SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: SHU Yue, FU Dongning, CHEN Zhanye, et al. Super-resolution DOA estimation method for a moving target equipped with a millimeter-wave radar based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986–999. doi: 10.12000/JR23040

Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM

DOI: 10.12000/JR23040
Funds:  The National Natural Science Foundation of China (62001062, 62271142, 61901112)
More Information
  • Super-resolution Direction of Arrival (DOA) estimation is a critical problem related to vehicle-borne Millimeter-wave radars that needs to be solved to realize accurate target positioning and tracking. Based on the common conditions of limited array aperture, low snapshot, low signal-to-noise ratio, and coherent sources with respect to vehicle-borne scenarios, a super-resolution DOA estimation method for a moving target with an MMW radar based on Range-Doppler Atom Norm Minimize (RD-ANM) is proposed herein. First, an array for receiving signals in the range-Doppler domain is constructed based on the radar echo of the moving target. Then, the compensation vector for the Doppler coupling phase of the moving target is designed to reduce the influence of target motion on DOA estimation. Finally, a multitarget super-resolution DOA estimation method based on the atomic norm framework is proposed herein. Compared to the existing DOA estimation algorithm, the proposed algorithm can achieve higher angular resolution and estimation accuracy owing to low signal-to-noise ratio and single snapshot processing conditions, as well as robust performance in processing coherent sources without sacrificing array aperture. The effectiveness of the proposed algorithm is proven via theoretical analyses, numerical simulations, and experiments.

     

  • [1]
    ENGELS F, HEIDENREICH P, ZOUBIR A M, et al. Advances in automotive radar: A framework on computationally efficient high-resolution frequency estimation[J]. IEEE Signal Processing Magazine, 2017, 34(2): 36–46. doi: 10.1109/MSP.2016.2637700
    [2]
    GAMBA J. Fundamentals of Radar Systems[M]. GAMBA J. Radar Signal Processing for Autonomous Driving. Singapore: Springer, 2020: 1–14.
    [3]
    LI Xinrong, WANG Xiaodong, YANG Qing, et al. Signal processing for TDM MIMO FMCW millimeter-wave radar sensors[J]. IEEE Access, 2021, 9: 167959–167971. doi: 10.1109/ACCESS.2021.3137387
    [4]
    王永良, 丁前军, 李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2009.

    WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2009.
    [5]
    YARDIBI T, LI Jian, STOICA P, et al. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425–443. doi: 10.1109/TAES.2010.5417172
    [6]
    王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.

    WANG Yongliang, CHEN Hui, PENG Yingning, et al. Spatial Spectrum Estimation Theory and Algorithm[M]. Beijing: Tsinghua University Press, 2004.
    [7]
    YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792
    [8]
    WU Xiaohuan, ZHU Weiping, and YAN Jun. A toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226
    [9]
    ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi: 10.1016/j.sigpro.2019.04.024
    [10]
    吕明久, 马建朝, 韦旭, 等. 基于矩阵化原子范数的高频雷达距离-多普勒二维估计方法[J]. 电子学报, 2022, 50(5): 1150–1158. doi: 10.12263/DZXB.20210479

    LÜ Mingjiu, MA Jianchao, WEI Xu, et al. Two-dimensional Range-Doppler estimation method for high frequency radar based on matrix atomic norm[J]. Acta Electronica Sinica, 2022, 50(5): 1150–1158. doi: 10.12263/DZXB.20210479
    [11]
    CHANDRASEKARAN V, RECHT B, PARRILO P A, et al. The convex geometry of linear inverse problems[J]. Foundations of Computational Mathematics, 2012, 12(6): 805–849. doi: 10.1007/s10208-012-9135-7
    [12]
    陈栩杉, 张雄伟, 杨吉斌, 等. 如何解决基不匹配问题: 从原子范数到无网格压缩感知[J]. 自动化学报, 2016, 42(3): 335–346. doi: 10.16383/j.aas.2016.c150539

    CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: From atomic norm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335–346. doi: 10.16383/j.aas.2016.c150539
    [13]
    TANG Gongguo, BHASKAR N B, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
    [14]
    BHASKAR B N, TANG Gongguo, and RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987–5999. doi: 10.1109/TSP.2013.2273443
    [15]
    YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541
    [16]
    YANG Zai, LI Jian, STOICA P, et al. Sparse Methods for Direction-of-arrival Estimation[M]. CHELLAPPA R and THEODORIDIS S. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. Amsterdam: Elsevier, 2018: 509–581. doi: 10.1016/B978-0-12-811887-0.00011-0.
    [17]
    HUANG Yan, ZHANG Hui, GUO Kunpeng, et al. Density-based vehicle detection approach for automotive millimeter-wave radar[C]. The IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020: 534–537.
    [18]
    BARAL A B and TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 980–995. doi: 10.1109/JSTSP.2021.3073572
    [19]
    HALPERN D, WILSON H B, and TURCOTTE L H. Chapter 6: Fourier Series and the Fast Fourier Transform[M]. WILSON H B, TURCOTTE L H, and HALPERN D. Advanced Mathematics and Mechanics Applications Using MATLAB. 3rd ed. New York: Chapman and Hall/CRC, 2002.
    [20]
    XU Zhihuo, BAKER C J, and POONI S. Range and Doppler cell migration in wideband automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5527–5536. doi: 10.1109/TVT.2019.2912852
    [21]
    赵春雷, 王亚梁, 毛兴鹏, 等. 基于压缩感知的高频地波雷达二维DOA估计[J]. 系统工程与电子技术, 2017, 39(4): 733–741. doi: 10.3969/j.issn.1001-506X.2017.04.07

    ZHAO Chunlei, WANG Yaliang, MAO Xingpeng, et al. Compressive sensing based two-dimensional DOA estimation for high frequency surface wave radar[J]. Systems Engineering and Electronics, 2017, 39(4): 733–741. doi: 10.3969/j.issn.1001-506X.2017.04.07
    [22]
    YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi: 10.1109/TIT.2016.2553041
    [23]
    RODRÍGUEZ A F, DE SANTIAGO RODRIGO L, GUILLÉN E L, et al. Coding Prony’s method in MATLAB and applying it to biomedical signal filtering[J]. BMC Bioinformatics, 2018, 19(1): 451. doi: 10.1186/s12859-018-2473-y
    [24]
    吕明久, 陈文峰, 徐芳, 等. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法[J]. 电子与信息学报, 2021, 43(8): 2267–2275. doi: 10.11999/JEIT200501

    LÜ Mingjiu, CHEN Wenfeng, XU Fang, et al. One dimensional high resolution range imaging method of stepped frequency ISAR based on atomic norm minimization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2267–2275. doi: 10.11999/JEIT200501
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]LI Nian, LIU Jie, YU Junming, ZHU Zhihao, LIU Jianguang, GUO Shisheng, CHEN Jiahui, CUI Guolong, KONG Lingjiang, YANG Xiaobo. Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation[J]. Journal of Radars, 2025, 14(2): 309-321. doi: 10.12000/JR24220
    [3]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [4]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [5]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [6]DU Lan, CHEN Xiaoyang, SHI Yu, XUE Shikun, XIE Meng. MMRGait-1.0: A Radar Time-frequency Spectrogram Dataset for Gait Recognition under Multi-view and Multi-wearing Conditions[J]. Journal of Radars, 2023, 12(4): 892-905. doi: 10.12000/JR22227
    [7]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [8]HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119
    [9]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [10]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [11]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [12]YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, LU Dawei, DENG Bin, MA Yanxin. Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656-664. doi: 10.12000/JR21015
    [13]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [14]Xie Pengfei, Zhang Lei, Wu Zhenhua. A Three-dimensional Imaging Algorithm Fusion with ω-K and BP Algorithm for Millimeter-wave Cylindrical Scanning[J]. Journal of Radars, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [15]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [16]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [17]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [18]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [19]Liu Hai-bo, Sheng Meng-meng, Yang Xiao-qian. A Study of MMW Collision Avoidance Radar System for Trains[J]. Journal of Radars, 2013, 2(2): 234-238. doi: 10.3724/SP.J.1300.2013.20091
    [20]Qiao Ming, Pan Zhou-hao, Liu Bo, Li Dao-jing. Analysis and Compensation Method Research on the Channel Leakage Error for Three-baseline MMWInSAR[J]. Journal of Radars, 2013, 2(1): 68-76. doi: 10.3724/SP.J.1300.2013.13008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 48.9 %META: 48.9 %PDF: 14.9 %PDF: 14.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 1.8 %其他: 1.8 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Halfweg: 0.1 %Halfweg: 0.1 %Herndon: 0.1 %Herndon: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 4.6 %上海: 4.6 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.1 %仙桃: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.4 %内江: 0.4 %利斯本: 0.2 %利斯本: 0.2 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %包头: 0.1 %包头: 0.1 %北京: 9.3 %北京: 9.3 %十堰: 0.1 %十堰: 0.1 %南京: 5.8 %南京: 5.8 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡梅尔: 0.3 %卡梅尔: 0.3 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.7 %合肥: 1.7 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.2 %咸宁: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.5 %威海: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.3 %宁波: 0.3 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 2.1 %广州: 2.1 %庆阳: 0.2 %庆阳: 0.2 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.5 %开封: 0.5 %张家口: 1.2 %张家口: 1.2 %张家界: 0.2 %张家界: 0.2 %徐州: 0.4 %徐州: 0.4 %惠州: 0.2 %惠州: 0.2 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 4.8 %成都: 4.8 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新竹: 0.3 %新竹: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.9 %昆明: 1.9 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.1 %杭州: 3.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武威: 0.1 %武威: 0.1 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %泰州: 0.1 %泰州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.5 %深圳: 2.5 %清远: 0.3 %清远: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.7 %绍兴: 0.7 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %自贡: 0.3 %自贡: 0.3 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %茂名: 0.1 %茂名: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 3.4 %西安: 3.4 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 1.2 %重庆: 1.2 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %首尔特别: 0.4 %首尔特别: 0.4 %香港: 0.1 %香港: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaHalfwegHerndon[]三亚上海东京东京都东莞东营丹东亳州仙桃伦敦佛山兰州兰辛内江利斯本加利福尼亚州包头北京十堰南京南充南平南昌南通卡拉奇卡梅尔印多尔厦门台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布唐山嘉兴大连天津太原威海娄底宁波安庆安康宜宾宣城密蘇里城巴中布鲁塞尔常州常德平顶山广州庆阳库比蒂诺廊坊开封张家口张家界徐州惠州慕尼黑成都扬州揭阳新乡新竹无锡昆明晋城普林斯顿朝阳杭州格兰特县桂林武威武汉汕头江门沈阳泰安泰州泸州洛杉矶洛阳济南海口淄博淮南深圳清远温州渭南湖州湘潭湛江漯河烟台白城石家庄福州秦皇岛米兰纽约绍兴绵阳罗马自贡芒廷维尤芝加哥苏州茂名葫芦岛蚌埠衡阳襄阳西宁西安西雅图贵阳费利蒙运城邯郸邵阳郑州重庆金昌长春长沙阿姆斯特丹青岛首尔特别香港黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2025) PDF downloads(463) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint