Volume 13 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
XU Heng, XU Hong, QUAN Yinghui, et al. A radar jamming method based on time domain coding metasurface intrapulse and interpulse coding optimization[J]. Journal of Radars, 2024, 13(1): 215–226. doi: 10.12000/JR23186
Citation: XU Heng, XU Hong, QUAN Yinghui, et al. A radar jamming method based on time domain coding metasurface intrapulse and interpulse coding optimization[J]. Journal of Radars, 2024, 13(1): 215–226. doi: 10.12000/JR23186

A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization

DOI: 10.12000/JR23186
Funds:  The Key Program of the National Natural Science Foundation of China (62331019), The Shaanxi Provincial Science Fund for Distinguished Young Scholars (2021JC-23), The Science and Technology Innovation Team of Shaanxi Province (2019TD-002)
More Information
  • Corresponding author: QUAN Yinghui, yhquan@mail.xidian.edu.cn
  • Received Date: 2023-10-04
  • Rev Recd Date: 2023-12-10
  • Available Online: 2023-12-18
  • Publish Date: 2024-01-08
  • Time Domain Coding Metasurface (TDCM) is an emerging technology enabling dynamic modulation of electromagnetic waves. In response to the control characteristics of this technology, this paper presents a radar jamming method based on TDCM intrapulse and interpulse coding optimization. First, optimization models are established in fast and slow time domains. By optimizing intrapulse and interpulse phase coding, the energy redistribution of targets is achieved, thereby generating deceptive interference on the range-Doppler two-dimensional plot. Subsequently, a genetic algorithm is employed to solve this discrete optimization problem. Furthermore, this paper analyzes the effect of various modulation factors on interference effectiveness in terms of TDCM coding strategies, providing guidance for achieving optimal strategies for deceptive interference.

     

  • loading
  • [1]
    刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001.

    LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–212. doi: 10.12000/JR22001.
    [2]
    全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.

    QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar wave form countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11.
    [3]
    程强, 戴俊彦, 柯俊臣, 等. 智能超表面在波束及信息调控中的应用[J]. 电信科学, 2021, 37(9): 30–37. doi: 10.11959/j.issn.1000-0801.2021226.

    CHENG Qiang, DAI Junyan, KE Junchen, et al. Application of reconfigurable intelligent surface in beamforming and information modulation[J]. Telecommunications Science, 2021, 37(9): 30–37. doi: 10.11959/j.issn.1000-0801.2021226.
    [4]
    王羚. 基于超表面的宽带可重构电磁调控理论与应用研究[D]. [博士论文], 北京邮电大学, 2021.

    WANG Ling. Research on broadband and reconfigurable electromagnetic manipulation theory and their applications based on metasurfaces[D]. [Ph.D. dissertation], Beijing University of Posts and Telecommunications, 2021.
    [5]
    张然. 相位调制表面的特性及其雷达效应研究[D]. [硕士论文], 国防科技大学, 2016.

    ZHANG Ran. Research on the properties and radar effect of phase switched screen[D]. [Master dissertation], National University of Defense Technology, 2016.
    [6]
    CHENG Qiang, ZHANG Lei, DAI Junyan, et al. Reconfigurable intelligent surfaces: Simplified-architecture transmitters—from theory to implementations[J]. Proceedings of the IEEE, 2022, 110(9): 1266–1289. doi: 10.1109/JPROC.2022.3170498.
    [7]
    DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044.
    [8]
    DAI Junyan, ZHAO Jie, CHENG Qiang, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light: Science & Applications, 2018, 7(1): 90. doi: 10.1038/s41377-018-0092-z.
    [9]
    WANG Siran, CHEN Mingzheng, KE Junchen, et al. Asynchronous space-time-coding digital metasurface[J]. Advanced Science, 2022, 9(24): 2200106. doi: 10.1002/advs.202200106.
    [10]
    ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0.
    [11]
    CUI Tiejun, QI Mingqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
    [12]
    戴俊彦. 时域超表面理论研究与应用[D]. [博士论文], 东南大学, 2021.

    DAI Junyan. Research and application of time-domain metasurface[D]. [Ph.D. dissertation], Southeast University, 2021.
    [13]
    LI Shiyuan, WANG Jianyang, FANG Xinyu, et al. Jamming of ISAR imaging with time-modulated metasurface partially covered on targets[J]. IEEE Antennas and Wireless Propagation Letters, 2023, 22(2): 372–376. doi: 10.1109/LAWP.2022.3212923.
    [14]
    XU Heng, QUAN Yinghui, ZHOU Xiaoyang, et al. A novel approach for radar passive jamming based on multiphase coding rapid modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5101614. doi: 10.1109/TGRS.2023.3243411.
    [15]
    KE Junchen, DAI Junyan, ZHANG Junwei, et al. Frequency-modulated continuous waves controlled by space-time-coding metasurface with nonlinearly periodic phases[J]. Light: Science & Applications, 2022, 11(1): 273. doi: 10.1038/s41377-022-00973-8.
    [16]
    LIU Mingkai, KOZYREV A B, and SHADRIVOV I V. Time-varying metasurfaces for broadband spectral camouflage[J]. Physical Review Applied, 2019, 12(5): 054052. doi: 10.1103/PhysRevApplied.12.054052.
    [17]
    WANG Xiaoyi and CALOZ C. Spread-spectrum selective camouflaging based on time-modulated metasurface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 286–295. doi: 10.1109/TAP.2020.3008621.
    [18]
    KOZLOV V, VOVCHUK D, and GINZBURG P. Broadband radar invisibility with time-dependent metasurfaces[J]. Scientific Reports, 2021, 11(1): 14187. doi: 10.1038/s41598-021-93600-2.
    [19]
    FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958.
    [20]
    SHI Qingzhan, YANG Zhiyuan, WANG Chao, et al. Fast generation of ISAR deceptive jamming signal based on phase modulation[C]. 2019 International Conference on Microwave and Millimeter Wave Technology, Guangzhou, China, 2019: 1–3. doi: 10.1109/ICMMT45702.2019.8992401.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1028) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint