Volume 11 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121
Citation: DU Lan, WANG Zilin, GUO Yuchen, et al. Adaptive region proposal selection for SAR target detection using reinforcement learning[J]. Journal of Radars, 2022, 11(5): 884–896. doi: 10.12000/JR22121

Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning

doi: 10.12000/JR22121
Funds:  The National Natural Science Foundation of China (U21B2039)
More Information
  • Corresponding author: DU Lan, dulan@mail.xidian.edu.cn
  • Received Date: 2022-06-22
  • Accepted Date: 2022-08-25
  • Rev Recd Date: 2022-08-24
  • Available Online: 2022-08-26
  • Publish Date: 2022-09-02
  • Compared with optical images, the background clutter has a greater impact on feature extraction in Synthetic Aperture Radar (SAR) images. Due to the traditional redundant region proposals on the entire feature map, these algorithms generate large quantities of false alarms under the influence of clutter in SAR images, thereby lowering the target detection accuracy. To address this issue, this study proposes a Faster R-CNN model-based SAR target detection method, which uses reinforcement learning to realize adaptive region proposal selection. This method can adaptively locate areas that may contain targets on the feature map using the sequential decision-making characteristic of reinforcement learning and simultaneously adjust the scope of the next search area according to previous search results using distance constraints in reinforcement learning. Thus, this method can reduce the impact of complex background clutter and the computation of reinforcement learning. The experimental results based on the measured data indicate that the proposed method improves the detection performance.

     

  • loading
  • [1]
    BURL M C, OWIRKA G J, and NOVAK L M. Texture discrimination in synthetic aperture radar imagery[C]. Twenty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1989: 399–400.
    [2]
    NOVAK L M, BURL M C, and IRVING W W. Optimal polarimetric processing for enhanced target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 234–244. doi: 10.1109/7.249129
    [3]
    AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1872–1890. doi: 10.1109/TAES.2021.3050654
    [4]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [5]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    [6]
    GIRSHICK R. Fast R-CNN[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    [7]
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.
    [8]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    [9]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [10]
    杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032

    DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
    [11]
    AI Jiaqiu, TIAN Ruitian, LUO Qiwu, et al. Multi-scale rotation-invariant Haar-like feature integrated CNN-based ship detection algorithm of multiple-target environment in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10070–10087. doi: 10.1109/TGRS.2019.2931308
    [12]
    ZHANG Shaoming, WU Ruize, XU Kunyuan, et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(6): 631. doi: 10.3390/rs11060631
    [13]
    杜兰, 魏迪, 李璐, 等. 基于半监督学习的SAR目标检测网络[J]. 电子与信息学报, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783

    DU Lan, WEI Di, LI Lu, et al. SAR target detection network via semi-supervised learning[J]. Journal of Electronics &Information Technology, 2020, 42(1): 154–163. doi: 10.11999/JEIT190783
    [14]
    SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: MIT Press, 2018: 1–526.
    [15]
    CHUNG J. Playing Atari with deep reinforcement learning[J]. arXiv: 1312.5602.
    [16]
    BUENO M B, GIRO-I-NIETO X, MARQUÉS F, et al. Hierarchical Object Detection with Deep Reinforcement Learning[M]. HEMANTH D J and ESTRELA V V. Deep Learning for Image Processing Applications. 2017: 164–1276.
    [17]
    CAICEDO J C and LAZEBNIK S. Active object localization with deep reinforcement learning[C]. 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 2488–2496.
    [18]
    PIRINEN A and SMINCHISESCU C. Deep reinforcement learning of region proposal networks for object detection[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6945–6954.
    [19]
    CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv: 1412.3555, 2014.
    [20]
    WILLIAMS R J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3/4): 229–256. doi: 10.1023/A:1022672621406
    [21]
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [22]
    GUTIERREZ D. MiniSAR: A review of 4-inch and 1-foot resolution Ku-band imagery[EB/OL]. https://www.sandia.gov/app/uploads/sites/124/2022/04/SAND2005-3706P-miniSAR-flight-SAR-images.pdf, 2005.
    [23]
    AI Jiaqiu, MAO Yuxiang, LUO Qiwu, et al. SAR target classification using the multikernel-size feature fusion-based convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5214313. doi: 10.1109/TGRS.2021.3106915
    [24]
    魏迪. 基于半监督卷积神经网络的SAR图像目标检测方法研究[D]. [硕士论文], 西安电子科技大学, 2020.

    WEI Di. The research on target detection of SAR image based on semi-supervised convolutional neural network[D]. [Master dissertation], Xidian University, 2020.
    [25]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 3–19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(437) PDF downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint