[C]. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 2012: 2697–2700.
    [20]
    ZHANG Siqian, DONG Ganggang, and KUANG Gangyao. Matrix completion for downward-looking 3-D SAR imaging with a random sparse linear array[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1994–2006. doi: 10.1109/TGRS.2017.2771826
    [21]
    MA Yuxin, HAI Yu, YANG Jianyu, et al. A near-field 3-D SAR imaging method with non-uniform sparse linear array based on matrix completion[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 1664–1667.
    [22]
    ZENG Xuan, MA Yuxin, LI Zhongyu, et al. A near-field fast time-frequency joint 3-D imaging algorithm based on aperture linearization[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 5163–5166,
    [23]
    YING Jiaxi, CAI Jianfeng, GUO Di, et al. Vandermonde factorization of hankel matrix for complex exponential signal recovery—Application in fast NMR spectroscopy[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5520–5533. doi: 10.1109/TSP.2018.2869122
    [24]
    AHMED N, NATARAJAN T, and RAO K R. Discrete cosine transform[J]. IEEE Transactions on Computers, 1974, C-23(1): 90–93. doi: 10.1109/T-C.1974.223784
    [25]
    胡循勇, 杨晓梅, 李昊怡, 等. 融合低秩和稀疏先验的结构性缺失图像修复[J]. 北京航空航天大学学报, 2022, 48(5): 855–862. doi: 10.13700/j.bh.1001-5965.2020.0663

    HU Xunyong, YANG Xiaomei, LI Haoyi, et al. Structural missing image inpainting based on low rank and sparse prior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 855–862. doi: 10.13700/j.bh.1001-5965.2020.0663
    [26]
    BOYD S, PARIKH N, CHU E, et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[M]. Hanover: Now Foundations and Trends, 2011: 13–23. doi: 10.1561/2200000016.
    [27]
    MERHAV N and KRESCH R. Approximate convolution using DCT coefficient multipliers[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(4): 378–385. doi: 10.1109/76.709404
    [28]
    LI Oupeng, HE Jia, ZENG Kun, et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit, Porto, Portugal, 2021: 544–549.
    [29]
    韦顺军. 线阵三维合成孔径雷达稀疏成像技术研究[D]. [博士论文], 电子科技大学, 2013.

    WEI Shunjun. Research on linear array three-dimensional synthetic aperture radar sparse imaging technology[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2013.
    [30]
    WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366
  • Relative Articles

    [1]HUANG Zhongling, WU Chong, YAO Xiwen, WANG Lipeng, HAN Junwei. Physically Explainable Intelligent Perception and Application of SAR Target Characteristics Based on Time-frequency Analysis[J]. Journal of Radars, 2024, 13(2): 331-344. doi: 10.12000/JR23191
    [2]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [3]BI Hui, JIN Shuang, WANG Xiao, LI Yong, HAN Bing, HONG Wen. High-resolution High-dimensional Imaging of Urban Building Based on GaoFen-3 SAR Data(in English)[J]. Journal of Radars, 2022, 11(1): 40-51. doi: 10.12000/JR21113
    [4]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [5]WANG Yan, KANG Lihong, LIU Jie, KUANG Hui, SUN Hanwei, CHEN Ke, WANG Xuan, YU Haifeng, SUN Xilong, ZHENG Pengnan, LIU Shuhao, YI Tianzhu, LIU Lei, GAO Heli, SUN Bing, ZHANG Running, DING Zegang. Spaceborne SAR Non-Along-Track Imaging Mode: Opportunities and Challenges[J]. Journal of Radars, 2022, 11(6): 1131-1145. doi: 10.12000/JR22083
    [6]LI Chunsheng, YU Ze, CHEN Jie. Overview of Techniques for Improving High-resolution Spaceborne SAR Imaging and Image Quality[J]. Journal of Radars, 2019, 8(6): 717-731. doi: 10.12000/JR19085
    [7]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [8]Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image[J]. Journal of Radars, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [9]Wang Siyu, Gao Xin, Sun Hao, Zheng Xinwei, Sun Xian. An Aircraft Detection Method Based on Convolutional Neural Networks in High-Resolution SAR Images[J]. Journal of Radars, 2017, 6(2): 195-203. doi: 10.12000/JR17009
    [10]Dou Fangzheng, Diao Wenhui, Sun Xian, Zhang Yue, Fu Kun. Aircraft Reconstruction in High Resolution SAR Images Using Deep Shape Prior[J]. Journal of Radars, 2017, 6(5): 503-513. doi: 10.12000/JR17047
    [11]Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053
    [12]Wen Xuejiao, Qiu Xiaolan, You Hongjian, Lu Xiaojun. Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213-220. doi: 10.12000/JR17005
    [13]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [14]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [15]Zhang Yue-ting, Qiu Xiao-lan, Ding Chi-biao, Lei Bin, Fu Kun. The Simulation and Characteristics Analysis on High Resolution SAR Images of Bridges[J]. Journal of Radars, 2015, 4(1): 78-83. doi: 10.12000/JR14139
    [16]Xiang Yin, Zhang Kai, Hu Cheng. A NUFFT Based Step-frequency Chirp Signal High Resolution Imaging Algorithm and Target Recognition Algorithm[J]. Journal of Radars, 2015, 4(6): 639-647. doi: 10.12000/JR15083
    [17]Xu Cheng-bin, Zhou Wei, Cong Yu, Guan Jian. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone[J]. Journal of Radars, 2015, 4(3): 367-373. doi: 10.12000/JR14093
    [18]Zhao Hai-yang, Wang Xiao, Wang Wei-hua, Zheng Xin. System Design of a S-band Solid-state Transmitter in Satellite-borne SAR[J]. Journal of Radars, 2014, 3(3): 274-281. doi: 10.3724/SP.J.1300.2014.13101
    [19]Li Chun-sheng, Yang Wei, Wang Peng-bo. A Review of Spaceborne SAR Algorithm for Image Formation[J]. Journal of Radars, 2013, 2(1): 111-122. doi: 10.3724/SP.J.1300.2013.20071
    [20]Li Ning, Wang Ling, Zhang Gong. High-resolution Side-view and Top-view Imaging Method of Ship Targets Using Multistatic ISAR[J]. Journal of Radars, 2012, 1(2): 163-170. doi: 10.3724/SP.J.1300.2012.20021
  • Cited by

    Periodical cited type(3)

    1. 曾乐天,梁毅,李震宇,怀园园,邢孟道. 一种加速时域成像算法及其自聚焦方法. 西安电子科技大学学报. 2017(01): 1-5+70 .
    2. 张柘,张冰尘,洪文,吴一戎. 结合MD自聚焦算法与回波模拟算子的快速稀疏微波成像误差补偿算法. 雷达学报. 2016(01): 25-34 . 本站查看
    3. 杨箫,王军锋. 改进的DPCA和ATI技术及其对比. 现代电子技术. 2015(20): 1-4 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 79.0 %META: 79.0 %PDF: 11.3 %PDF: 11.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.2 %其他: 18.2 %其他: 0.2 %其他: 0.2 %China: 0.8 %China: 0.8 %Halfweg: 0.0 %Halfweg: 0.0 %India: 0.1 %India: 0.1 %Netherlands: 0.0 %Netherlands: 0.0 %[]: 0.1 %[]: 0.1 %上海: 0.9 %上海: 0.9 %东京都: 0.0 %东京都: 0.0 %东莞: 0.1 %东莞: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %加拿大: 0.0 %加拿大: 0.0 %包头: 0.0 %包头: 0.0 %北京: 17.3 %北京: 17.3 %北京市: 0.1 %北京市: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 1.1 %南京: 1.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.0 %台州: 0.0 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.3 %天津: 0.3 %太原: 0.0 %太原: 0.0 %安塔利亚省: 0.1 %安塔利亚省: 0.1 %安康: 0.1 %安康: 0.1 %宜昌: 0.0 %宜昌: 0.0 %宣城: 0.1 %宣城: 0.1 %密蘇里城: 0.0 %密蘇里城: 0.0 %常德: 0.0 %常德: 0.0 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.4 %广州: 0.4 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %开封: 0.1 %开封: 0.1 %张家口: 1.1 %张家口: 1.1 %张家口市: 0.1 %张家口市: 0.1 %德州: 0.1 %德州: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.3 %成都: 0.3 %成都市新都区: 0.0 %成都市新都区: 0.0 %文昌: 0.0 %文昌: 0.0 %新乡: 0.0 %新乡: 0.0 %无锡: 0.0 %无锡: 0.0 %昆明: 0.1 %昆明: 0.1 %杭州: 0.9 %杭州: 0.9 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.5 %武汉: 0.5 %汉中: 0.1 %汉中: 0.1 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %深圳: 0.4 %深圳: 0.4 %温州: 0.0 %温州: 0.0 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.2 %烟台: 0.2 %焦作: 0.0 %焦作: 0.0 %珠海: 0.1 %珠海: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.6 %石家庄: 0.6 %石家庄市: 0.1 %石家庄市: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.1 %纽约: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 8.0 %芒廷维尤: 8.0 %芝加哥: 0.3 %芝加哥: 0.3 %苏州: 0.0 %苏州: 0.0 %衢州: 0.1 %衢州: 0.1 %襄阳: 0.0 %襄阳: 0.0 %西宁: 39.8 %西宁: 39.8 %西安: 1.0 %西安: 1.0 %贵阳: 0.0 %贵阳: 0.0 %赣州: 0.0 %赣州: 0.0 %运城: 0.1 %运城: 0.1 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %酒泉: 0.1 %酒泉: 0.1 %重庆: 0.8 %重庆: 0.8 %镇江: 0.0 %镇江: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.6 %长沙: 0.6 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.2 %青岛: 0.2 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %黄冈: 0.0 %黄冈: 0.0 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他ChinaHalfwegIndiaNetherlands[]上海东京都东莞佛山保定加拿大包头北京北京市十堰南京厦门台北台州合肥呼和浩特哈尔滨哥伦布嘉兴大连天津太原安塔利亚省安康宜昌宣城密蘇里城常德平顶山广州庆阳库比蒂诺开封张家口张家口市德州惠州成都成都市新都区文昌新乡无锡昆明杭州格兰特县武汉汉中沈阳洛阳济南深圳温州湖州湘潭漯河潍坊烟台焦作珠海盐城石家庄石家庄市秦皇岛纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州襄阳西宁西安贵阳赣州运城邯郸郑州酒泉重庆镇江长春长沙阳泉青岛香港特别行政区黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1869) PDF downloads(471) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint