WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: LIU Zhangmeng, YUAN Shuo, and KANG Shiqian. Semantic coding and model reconstruction of multifunctional radar pulse train[J]. Journal of Radars, 2021, 10(4): 559–570. doi: 10.12000/JR21031

Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train

DOI: 10.12000/JR21031
Funds:  Provincial Outstanding Youth project of Hunan (2020JJ2037), Huxiang Young Talents project of Hunan (2019RS2026), Provincial Innovation Research Group of Hunan (2019JJ10004)
More Information
  • Corresponding author: LIU Zhangmeng, liuzhangmeng@nudt.edu.cn
  • Received Date: 2021-03-15
  • Rev Recd Date: 2021-07-23
  • Available Online: 2021-08-03
  • Publish Date: 2021-08-28
  • Retrieving the working modes of multifunction radar from electronic reconnaissance data is a difficult problem, and it has attracted widespread attention in the field of electronic reconnaissance. It is also an important task when extracting benefits from big electromagnetic data and provides straightforward support to applications, such as radar type recognition, working state recognition, radar intention inferring, and precise electronic jamming. Based on the assumption of model simplicity, this study defines a complexity measurement rule for multifunction radar pulse trains and introduces the semantic coding theory to analyze the temporal structure of multifunction radar pulse trains. The model complexity minimization criterion guides the semantic coding procedure to extract radar pulse groups corresponding to different radar functions from pulse trains. Furthermore, based on the coded sequence of the pulse train, the switching matrix between different pulse groups is estimated, and the hierarchical working model of multifunction radars is ultimately reconstructed. Simulations are conducted to verify the feasibility and performance of the new method. Simulation results indicate that the coding theory is successfully used in the proposed method to automatically extract pulse groups and rebuild operating models based on multifunction radar pulse trains. Moreover, the method is robust to data noises, such as missing pulses.

     

  • [1]
    RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar: Basic Principles[M]. Raleigh: SciTech Publishing, 2010: 33–36.
    [2]
    张光义, 赵玉洁. 相控阵雷达技术[M]. 北京: 电子工业出版社, 2006: 1–6.

    ZHANG Guangyi and ZHAO Yujie. Phased Array Radar Technology[M]. Beijing: Publishing House of Electronics Industry, 2006: 1–6.
    [3]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Radar Applications[M]. Edison: SciTech Publishing, 2014: 8–14.
    [4]
    WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Norwood: Artech House, 2006: 1–5.
    [5]
    VISNEVSKI N, KRISHNAMURTHY V, WANG A, et al. Syntactic modeling and signal processing of multifunction radars: A stochastic context-free grammar approach[J]. Proceedings of the IEEE, 2007, 95(5): 1000–1025. doi: 10.1109/JPROC.2007.893252
    [6]
    VISNEVSKI N A. Syntactic modeling of multi-function radars[D]. [Ph. D. dissertation], McMaster University, 2005.
    [7]
    LIU Zhangmeng. Recognition of multifunction radars via hierarchically mining and exploiting pulse group patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4659–4672. doi: 10.1109/TAES.2020.2999163.
    [8]
    方佳璐. 雷达信号工作模式识别研究[D]. [硕士论文], 浙江大学, 2017.

    FANG Jialu. Research of radar signal patter recognition[D]. [Master dissertation], Zhejiang University, 2017.
    [9]
    LI Yunjie, ZHU Mengtao, MA Yihao, et al. Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical Seq2seq LSTM[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1343–1353. doi: 10.1049/iet-rsn.2020.0060
    [10]
    欧健. 多功能雷达行为辨识与预测技术研究[D]. [博士论文], 国防科技大学, 2017.

    OU Jian. Research on behavior recognition and prediction techniques against multi-function radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
    [11]
    OU Jian, CHEN Yongguang, ZHAO Feng, et al. Research on extension of hierarchical structure for multi-function radar signals[C]. 2017 Progress in Electromagnetics Research Symposium-Spring, St. Petersburg, Russia, 2017.
    [12]
    林令民. 雷达语义结构分析算法设计与应用[D]. [硕士论文], 北京邮电大学, 2017.

    LIN Lingmin. Design and application of radar semantic structure analysis algorithm[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2017.
    [13]
    GRÜNWALD P D. The Minimum Description Length Principle[M]. Cambridge: MIT Press, 2007: 29–35.
    [14]
    SAYOOD K, 贾洪峰, 译. 数据压缩导论[M]. 4版. 北京: 人民邮电出版社, 2014: 5–8, 259–279.

    SAYOOD K, JIA Hongfeng, translation. Introduction on Data Compression[M]. 4th ed. Beijing: Posts & Telecom Press, 2014: 5–8, 259–279.
    [15]
    傅祖芸. 信息论—基础理论与应用[M]. 4版. 北京: 电子工业出版社, 2015: 1–8.

    FU Zuyun. Information Theory—Principles and Application[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2015: 1–8.
    [16]
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118–1123.
    [17]
    ROSVALL M and BERGSTROM C T. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems[J]. PLoS One, 2011, 6(4): e18209. doi: 10.1371/journal.pone.0018209
    [18]
    TAN P N, STEINBACH M, KUMAR V, 范明, 范宏建, 译. 数据挖掘导论[M]. 2版. 北京: 人民邮电出版社, 2011: 27–38.

    TAN P N, STEINBACH M, KUMAR V, FAN Ming and FAN Hongjian, translation. Introduction to Data Mining[M]. 2nd ed. Beijing: Posts & Telecom Press, 2011: 27–38.
    [19]
    LIU Zhangmeng, KANG Shiqian, and CHAI Xianming. Automatic pulse repetition pattern reconstruction of conventional radars[J]. IET Radar, Sonar & Navigation, 2021, 15(5): 500–509. doi: 10.1049/rsn2.12053
    [20]
    JAEGER H. Observable operator models for discrete stochastic time series[J]. Neural Computation, 2000, 12(6): 1371–1398. doi: 10.1162/089976600300015411
    [21]
    JAEGER H, HAYKIN S, PRINCIPE J, SEJNOWSKI T, et al.. Learning Observable Operator Models Via the ES Algorithm[M]. New Directions in Statistical Signal Processing: From Systems to Brains. Cambridge: MIT Press, 2005.
    [22]
    BENGIO Y. Markovian models for sequential data[J]. Neural Computing Surveys, 1999, 2: 129–162.
    [23]
    RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257–286. doi: 10.1109/5.18626
  • Relative Articles

    [1]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [2]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [3]QUAN Yinghui, WU Yaojun, DUAN Lining, XU Gang, XUE Min, LIU Zhixing, XING Mengdao. A Review of Radar Signal Processing Based on Sparse Recovery[J]. Journal of Radars, 2024, 13(1): 46-67. doi: 10.12000/JR23211
    [4]HU Xueyao, LIANG Can, LU Shanshan, WANG Zaiyang, ZHENG Le, LI Yang. Matrix Completion-based Range-Doppler Spectrum Estimation for Random Stepped-frequency Radars[J]. Journal of Radars, 2024, 13(1): 200-214. doi: 10.12000/JR23176
    [5]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [6]LIN Yun, ZHANG Lin, WEI Lideng, ZHANG Hanqing, FENG Shanshan, WANG Yanping, HONG Wen. Research on Full-aspect Three-dimensional SAR Imaging Method for Complex Structural Facilities without Prior Model[J]. Journal of Radars, 2022, 11(5): 909-919. doi: 10.12000/JR22148
    [7]DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161
    [8]CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189
    [9]LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009
    [10]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [11]QU Haiyou, CHENG Di, CHEN Chang, CHEN Weidong. High-resolution Sparse Self-calibration Imaging for Vortex Radar with Phase Error[J]. Journal of Radars, 2021, 10(5): 699-717. doi: 10.12000/JR21094
    [12]Wang Yuzhuo, Zhu Shengqi, Xu Jingwei. A Range-ambiguous Clutter Suppression Method for MIMO Bistatic Airborne Radar[J]. Journal of Radars, 2018, 7(2): 202-211. doi: 10.12000/JR18016
    [13]Wang Yong, Chen Xuefei. Three-dimensional Geometry Reconstruction of Ship Targets with Complex Motion for Interferometric ISAR with Sparse Aperture[J]. Journal of Radars, 2018, 7(3): 320-334. doi: 10.12000/JR18019
    [14]Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [15]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [16]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [17]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [18]Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075
    [19]Duan Ke-qing, Wang Ze-tao, Xie Wen-chong, Gao Fei, Wang Yong-liang. A Space-time Adaptive Processing Algorithm Based on Joint Sparse Recovery[J]. Journal of Radars, 2014, 3(2): 229-234. doi: 10.3724/SP.J.1300.2014.13149
    [20]Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 34.5 %FULLTEXT: 34.5 %META: 58.2 %META: 58.2 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.7 %其他: 4.7 %其他: 1.0 %其他: 1.0 %Algeria: 0.1 %Algeria: 0.1 %Australia: 0.0 %Australia: 0.0 %Canton: 0.0 %Canton: 0.0 %China: 1.8 %China: 1.8 %Germany: 0.0 %Germany: 0.0 %India: 0.0 %India: 0.0 %Kennedy Town: 0.0 %Kennedy Town: 0.0 %Malvern: 0.1 %Malvern: 0.1 %Nahant: 0.1 %Nahant: 0.1 %Rochester: 0.1 %Rochester: 0.1 %Seattle: 0.0 %Seattle: 0.0 %Singapore: 0.1 %Singapore: 0.1 %Taichung: 0.0 %Taichung: 0.0 %Turkey: 0.1 %Turkey: 0.1 %United Kingdom: 0.4 %United Kingdom: 0.4 %United States: 0.3 %United States: 0.3 %Viet Nam: 0.1 %Viet Nam: 0.1 %[]: 1.1 %[]: 1.1 %三明: 0.0 %三明: 0.0 %上海: 1.3 %上海: 1.3 %上饶: 0.0 %上饶: 0.0 %东京都: 0.2 %东京都: 0.2 %东莞: 0.3 %东莞: 0.3 %中卫: 0.2 %中卫: 0.2 %临汾: 0.0 %临汾: 0.0 %丹东: 0.1 %丹东: 0.1 %乌海: 0.0 %乌海: 0.0 %乐山: 0.1 %乐山: 0.1 %伊春: 0.0 %伊春: 0.0 %伊犁: 0.0 %伊犁: 0.0 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %六安: 0.1 %六安: 0.1 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内江: 0.1 %内江: 0.1 %凉山: 0.1 %凉山: 0.1 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %北京: 6.3 %北京: 6.3 %南京: 2.2 %南京: 2.2 %南宁: 0.1 %南宁: 0.1 %南平: 0.0 %南平: 0.0 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %卡拉奇: 0.0 %卡拉奇: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.3 %哈尔滨: 0.3 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %大庆: 0.1 %大庆: 0.1 %大连: 0.3 %大连: 0.3 %天津: 0.8 %天津: 0.8 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.0 %宁波: 0.0 %安卡拉: 0.1 %安卡拉: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.0 %安顺: 0.0 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.2 %宣城: 0.2 %巴中: 0.2 %巴中: 0.2 %巴音郭楞蒙古自治州: 0.0 %巴音郭楞蒙古自治州: 0.0 %巴黎: 0.1 %巴黎: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 1.1 %广州: 1.1 %库比蒂诺: 0.4 %库比蒂诺: 0.4 %廊坊: 0.0 %廊坊: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 2.8 %张家口: 2.8 %张家界: 0.0 %张家界: 0.0 %徐州: 0.1 %徐州: 0.1 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %怀化: 0.1 %怀化: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 3.5 %成都: 3.5 %扬州: 0.3 %扬州: 0.3 %新加坡: 0.3 %新加坡: 0.3 %新泽西: 0.0 %新泽西: 0.0 %无锡: 0.2 %无锡: 0.2 %日喀则: 0.1 %日喀则: 0.1 %日照: 0.0 %日照: 0.0 %昆明: 0.8 %昆明: 0.8 %晋中: 0.1 %晋中: 0.1 %晋城: 0.1 %晋城: 0.1 %朔州: 0.0 %朔州: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.6 %杭州: 0.6 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河源: 0.0 %河源: 0.0 %泉州: 0.1 %泉州: 0.1 %泰安: 0.0 %泰安: 0.0 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.0 %海得拉巴: 0.0 %淄博: 0.0 %淄博: 0.0 %淮北: 0.1 %淮北: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.8 %深圳: 0.8 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %渭南: 0.2 %渭南: 0.2 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滁州: 0.1 %滁州: 0.1 %漯河: 0.7 %漯河: 0.7 %濮阳: 0.0 %濮阳: 0.0 %烟台: 0.1 %烟台: 0.1 %玉林: 0.1 %玉林: 0.1 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.1 %绍兴: 0.1 %绵阳: 0.1 %绵阳: 0.1 %罗奥尔凯埃: 0.3 %罗奥尔凯埃: 0.3 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.0 %苏州: 1.0 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.1 %莫斯科: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 33.8 %西宁: 33.8 %西安: 1.5 %西安: 1.5 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.5 %运城: 0.5 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.2 %邯郸: 0.2 %郑州: 0.5 %郑州: 0.5 %酒泉: 0.1 %酒泉: 0.1 %里奇兰: 0.1 %里奇兰: 0.1 %重庆: 0.2 %重庆: 0.2 %金华: 0.0 %金华: 0.0 %镇江: 0.0 %镇江: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %隆德: 0.0 %隆德: 0.0 %隆格伊: 0.1 %隆格伊: 0.1 %青岛: 0.4 %青岛: 0.4 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %黄冈: 0.1 %黄冈: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AlgeriaAustraliaCantonChinaGermanyIndiaKennedy TownMalvernNahantRochesterSeattleSingaporeTaichungTurkeyUnited KingdomUnited StatesViet Nam[]三明上海上饶东京都东莞中卫临汾丹东乌海乐山伊春伊犁伦敦佛山信阳六安兰州兰辛内江凉山加利福尼亚州北京南京南宁南平南昌南通卡拉奇厦门台北台州台湾省合肥呼和浩特咸阳哈尔滨商丘嘉兴大同大庆大连天津太原威海娄底宁波安卡拉安康安顺宜春宝鸡宣城巴中巴音郭楞蒙古自治州巴黎常州常德广州库比蒂诺廊坊开封张家口张家界徐州德里德黑兰怀化惠州成都扬州新加坡新泽西无锡日喀则日照昆明晋中晋城朔州朝阳杭州桂林榆林武汉汉中汕头沈阳河源泉州泰安泰米尔纳德洛杉矶洛阳济南海口海得拉巴淄博淮北淮南深圳清远温州渭南湖州湘潭滁州漯河濮阳烟台玉林石家庄福州秦皇岛纽约绍兴绵阳罗奥尔凯埃罗马芒廷维尤芝加哥苏州莆田莫斯科葫芦岛衡水衡阳衢州西宁西安诺沃克贵阳赣州运城邢台邯郸郑州酒泉里奇兰重庆金华镇江长春长沙长治阳泉阿姆斯特丹隆德隆格伊青岛香港特别行政区马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2103) PDF downloads(249) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint