Chen Xiao-long, Dong Yun-long, Li Xiu-you, Guan Jian. Modeling of Micromotion and Analysis of Properties of Rigid Marine Targets[J]. Journal of Radars, 2015, 4(6): 630-638. doi: 10.12000/JR15079
Citation: Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046

A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain

DOI: 10.12000/JR15046
Funds:

The National Natural Science Foundation of China (61431018, 61201404)

  • Received Date: 2015-04-20
  • Rev Recd Date: 2015-06-29
  • Publish Date: 2015-12-28
  • Residual motion error is common in high-resolution circular Synthetic Aperture Radar (SAR) image defocusing. The Signal-to-Clutter Ratio (SCR) in echo data domain is relatively low; thus, the phase error spans several range bins. To solve this problem, we propose a focusing algorithm for circular SAR based on phase-error estimation in the image domain. The method estimates the point-target image window interception and then the phase error from echo regeneration in the defocused image. Subsequently, the range migration error is calculated, and finally, the phase error in the echo data is compensated for azimuth focusing and range cell migration correction. Simulation and real-data processing verified the proposed method.

     

  • [1]
    Soumekh M. Synthetic Aperture Radar Signal Processing[M]. New York: John Wiley Sons, 1999: 486-539.
    [2]
    Chan T K, Kuga Y, and Ishimaru A. Experimental studies on circular SAR imaging in clutter using angular correlation function technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2192-2197.
    [3]
    Axelsson S R J. Beam characteristics of three-dimensional SAR in curved or random paths[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2324-2334.
    [4]
    Pinheiro M, Prats P, Scheiber R, et al.. Tomographic 3D reconstruction from airborne circular SAR[C]. IEEE International Geoscience and Remote Sensing Symposium, 2009, 3: III-21-III-24.
    [5]
    Ferrara M, Jackson J A, and Austin C. Enhancement of multi-pass 3D circular SAR images using sparse reconstruction techniques[C]. Proceedings SPIE Algorithms for Synthetic Aperture Radar Imagery, 2009, DOI: 10.1117/12.820256.
    [6]
    洪文. 圆迹 SAR 成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124-135. Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124-135.
    [7]
    Frolind P, Gustavsson A, Lundberg M, et al.. Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1329-1339.
    [8]
    Frolind P, Ulander L M H, Gustavsson A, et al.. VHF/UHF-band SAR imaging using circular tracks[C]. IEEE International Geoscience and Remote Sensing Symposium, 2012: 7409-7411.
    [9]
    Casteel Jr C H, Gorham L R A, Minardi M J, et al.. A challenge problem for 2D/3D imaging of targets from a volumetric data set in an urban environment[C]. Proceedings SPIE Algorithms for Synthetic Aperture Radar Imagery, 2007, DOI: 10.1117/12.731457.
    [10]
    Ertin E, Austin C D, Sharma S, et al.. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. Proceedings SPIE Algorithms for Synthetic Aperture Radar Imagery, 2007, DOI: 10.1117/12.723245.
    [11]
    Ponce O, Prats-Iraola P, Pinheiro M, et al.. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-ban[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3074-3090.
    [12]
    Lin Y, Hong W, Tan W, et al.. Airborne circular SAR imaging: results at P-band[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, 2012: 5594-5597.
    [13]
    林赟, 谭维贤, 洪文, 等. 圆迹 SAR 极坐标格式算法研究[J]. 电子与信息学报, 2010, 32(12): 2802-2807. Lin Yun, Tan Wei-xian, Hong Wen, et al.. Polar format algorithm for circular synthetic aperture radar[J]. Journal of Electronics Information Technology, 2010, 32(12): 2802-2807.
    [14]
    Demirci S, Yigit E, and Ozdemir C. Wide-field circular SAR imaging: 2D imaging results for simulation data[C]. IEEE 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, 2013: 421-424.
    [15]
    Poisson J B, Oriot H, and Tupin F. Performances analysis of moving target tracking in circular SAR[C]. 2013 14th International IEEE Radar Symposium (IRS), Dresden, 2013: 531-536.
    [16]
    Cantalloube H and Koeniguer E C. Assessment of physical limitations of high resolution on targets at X-band from circular SAR experiments[C]. 7th European Conference on Synthetic Aperture Radar (EUSAR 2008), Friedrichshafen, 2008: 1-4.
  • Cited by

    Periodical cited type(9)

    1. 陈姣,刘毓,邓云开,金重阳,杨志航. 基于BiLSTM-CNN的地基SAR永久散射体选取. 国外电子测量技术. 2024(07): 24-32 .
    2. 白泽朝,王彦平,王振海,胡俊,李洋,林赟. 地基大视场SAR形变监测的非均匀大气相位校正方法. 雷达学报. 2023(01): 53-63 . 本站查看
    3. 徐甫,王政,李振洪,李永生. 复杂环境下的地基雷达大气改正方法. 武汉大学学报(信息科学版). 2023(12): 2069-2081 .
    4. 杜年春,王玉明,沈向前,谢翔. 滑坡灾害监测的圆弧合成孔径雷达大气相位校正方法. 测绘学报. 2022(10): 2139-2148 .
    5. 金重阳,刘毓,邓云开,田卫明,胡政权. 面向复杂大气扰动的GB-InSAR相位误差补偿方法. 信号处理. 2022(11): 2432-2442 .
    6. 汤进,刘毓,邓云开,胡政权,陈姣. 地基干涉合成孔径雷达的大气相位补偿研究. 测绘科学. 2022(11): 145-154 .
    7. 朱嘉鑫,邓云开,田卫明,胡程. 基于K-means算法的时序GB-InSAR图像PS实时选择方法. 信号处理. 2021(03): 349-357 .
    8. 朱嘉鑫,李永建,肖刚,余东洋,付振华,张志家,朱晨浩,戴颖超. 基于SAR图像配准的地基干涉雷达间断测量技术. 露天采矿技术. 2021(05): 46-50 .
    9. 吴昊,刘毓,邓云开,田卫明. 基于气象数据辅助的GB-InSAR大气相位补偿方法. 信号处理. 2021(08): 1496-1506 .

    Other cited types(15)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3197) PDF downloads(1716) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint