Volume 9 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
ZOU Kun, LAI Lei, LUO Yanbo, et al. Suppression of non-Gaussian clutter from subspace interference[J]. Journal of Radars, 2020, 9(4): 715–722. doi: 10.12000/JR19050
Citation: ZOU Kun, LAI Lei, LUO Yanbo, et al. Suppression of non-Gaussian clutter from subspace interference[J]. Journal of Radars, 2020, 9(4): 715–722. doi: 10.12000/JR19050

Suppression of Non-Gaussian Clutter from Subspace Interference

DOI: 10.12000/JR19050
Funds:  The National Natural Science Foundation of China (61571456, 61603409), The Postdoctoral Science Foundation of China (2017M623352, 2018T111148)
More Information
  • Corresponding author: ZOU Kun, wyyxzk@163.com
  • Received Date: 2019-04-18
  • Rev Recd Date: 2019-11-25
  • Available Online: 2019-12-16
  • Publish Date: 2020-08-28
  • In complex electromagnetic environments, a clutter covariance matrix is required to estimate in the on-line manner, so as to adaptively adjust the filter weight to effectively suppress clutter, thereby improving target estimation, detection, location, and tracking. In this paper, a non-Gaussian clutter model is considered, while apart of the clutter data maybe contaminated by subspace interference, wherein the signal of interest is located in the subspace. To this end, we propose a knowledge-aided hierarchical Bayesian model and obtain the approximated posterior distribution of the clutter covariance matrix by exploiting variational Bayesian inference methods. The target detection performance can be enhanced using a clutter-suppression filter that is designed based on the posterior mean of the clutter covariance matrix. A comparison of the computer simulation results with real clutter data confirms that the proposed method can suppress the clutter and improve detection performance.

     

  • loading
  • [1]
    XU Shuwen, SHUI Penglang, and YAN Xueying. Non-coherent detection of radar target in heavy-tailed sea clutter using bi-window non-linear shrinkage map[J]. IET Signal Processing, 2016, 10(9): 1031–1039. doi: 10.1049/iet-spr.2015.0564
    [2]
    GAO Lei, JING Zhongliang, LI Minzhe, et al. Robust adaptive filtering for extended target tracking with heavy-tailed noise in clutter[J]. IET Signal Processing, 2018, 12(7): 826–835. doi: 10.1049/iet-spr.2017.0249
    [3]
    LU Shuping, YI Wei, LIU Weijian, et al. Data-dependent clustering-CFAR detector in heterogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 476–485. doi: 10.1109/TAES.2017.2740065
    [4]
    ZHANG Wei, HE Zishu, LI Huiyong, et al. Beam-space reduced-dimension space-time adaptive processing for airborne radar in sample starved heterogeneous environments[J]. IET Radar, Sonar & Navigation, 2016, 10(9): 1627–1634. doi: 10.1049/iet-rsn.2015.0592
    [5]
    SHI Sainan and SHUI Penglang. Optimum coherent detection in homogenous K-distributed clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1477–1484. doi: 10.1049/iet-rsn.2015.0602
    [6]
    HAO Chengpeng, ORLANDO D, FOGLIA G, et al. Knowledge-based adaptive detection: Joint exploitation of clutter and system symmetry properties[J]. IEEE Signal Processing Letters, 2016, 23(10): 1489–1493. doi: 10.1109/LSP.2016.2601931
    [7]
    MEHRNOUSH M and ROY S. Coexistence of WLAN network with radar: Detection and interference mitigation[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 655–667. doi: 10.1109/TCCN.2017.2762663
    [8]
    BESSON O and BIDON S. Adaptive processing with signal contaminated training samples[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4318–4329. doi: 10.1109/TSP.2013.2269048
    [9]
    COHEN D, MISHRA K V, and ELDAR Y C. Spectrum sharing radar: Coexistence via xampling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1279–1296. doi: 10.1109/TAES.2017.2780599
    [10]
    SOERGEL U. Radar Remote Sensing of Urban Areas[M]. Dordrecht: Springer, 2010. 1–47.
    [11]
    LEFAIDA S, SOLTANI F, and MEZACHE A. Radar sea-clutter modelling using fractional generalised Pareto distribution[J]. Electronics Letters, 2018, 54(16): 999–1001. doi: 10.1049/el.2018.5233
    [12]
    SANGSTON K J and FARINA A. Coherent radar detection in compound-Gaussian clutter: Clairvoyant detectors[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 42–63. doi: 10.1109/MAES.2016.150132
    [13]
    MITCHELL A E, SMITH G E, BELL K L, et al. Hierarchical fully adaptive radar[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1371–1379. doi: 10.1049/iet-rsn.2018.5339
    [14]
    HADAVI M, RADMARD M, and NAYEBI M M. Polynomial segment model for radar target recognition using Gibbs sampling approach[J]. IET Signal Processing, 2017, 11(3): 285–294. doi: 10.1049/iet-spr.2014.0455
    [15]
    TURLAPATY A and JIN Yuanwei. Multi-parameter estimation in compound Gaussian clutter by Variational Bayesian[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4663–4678. doi: 10.1109/TSP.2016.2573760
    [16]
    CONTE E, DE MAIO A, and GALDI C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 903–918. doi: 10.1109/TAES.2004.1337463
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2376) PDF downloads(188) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint