WANG Yingjie, WANG Robert, YU Weidong, et al. See-Earth: SAR constellation with dense time-series for multi-dimensional environmental monitoring of the earth[J]. Journal of Radars, 2021, 10(6): 842–864. doi: 10.12000/JR21176
Citation: ZHU Peikun, LIANG Jing, LUO Zihan, et al. Waveform selection method of cognitive radar target tracking based on reinforcement learning[J]. Journal of Radars, 2023, 12(2): 412–424. doi: 10.12000/JR22239

Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning

DOI: 10.12000/JR22239
Funds:  The National Natural Science Foundation of China (61731006), Sichuan Natural Science Foundation (2023NSFSC0450), The 111 Project under Grant (B17008)
More Information
  • Corresponding author: LIANG Jing, liangjing@uestc.edu.cn
  • Received Date: 2022-12-21
  • Rev Recd Date: 2023-02-08
  • Available Online: 2023-02-11
  • Publish Date: 2023-02-22
  • Based on the obtained knowledge through ceaseless interaction with the environment and learning from the experience, cognitive radar continuously adjusts its waveform, parameters, and illumination strategies to achieve robust target tracking in complex and changing scenarios. Its waveform design has been receiving attention to improve tracking performance. In this paper, we propose a novel framework of cognitive radar waveform selection for the tracking of high-maneuvering targets. The framework considers the combination of Constant Velocity (CV), Constant Acceleration (CA), and Coordinate Turn (CT) motions. We also design Criterion-Based Optimization (CBO) and Entropy Reward Q-Learning (ERQL) methods to perform waveform selection based on this framework. To provide the optimum target tracking performance, it merges the radar and target into a closed loop, updating the broadcast waveform in real-time as the target state changes. The suggested ERQL technique achieves about the same tracking performance as the CBO while using much less processing time than the CBO, according to numerical results. The proposed ERQL method significantly increases the tracking accuracy of moving targets as compared to the fixed parameter approach.

     

  • [1]
    YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2021, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [2]
    SUN Zhichao, YEN G G, WU Junjie, et al. Mission planning for energy-efficient passive UAV radar imaging system based on substage division collaborative search[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 275–288. doi: 10.1109/TCYB.2021.3090662
    [3]
    LIANG Jing and LIANG Qilian. Design and analysis of distributed radar sensor networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(11): 1926–1933. doi: 10.1109/TPDS.2011.45
    [4]
    HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [5]
    LUO Zihan, LIANG Jing, and XU Zekai. Intelligent waveform optimization for target tracking in radar sensor networks[C]. 10th International Conference on Communications, Signal Processing, and Systems (CSPS), Changbaishan, China, 2021: 165–172.
    [6]
    HAYKIN S. Cognition is the key to the next generation of radar systems[C]. 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island, USA, 2009: 463–467.
    [7]
    HAYKIN S, ZIA A, ARASARATNAM I, et al. Cognitive tracking radar[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 1467–1470.
    [8]
    GUERCI J R. Cognitive radar: A knowledge-aided fully adaptive approach[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 1365–1370.
    [9]
    GUERCI J R, GUERCI R M, RANAGASWAMY M, et al. CoFAR: Cognitive fully adaptive radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 984–989.
    [10]
    GUERCI J R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach[M]. 2nd ed. Norwood, USA: Artech House, 2020.
    [11]
    BELL K L, BAKER C J, SMITH G E, et al. Cognitive radar framework for target detection and tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1427–1439. doi: 10.1109/JSTSP.2015.2465304
    [12]
    SMITH G E, CAMMENGA Z, MITCHELL A, et al. Experiments with cognitive radar[C]. 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 2015: 293–296.
    [13]
    ZHANG Lingzhao and JIANG Min. Cognitive radar target tracking algorithm based on waveform selection[C]. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2021: 1506–1510.
    [14]
    HULEIHEL W, TABRIKIAN J, and SHAVIT R. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5075–5089. doi: 10.1109/TSP.2013.2269045
    [15]
    ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [16]
    FENG Shuo and HAYKIN S. Cognitive risk control for transmit-waveform selection in vehicular radar systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9542–9556. doi: 10.1109/TVT.2018.2857718
    [17]
    SAVAGE C O and MORAN B. Waveform selection for maneuvering targets within an IMM framework[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1205–1214. doi: 10.1109/TAES.2007.4383612
    [18]
    CLEMENTE C, SHOROKHOV I, PROUDLER I, et al. Radar waveform libraries using fractional Fourier transform[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 855–858.
    [19]
    ZHAO Dehua, WEI Yinsheng, and LIU Yongtan. Real-time waveform adaption in spectral crowed environment using a sub-waveforms-based library[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
    [20]
    NGUYEN N H, DOGANCAY K, and DAVIS L M. Adaptive waveform selection for multistatic target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 688–701. doi: 10.1109/TAES.2014.130723
    [21]
    ROMAN J. R., GARNHAM J. W. and ANTONIK P., Information Theoretic Criterion for Waveform Selection. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006., Waltham, MA, USA, 2006, 444-448, doi: 10.1109/SAM.2006.1706172.
    [22]
    CAO Xin, ZHENG Zhe, and AN Di. Adaptive waveform selection algorithm based on reinforcement learning for cognitive radar[C]. 2019 IEEE 2nd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE), Shenyang, China, 2019: 208–213.
    [23]
    HAN Bo, HUANG Hanqiao, LEI Lei, et al. An improved IMM algorithm based on STSRCKF for maneuvering target tracking[J]. IEEE Access, 2019, 7: 57795–57804. doi: 10.1109/ACCESS.2019.2912983
    [24]
    BLACKMAN S S, DEMPSTER R J, BUSCH M T, et al. IMM/MHT solution to radar benchmark tracking problem[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 730–738. doi: 10.1109/7.766953
    [25]
    KERSHAW D J and EVANS R J. Optimal waveform selection for tracking systems[J]. IEEE Transactions on Information Theory, 1994, 40(5): 1536–1550. doi: 10.1109/18.333866
    [26]
    SIRA S P, PAPANDREOU-SUPPAPPOLA A, and MORRELL D. Advances in Waveform-Agile Sensing for Tracking[M]. Cham: Springer, 2009: 59–60.
    [27]
    WILLIAMS J L. Information theoretic sensor management[D]. [Ph. D. dissertation], Massachusetts Institute of Technology, 2007: 41–42.
    [28]
    ATHANS M and TSE E. A direct derivation of the optimal linear filter using the maximum principle[J]. IEEE Transactions on Automatic Control, 1967, 12(6): 690–698. doi: 10.1109/TAC.1967.1098732
    [29]
    THORNTON C E, KOZY M A, BUEHRER R M, et al. Deep reinforcement learning control for radar detection and tracking in congested spectral environments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1335–1349. doi: 10.1109/TCCN.2020.3019605
    [30]
    WANG Qing, QIAO Yanming, and GAO Lirong. A cognitive radar waveform optimization approach based on deep reinforcement learning[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–6.
  • Relative Articles

    [1]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [2]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [3]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [4]BI Hui, JIN Shuang, WANG Xiao, LI Yong, HAN Bing, HONG Wen. High-resolution High-dimensional Imaging of Urban Building Based on GaoFen-3 SAR Data(in English)[J]. Journal of Radars, 2022, 11(1): 40-51. doi: 10.12000/JR21113
    [5]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [6]TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060
    [7]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [8]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [9]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [10]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [11]BI Hui, ZHANG Bingchen, HONG Wen, WU Yirong. Verification of Complex Image Based Sparse SAR Imaging Method on GaoFen-3 Dataset[J]. Journal of Radars, 2020, 9(1): 123-130. doi: 10.12000/JR19092
    [12]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [13]Liu Zeyu, Liu Bin, Guo Weiwei, Zhang Zenghui, Zhang Bo, Zhou Yueheng, Ma Gao, Yu Wenxian. Ship Detection in GF-3 NSC Mode SAR Images[J]. Journal of Radars, 2017, 6(5): 473-482. doi: 10.12000/JR17059
    [14]Ding Chibiao, Liu Jiayin, Lei Bin, Qiu Xiaolan. Preliminary Exploration of Systematic Geolocation Accuracy of GF-3 SAR Satellite System[J]. Journal of Radars, 2017, 6(1): 11-16. doi: 10.12000/JR17024
    [15]Fan Jianchao, Wang Deyi, Zhao Jianhua, Song Derui, Han Min, Jiang Dawei. National Sea Area Use Dynamic Monitoring Based on GF-3 SAR Imagery[J]. Journal of Radars, 2017, 6(5): 456-472. doi: 10.12000/JR17080
    [16]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [17]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [18]Yu Wei-dong, Yang Ru-liang, Deng Yun-kai, Zhao Feng-jun, Lei Hong. The Load Design and Implementation of HJ-1-C Space-borne SAR[J]. Journal of Radars, 2014, 3(3): 256-265. doi: 10.3724/SP.J.1300.2014.14020
    [19]Zhang Hong-min, Jin Guo-wang, Xu qing, Li Xiang-ying. Accurate Positioning with Stereo SAR Images and One Ground Control Point[J]. Journal of Radars, 2014, 3(1): 85-91. doi: 10.3724/SP.J.1300.2014.13138
    [20]Li Hai-ying, Zhang Shan-shan, Li Shi-qiang, Zhang Hua-chun. Coherent Performance Analysis of the HJ-1-C Synthetic Aperture Radar[J]. Journal of Radars, 2014, 3(3): 320-325. doi: 10.3724/SP.J.1300.2014.13060
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 29.3 %FULLTEXT: 29.3 %META: 63.2 %META: 63.2 %PDF: 7.5 %PDF: 7.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 0.6 %其他: 0.6 %China: 0.2 %China: 0.2 %Nahant: 0.2 %Nahant: 0.2 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.1 %Seattle: 0.1 %Thane: 0.2 %Thane: 0.2 %[]: 0.1 %[]: 0.1 %上海: 1.4 %上海: 1.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.3 %东莞: 0.3 %中卫: 0.6 %中卫: 0.6 %临汾: 0.1 %临汾: 0.1 %临沂: 0.1 %临沂: 0.1 %丹东: 0.1 %丹东: 0.1 %九江: 0.3 %九江: 0.3 %伊春: 0.1 %伊春: 0.1 %伊犁: 0.1 %伊犁: 0.1 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.1 %保定: 0.1 %克利夫顿: 0.1 %克利夫顿: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %兰辛: 0.1 %兰辛: 0.1 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.1 %内江: 0.1 %北京: 11.3 %北京: 11.3 %十堰: 0.1 %十堰: 0.1 %南京: 1.4 %南京: 1.4 %南充: 0.1 %南充: 0.1 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %卡拉奇: 0.1 %卡拉奇: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.2 %合肥: 0.2 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %商丘: 0.1 %商丘: 0.1 %夏洛特: 0.1 %夏洛特: 0.1 %大同: 0.1 %大同: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 0.3 %威海: 0.3 %安康: 0.3 %安康: 0.3 %宣城: 0.6 %宣城: 0.6 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 2.3 %张家口: 2.3 %徐州: 0.1 %徐州: 0.1 %德罕: 0.1 %德罕: 0.1 %忠清南道: 0.2 %忠清南道: 0.2 %忻州: 0.1 %忻州: 0.1 %成都: 1.2 %成都: 1.2 %扬州: 0.3 %扬州: 0.3 %无锡: 0.7 %无锡: 0.7 %昆明: 0.6 %昆明: 0.6 %昭通: 0.1 %昭通: 0.1 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.1 %本溪: 0.1 %杭州: 0.5 %杭州: 0.5 %柳州: 0.1 %柳州: 0.1 %武汉: 1.5 %武汉: 1.5 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.3 %洛阳: 0.3 %济宁: 0.1 %济宁: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.5 %深圳: 0.5 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.9 %湘潭: 0.9 %漯河: 0.7 %漯河: 0.7 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %盘锦: 0.4 %盘锦: 0.4 %石家庄: 0.7 %石家庄: 0.7 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 0.1 %纽约: 0.1 %罗奥尔凯埃: 0.1 %罗奥尔凯埃: 0.1 %舟山: 0.1 %舟山: 0.1 %芒廷维尤: 32.7 %芒廷维尤: 32.7 %芝加哥: 0.7 %芝加哥: 0.7 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.2 %莫斯科: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.5 %衡水: 0.5 %西宁: 15.3 %西宁: 15.3 %西安: 1.6 %西安: 1.6 %诺沃克: 0.5 %诺沃克: 0.5 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.1 %费利蒙: 0.1 %达州: 0.2 %达州: 0.2 %运城: 0.6 %运城: 0.6 %遂宁: 0.1 %遂宁: 0.1 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.8 %郑州: 1.8 %鄂州: 0.4 %鄂州: 0.4 %重庆: 0.4 %重庆: 0.4 %金华: 0.2 %金华: 0.2 %银川: 0.1 %银川: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.0 %长沙: 2.0 %阜新: 0.1 %阜新: 0.1 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.1 %鞍山: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %其他其他ChinaNahantRochesterSeattleThane[]上海东京都东莞中卫临汾临沂丹东九江伊春伊犁佳木斯保定克利夫顿克拉玛依兰辛兴安盟内江北京十堰南京南充南宁南昌南通南阳卡拉奇台北台州合肥吉林呼和浩特咸阳哈尔滨商丘夏洛特大同大连天津太原威海安康宣城广州库比蒂诺张家口徐州德罕忠清南道忻州成都扬州无锡昆明昭通晋城朝阳本溪杭州柳州武汉沈阳洛阳济宁海口淄博淮南深圳渭南湖州湘潭漯河烟台玉林珠海盘锦石家庄秦皇岛纽约罗奥尔凯埃舟山芒廷维尤芝加哥苏州莫斯科葫芦岛蚌埠衡水西宁西安诺沃克贵阳费利蒙达州运城遂宁邯郸郑州鄂州重庆金华银川长春长沙阜新青岛鞍山马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1745) PDF downloads(345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint