Volume 7 Issue 5
Nov.  2018
Turn off MathJax
Article Contents
Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
Citation: Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048

A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine

DOI: 10.12000/JR18048
Funds:  The National Natural Science Foundation of China (61422114, 61501481), The Natural Science Fund for Distinguished Young Scholars of Hunan Province (2015JJ1003)
  • Received Date: 2018-06-22
  • Rev Recd Date: 2018-08-29
  • Publish Date: 2018-10-28
  • Radar target classification is very important in military and civilian fields. Extreme Learning Machines (ELMs) are widely used in classification because of their fast learning speed and good generalization performance. However, because of their shallow architecture, ELMs may not effectively capture the data high level abstractions. Although many researchers have proposed the Deep Extreme Learning Machine (DELM), which can be used to automatically learn high level feature representations, the model easily falls into overfitting when the training sample is limited. To address this issue, Dropout Constrained Deep Extreme Learning Machine (DCDELM) is proposed in this paper. The experimental results on the measured radar data show that the accuracy of the proposed algorithm can reach 93.37%, which is 5.25% higher than that of the stacked autoencoder algorithm, and 8.16% higher than that of the traditional DELM algorithm.

     

  • loading
  • [1]
    Liu Y X, Zhu D K, Li X, et al. Micromotion characteristic acquisition based on wideband radar phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3650–3657. DOI: 10.1109/TGRS.2013.2274478
    [2]
    Bigdeli B and Pahlavani P. Quad-polarized synthetic aperture radar and multispectral data classification using classification and regression tree and support vector machine-based data fusion system[J]. Journal of Applied Remote Sensing, 2017, 11(1): 016007. DOI: 10.1117/1.JRS.11.016007
    [3]
    Shi J F, Li L L, Liu F, et al. Unsupervised polarimetric synthetic aperture radar image classification based on sketch map and adaptive Markov random field[J]. Journal of Applied Remote Sensing, 2016, 10(2): 025008. DOI: 10.1117/1.JRS.10.025008
    [4]
    Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. DOI: 10.1126/science.1127647
    [5]
    Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. DOI: 10.1038/nature14539
    [6]
    Zhao F X, Liu Y X, Huo K, et al. Radar HRRP target recognition based on stacked autoencoder and extreme learning machine[J]. Sensors, 2018, 18(1): 173. DOI: 10.3390/s18010173
    [7]
    Abdel-Hamid O, Mohamed A R, Jiang H, et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio,Speech,and Language Processing, 2014, 22(10): 1533–1545. DOI: 10.1109/TASLP.2014.2339736
    [8]
    Ding J, Chen B, Liu H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364–368. DOI: 10.1109/LGRS.2015.2513754
    [9]
    Wang X L, Guo R, and Kambhamettu C. Deeply-learned feature for age estimation[C]. Proceedings of 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2015: 534–541. DOI: 10.1109/WACV.2015.77.
    [10]
    Huang G B, Zhu Q Y, and Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. DOI: 10.1016/j.neucom.2005.12.126
    [11]
    Huang G, Huang G B, Song S J, et al. Trends in extreme learning machines: A review[J]. Neural Networks, 2015, 61: 32–48. DOI: 10.1016/j.neunet.2014.10.001
    [12]
    Liang N Y, Huang G B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411–1423. DOI: 10.1109/TNN.2006.880583
    [13]
    Zong W W and Huang G B. Face recognition based on extreme learning machine[J]. Neurocomputing, 2011, 74(16): 2541–2551. DOI: 10.1016/j.neucom.2010.12.041
    [14]
    Liu N and Wang H. Evolutionary extreme learning machine and its application to image analysis[J]. Journal of Signal Processing Systems, 2013, 73(1): 73–81. DOI: 10.1007/s11265-013-0730-x
    [15]
    Ding S F, Zhang N, Zhang J, et al. Unsupervised extreme learning machine with representational features[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(2): 587–595. DOI: 10.1007/s13042-015-0351-8
    [16]
    Zhao F X, Liu Y X, Huo K, et al. Radar target classification using an evolutionary extreme learning machine based on improved quantum-behaved particle swarm optimization[J]. Mathematical Problems in Engineering, 2017: 7273061. DOI: 10.1155/2017/7273061
    [17]
    Kasun L L C, Zhou H M, Huang G B, et al. Representational learning with ELMs for big data[J]. IEEE Intelligent Systems, 2013, 28(6): 31–34.
    [18]
    Yu W C, Zhuang F Z, He Q, et al. Learning deep representations via extreme learning machines[J]. Neurocomputing, 2015, 149: 308–315. DOI: 10.1016/j.neucom.2014.03.077
    [19]
    Zhu W T, Miao J, Qing L Y, et al.. Hierarchical extreme learning machine for unsupervised representation learning[C]. Proceedings of 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 2015: 1–8. DOI: 10.1109/IJCNN.2015.7280669.
    [20]
    Tang J X, Deng C W, and Huang G B. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809–821. DOI: 10.1109/TNNLS.2015.2424995
    [21]
    Hinton G E, Srivastava N, Krizhevsky A, et al.. Improving neural networks by preventing co-adaptation of feature detectors[OL]. https://arxiv.org/abs/1207.0580.2012.07.
    [22]
    Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
    [23]
    Iosifidis A, Tefas A, and Pitas I. DropELM: Fast neural network regularization with dropout and dropconnect[J]. Neurocomputing, 2015, 162: 57–66. DOI: 10.1016/j.neucom.2015.04.006
    [24]
    Baldi P and Sadowski P. The dropout learning algorithm[J]. Artificial Intelligence, 2014, 201: 78–122.
    [25]
    Wager S, Wang S D, and Liang P. Dropout training as adaptive regularization[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 2013: 351–359.
    [26]
    Yang W X, Jin L W, Tao D C, et al. DropSample: A new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern Recognition, 2016, 58: 190–203. DOI: 10.1016/j.patcog.2016.04.007
    [27]
    Baldi P and Sadowski P. Understanding dropout[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, 2013: 2814–2822.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3418) PDF downloads(383) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint