Volume 10 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
LIU Zhangmeng, YUAN Shuo, and KANG Shiqian. Semantic coding and model reconstruction of multifunctional radar pulse train[J]. Journal of Radars, 2021, 10(4): 559–570. doi: 10.12000/JR21031
Citation: LIU Zhangmeng, YUAN Shuo, and KANG Shiqian. Semantic coding and model reconstruction of multifunctional radar pulse train[J]. Journal of Radars, 2021, 10(4): 559–570. doi: 10.12000/JR21031

Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train

DOI: 10.12000/JR21031
Funds:  Provincial Outstanding Youth project of Hunan (2020JJ2037), Huxiang Young Talents project of Hunan (2019RS2026), Provincial Innovation Research Group of Hunan (2019JJ10004)
More Information
  • Corresponding author: LIU Zhangmeng, liuzhangmeng@nudt.edu.cn
  • Received Date: 2021-03-15
  • Rev Recd Date: 2021-07-23
  • Available Online: 2021-08-03
  • Publish Date: 2021-08-28
  • Retrieving the working modes of multifunction radar from electronic reconnaissance data is a difficult problem, and it has attracted widespread attention in the field of electronic reconnaissance. It is also an important task when extracting benefits from big electromagnetic data and provides straightforward support to applications, such as radar type recognition, working state recognition, radar intention inferring, and precise electronic jamming. Based on the assumption of model simplicity, this study defines a complexity measurement rule for multifunction radar pulse trains and introduces the semantic coding theory to analyze the temporal structure of multifunction radar pulse trains. The model complexity minimization criterion guides the semantic coding procedure to extract radar pulse groups corresponding to different radar functions from pulse trains. Furthermore, based on the coded sequence of the pulse train, the switching matrix between different pulse groups is estimated, and the hierarchical working model of multifunction radars is ultimately reconstructed. Simulations are conducted to verify the feasibility and performance of the new method. Simulation results indicate that the coding theory is successfully used in the proposed method to automatically extract pulse groups and rebuild operating models based on multifunction radar pulse trains. Moreover, the method is robust to data noises, such as missing pulses.

     

  • loading
  • [1]
    RICHARDS M A, SCHEER J A, and HOLM W A. Principles of Modern Radar: Basic Principles[M]. Raleigh: SciTech Publishing, 2010: 33–36.
    [2]
    张光义, 赵玉洁. 相控阵雷达技术[M]. 北京: 电子工业出版社, 2006: 1–6.

    ZHANG Guangyi and ZHAO Yujie. Phased Array Radar Technology[M]. Beijing: Publishing House of Electronics Industry, 2006: 1–6.
    [3]
    MELVIN W L and SCHEER J A. Principles of Modern Radar: Radar Applications[M]. Edison: SciTech Publishing, 2014: 8–14.
    [4]
    WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Norwood: Artech House, 2006: 1–5.
    [5]
    VISNEVSKI N, KRISHNAMURTHY V, WANG A, et al. Syntactic modeling and signal processing of multifunction radars: A stochastic context-free grammar approach[J]. Proceedings of the IEEE, 2007, 95(5): 1000–1025. doi: 10.1109/JPROC.2007.893252
    [6]
    VISNEVSKI N A. Syntactic modeling of multi-function radars[D]. [Ph. D. dissertation], McMaster University, 2005.
    [7]
    LIU Zhangmeng. Recognition of multifunction radars via hierarchically mining and exploiting pulse group patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4659–4672. doi: 10.1109/TAES.2020.2999163.
    [8]
    方佳璐. 雷达信号工作模式识别研究[D]. [硕士论文], 浙江大学, 2017.

    FANG Jialu. Research of radar signal patter recognition[D]. [Master dissertation], Zhejiang University, 2017.
    [9]
    LI Yunjie, ZHU Mengtao, MA Yihao, et al. Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical Seq2seq LSTM[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1343–1353. doi: 10.1049/iet-rsn.2020.0060
    [10]
    欧健. 多功能雷达行为辨识与预测技术研究[D]. [博士论文], 国防科技大学, 2017.

    OU Jian. Research on behavior recognition and prediction techniques against multi-function radar[D]. [Ph. D. dissertation], National University of Defense Technology, 2017.
    [11]
    OU Jian, CHEN Yongguang, ZHAO Feng, et al. Research on extension of hierarchical structure for multi-function radar signals[C]. 2017 Progress in Electromagnetics Research Symposium-Spring, St. Petersburg, Russia, 2017.
    [12]
    林令民. 雷达语义结构分析算法设计与应用[D]. [硕士论文], 北京邮电大学, 2017.

    LIN Lingmin. Design and application of radar semantic structure analysis algorithm[D]. [Master dissertation], Beijing University of Posts and Telecommunications, 2017.
    [13]
    GRÜNWALD P D. The Minimum Description Length Principle[M]. Cambridge: MIT Press, 2007: 29–35.
    [14]
    SAYOOD K, 贾洪峰, 译. 数据压缩导论[M]. 4版. 北京: 人民邮电出版社, 2014: 5–8, 259–279.

    SAYOOD K, JIA Hongfeng, translation. Introduction on Data Compression[M]. 4th ed. Beijing: Posts & Telecom Press, 2014: 5–8, 259–279.
    [15]
    傅祖芸. 信息论—基础理论与应用[M]. 4版. 北京: 电子工业出版社, 2015: 1–8.

    FU Zuyun. Information Theory—Principles and Application[M]. 4th ed. Beijing: Publishing House of Electronics Industry, 2015: 1–8.
    [16]
    ROSVALL M and BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1118–1123.
    [17]
    ROSVALL M and BERGSTROM C T. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems[J]. PLoS One, 2011, 6(4): e18209. doi: 10.1371/journal.pone.0018209
    [18]
    TAN P N, STEINBACH M, KUMAR V, 范明, 范宏建, 译. 数据挖掘导论[M]. 2版. 北京: 人民邮电出版社, 2011: 27–38.

    TAN P N, STEINBACH M, KUMAR V, FAN Ming and FAN Hongjian, translation. Introduction to Data Mining[M]. 2nd ed. Beijing: Posts & Telecom Press, 2011: 27–38.
    [19]
    LIU Zhangmeng, KANG Shiqian, and CHAI Xianming. Automatic pulse repetition pattern reconstruction of conventional radars[J]. IET Radar, Sonar & Navigation, 2021, 15(5): 500–509. doi: 10.1049/rsn2.12053
    [20]
    JAEGER H. Observable operator models for discrete stochastic time series[J]. Neural Computation, 2000, 12(6): 1371–1398. doi: 10.1162/089976600300015411
    [21]
    JAEGER H, HAYKIN S, PRINCIPE J, SEJNOWSKI T, et al.. Learning Observable Operator Models Via the ES Algorithm[M]. New Directions in Statistical Signal Processing: From Systems to Brains. Cambridge: MIT Press, 2005.
    [22]
    BENGIO Y. Markovian models for sequential data[J]. Neural Computing Surveys, 1999, 2: 129–162.
    [23]
    RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257–286. doi: 10.1109/5.18626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1935) PDF downloads(234) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint