SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: SHU Yue, FU Dongning, CHEN Zhanye, et al. Super-resolution DOA estimation method for a moving target equipped with a millimeter-wave radar based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986–999. doi: 10.12000/JR23040

Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM

DOI: 10.12000/JR23040
Funds:  The National Natural Science Foundation of China (62001062, 62271142, 61901112)
More Information
  • Super-resolution Direction of Arrival (DOA) estimation is a critical problem related to vehicle-borne Millimeter-wave radars that needs to be solved to realize accurate target positioning and tracking. Based on the common conditions of limited array aperture, low snapshot, low signal-to-noise ratio, and coherent sources with respect to vehicle-borne scenarios, a super-resolution DOA estimation method for a moving target with an MMW radar based on Range-Doppler Atom Norm Minimize (RD-ANM) is proposed herein. First, an array for receiving signals in the range-Doppler domain is constructed based on the radar echo of the moving target. Then, the compensation vector for the Doppler coupling phase of the moving target is designed to reduce the influence of target motion on DOA estimation. Finally, a multitarget super-resolution DOA estimation method based on the atomic norm framework is proposed herein. Compared to the existing DOA estimation algorithm, the proposed algorithm can achieve higher angular resolution and estimation accuracy owing to low signal-to-noise ratio and single snapshot processing conditions, as well as robust performance in processing coherent sources without sacrificing array aperture. The effectiveness of the proposed algorithm is proven via theoretical analyses, numerical simulations, and experiments.

     

  • [1]
    ENGELS F, HEIDENREICH P, ZOUBIR A M, et al. Advances in automotive radar: A framework on computationally efficient high-resolution frequency estimation[J]. IEEE Signal Processing Magazine, 2017, 34(2): 36–46. doi: 10.1109/MSP.2016.2637700
    [2]
    GAMBA J. Fundamentals of Radar Systems[M]. GAMBA J. Radar Signal Processing for Autonomous Driving. Singapore: Springer, 2020: 1–14.
    [3]
    LI Xinrong, WANG Xiaodong, YANG Qing, et al. Signal processing for TDM MIMO FMCW millimeter-wave radar sensors[J]. IEEE Access, 2021, 9: 167959–167971. doi: 10.1109/ACCESS.2021.3137387
    [4]
    王永良, 丁前军, 李荣锋. 自适应阵列处理[M]. 北京: 清华大学出版社, 2009.

    WANG Yongliang, DING Qianjun, and LI Rongfeng. Adaptive Array Processing[M]. Beijing: Tsinghua University Press, 2009.
    [5]
    YARDIBI T, LI Jian, STOICA P, et al. Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425–443. doi: 10.1109/TAES.2010.5417172
    [6]
    王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004.

    WANG Yongliang, CHEN Hui, PENG Yingning, et al. Spatial Spectrum Estimation Theory and Algorithm[M]. Beijing: Tsinghua University Press, 2004.
    [7]
    YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792
    [8]
    WU Xiaohuan, ZHU Weiping, and YAN Jun. A toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226
    [9]
    ZHANG Zhe, WANG Yue, and TIAN Zhi. Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization[J]. Signal Processing, 2019, 163: 95–106. doi: 10.1016/j.sigpro.2019.04.024
    [10]
    吕明久, 马建朝, 韦旭, 等. 基于矩阵化原子范数的高频雷达距离-多普勒二维估计方法[J]. 电子学报, 2022, 50(5): 1150–1158. doi: 10.12263/DZXB.20210479

    LÜ Mingjiu, MA Jianchao, WEI Xu, et al. Two-dimensional Range-Doppler estimation method for high frequency radar based on matrix atomic norm[J]. Acta Electronica Sinica, 2022, 50(5): 1150–1158. doi: 10.12263/DZXB.20210479
    [11]
    CHANDRASEKARAN V, RECHT B, PARRILO P A, et al. The convex geometry of linear inverse problems[J]. Foundations of Computational Mathematics, 2012, 12(6): 805–849. doi: 10.1007/s10208-012-9135-7
    [12]
    陈栩杉, 张雄伟, 杨吉斌, 等. 如何解决基不匹配问题: 从原子范数到无网格压缩感知[J]. 自动化学报, 2016, 42(3): 335–346. doi: 10.16383/j.aas.2016.c150539

    CHEN Xushan, ZHANG Xiongwei, YANG Jibin, et al. How to overcome basis mismatch: From atomic norm to gridless compressive sensing[J]. Acta Automatica Sinica, 2016, 42(3): 335–346. doi: 10.16383/j.aas.2016.c150539
    [13]
    TANG Gongguo, BHASKAR N B, SHAH P, et al. Compressed sensing off the grid[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7465–7490. doi: 10.1109/TIT.2013.2277451
    [14]
    BHASKAR B N, TANG Gongguo, and RECHT B. Atomic norm denoising with applications to line spectral estimation[J]. IEEE Transactions on Signal Processing, 2013, 61(23): 5987–5999. doi: 10.1109/TSP.2013.2273443
    [15]
    YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541
    [16]
    YANG Zai, LI Jian, STOICA P, et al. Sparse Methods for Direction-of-arrival Estimation[M]. CHELLAPPA R and THEODORIDIS S. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. Amsterdam: Elsevier, 2018: 509–581. doi: 10.1016/B978-0-12-811887-0.00011-0.
    [17]
    HUANG Yan, ZHANG Hui, GUO Kunpeng, et al. Density-based vehicle detection approach for automotive millimeter-wave radar[C]. The IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), Shenzhen, China, 2020: 534–537.
    [18]
    BARAL A B and TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 980–995. doi: 10.1109/JSTSP.2021.3073572
    [19]
    HALPERN D, WILSON H B, and TURCOTTE L H. Chapter 6: Fourier Series and the Fast Fourier Transform[M]. WILSON H B, TURCOTTE L H, and HALPERN D. Advanced Mathematics and Mechanics Applications Using MATLAB. 3rd ed. New York: Chapman and Hall/CRC, 2002.
    [20]
    XU Zhihuo, BAKER C J, and POONI S. Range and Doppler cell migration in wideband automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5527–5536. doi: 10.1109/TVT.2019.2912852
    [21]
    赵春雷, 王亚梁, 毛兴鹏, 等. 基于压缩感知的高频地波雷达二维DOA估计[J]. 系统工程与电子技术, 2017, 39(4): 733–741. doi: 10.3969/j.issn.1001-506X.2017.04.07

    ZHAO Chunlei, WANG Yaliang, MAO Xingpeng, et al. Compressive sensing based two-dimensional DOA estimation for high frequency surface wave radar[J]. Systems Engineering and Electronics, 2017, 39(4): 733–741. doi: 10.3969/j.issn.1001-506X.2017.04.07
    [22]
    YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi: 10.1109/TIT.2016.2553041
    [23]
    RODRÍGUEZ A F, DE SANTIAGO RODRIGO L, GUILLÉN E L, et al. Coding Prony’s method in MATLAB and applying it to biomedical signal filtering[J]. BMC Bioinformatics, 2018, 19(1): 451. doi: 10.1186/s12859-018-2473-y
    [24]
    吕明久, 陈文峰, 徐芳, 等. 基于原子范数最小化的步进频率ISAR一维高分辨距离成像方法[J]. 电子与信息学报, 2021, 43(8): 2267–2275. doi: 10.11999/JEIT200501

    LÜ Mingjiu, CHEN Wenfeng, XU Fang, et al. One dimensional high resolution range imaging method of stepped frequency ISAR based on atomic norm minimization[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2267–2275. doi: 10.11999/JEIT200501
  • Relative Articles

    [1]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [2]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [3]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [4]ZHANG Jiaxiang, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. An Intelligent Frequency Decision Method for a Frequency Agile Radar Based on Deep Reinforcement Learning[J]. Journal of Radars, 2024, 13(1): 227-239. doi: 10.12000/JR23197
    [5]CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140
    [6]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [7]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [8]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [9]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [10]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [11]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [12]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [13]XIE Feng, LIU Huanyu, HU Xikun, ZHONG Ping, LI Junbao. A Radar Anti-jamming Method under Multi-jamming Scenarios Based on Deep Reinforcement Learning in Complex Domains[J]. Journal of Radars, 2023, 12(6): 1290-1304. doi: 10.12000/JR23139
    [14]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [15]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [16]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [17]ZHANG Dalin, YI Wei, KONG Lingjiang. Optimal Joint Allocation of Multijammer Resources for Jamming Netted Radar System[J]. Journal of Radars, 2021, 10(4): 595-606. doi: 10.12000/JR21071
    [18]Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
    [19]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [20]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
  • Cited by

    Periodical cited type(13)

    1. 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 .
    2. 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 .
    3. 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 .
    4. 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 .
    5. 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . 本站查看
    6. 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . 本站查看
    7. 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 .
    8. 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 .
    9. 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 .
    10. 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . 本站查看
    11. 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 .
    12. 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . 本站查看
    13. 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 .

    Other cited types(16)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.7 %FULLTEXT: 36.7 %META: 58.2 %META: 58.2 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.4 %其他: 0.4 %Central District: 0.0 %Central District: 0.0 %China: 0.5 %China: 0.5 %Falls Church: 0.0 %Falls Church: 0.0 %India: 0.0 %India: 0.0 %Jonquiere: 0.1 %Jonquiere: 0.1 %Rochester: 0.0 %Rochester: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.7 %[]: 0.7 %三亚: 0.1 %三亚: 0.1 %上海: 1.1 %上海: 1.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.3 %临沂: 0.3 %丹东: 0.0 %丹东: 0.0 %丽江: 0.0 %丽江: 0.0 %亳州: 0.1 %亳州: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区包头: 0.1 %内蒙古自治区包头: 0.1 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.6 %北京: 15.6 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 1.3 %南京: 1.3 %南京市: 0.0 %南京市: 0.0 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.2 %厦门: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.2 %合肥: 0.2 %合肥市: 0.0 %合肥市: 0.0 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哈尔滨市: 0.0 %哈尔滨市: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.2 %四平: 0.2 %大同: 0.1 %大同: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %威海: 0.0 %威海: 0.0 %孟买: 0.2 %孟买: 0.2 %宁夏回族自治区中卫: 0.0 %宁夏回族自治区中卫: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.9 %广州: 0.9 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.9 %张家口: 0.9 %张家界: 0.0 %张家界: 0.0 %德罕: 0.2 %德罕: 0.2 %德里: 0.1 %德里: 0.1 %成都: 0.4 %成都: 0.4 %成都市: 0.0 %成都市: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.5 %新乡: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.0 %济宁: 0.0 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.1 %潍坊: 0.1 %潍坊市寿光: 0.1 %潍坊市寿光: 0.1 %烟台: 0.2 %烟台: 0.2 %玉林: 0.1 %玉林: 0.1 %珠海: 4.0 %珠海: 4.0 %白银: 0.0 %白银: 0.0 %益阳: 0.0 %益阳: 0.0 %石家庄: 0.2 %石家庄: 0.2 %石家庄市: 0.0 %石家庄市: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %菏泽: 0.0 %菏泽: 0.0 %营口: 0.1 %营口: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 35.0 %西宁: 35.0 %西安: 1.0 %西安: 1.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %郴州: 0.0 %郴州: 0.0 %重庆: 0.2 %重庆: 0.2 %重庆市: 0.0 %重庆市: 0.0 %钱德勒: 0.1 %钱德勒: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %雅加达: 0.1 %雅加达: 0.1 %青岛: 1.5 %青岛: 1.5 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他Central DistrictChinaFalls ChurchIndiaJonquiereRochesterTaiwan, ChinaTiruchiUnited States[]三亚上海东莞临汾临沂丹东丽江亳州佛山保定信阳六安兰州兰辛内蒙古自治区包头加利福尼亚包头北京北京市北海十堰南京南京市南充南宁南昌南通南阳厦门台北台州台湾省合肥合肥市呼和浩特咸阳哈尔滨哈尔滨市哥伦布嘉兴四平大同大连天津威海孟买宁夏回族自治区中卫宁波安康宜春宝鸡宣城宿迁巴彦淖尔常州平顶山广州庆阳库比蒂诺延安开封张家口张家界德罕德里成都成都市扬州新乡无锡昆明昌吉晋城普洱杭州枣庄株洲格兰特县榆林武汉沈阳泰米尔纳德洛阳济南济宁海口淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊潍坊市寿光烟台玉林珠海白银益阳石家庄石家庄市秦皇岛纽约绵阳美国伊利诺斯芝加哥舟山芒廷维尤芜湖芝加哥苏州莆田莫斯科菏泽营口衡水衡阳衢州西宁西安诺沃克贵港贵阳赤峰运城连云港邢台邯郸郑州郴州重庆重庆市钱德勒长春长沙长治阳泉雅加达青岛香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2032) PDF downloads(463) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint