
Citation: | Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073 |
Used to suppress strong clutter and jamming in airborne radar data, Space Time Adaptive Processing (STAP) is a multidimensional adaptive filtering technique that simultaneously combines signals from elements of an antenna array and multiple pulses of coherent radar waveforms. As a key technology for improving the performance of airborne radar, it has attracted much attention in the field of radar research and from powerful military nations in recent years. In this paper, the research and development status of STAP technology is reviewed including methodologies, experimental systems, and applications and we focus on the key technical problems encountered during its development. Then, the application of STAP technology in equipment is introduced. Finally, the next development trends, future directions, and areas worthy of further research are presented.
In recent years, Frequency Diverse Array (FDA) radar has received much attention due to its range-angle-time-dependent beampattern[1,2]. Combining the advantages of FDA and traditional phased array Multiple-Input Multiple-Output (MIMO) radar in the degree of freedom, the FDA Multiple-Input Multiple Output (FDA-MIMO) radar was proposed in Ref. [3] and applied in many fields[4-9]. For parameter estimation algorithm, the authors first proposed a FDA-MIMO target localization algorithm based on sparse reconstruction theory[10], and an unbiased joint range and angle estimation method was proposed in Ref. [11]. The work of Ref. [12] further proved that the FDA-MIMO is superior to traditional MIMO radar in range and angle estimation performance, and the authors of Ref. [13] introduced a super-resolution MUSIC algorithm for target location, and analyzed its resolution threshold. Meanwhile, high-resolution Doppler processing is utilized for moving target parameter estimation[14]. The Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and PARAllel FACtor (PARAFAC) was proposed in Ref. [15], which is a search-free algorithm for FDA-MIMO.
Moreover, the research of conformal array has received more and more attention. Conformal array is a non-planar array that can be completely attached to the surface of the carrier[16]. It has significant advantages such as reducing the aerodynamic impact on the carrier and smaller radar cross section[17]. In addition, conformal array can achieve wide-angle scanning with a lower SideLobe Level (SLL)[18]. Different from traditional arrays, the element beampattern of conformal array needs to be modeled separately in the parameter estimation due to the difference of carrier curvature[19-21].
As far as we know, most of the existing researches on FDA-MIMO are based on linear array, while there is little research on the combination of FDA-MIMO and conformal array[22]. In this paper, we replace the receiving array in the traditional FDA-MIMO with conformal array. Compared with conventional FDA-MIMO, conformal FDA-MIMO inherits the merits of conformal array and FDA-MIMO, which can effectively improve the stealth and anti-stealth performance of the carrier, and reduce the volume and the air resistance of the carrier. For conformal FDA-MIMO, we further study the parameters estimation algorithm. The major contributions of this paper are summarized as follows:
(1) A conformal FDA-MIMO radar model is first formulated.
(2) The parameter estimation Cramér-Rao Lower Bound (CRLB) for conformal FDA-MIMO radar is derived.
(3) Inspired by the existing work of Refs. [23,24], a Reduced-Dimension MUSIC (RD-MUSIC) algorithm for conformal FDA-MIMO radar is correspondingly proposed to reduce the complexity.
The rest of the paper consists of four parts. Section 2 formulates the conformal FDA-MIMO radar model, and Section 3 derives a RD-MUSIC algorithm for conformal FDA-MIMO radar. Simulation results for conformal FDA-MIMO radar with semi conical conformal receiving array are provided in Section 4. Finally, conclusions are drawn in Section 5.
For the convenience of analysis, we consider a monostatic conformal FDA-MIMO radar which is composed by a
The complex envelope of the transmitted signal of the mth transmitting element is denoted as
∫Tpφm(t)φ∗m1(t−τ)dt=0,m1≠m | (1) |
where
sm(t)=am(t,θ,ϕ,r)φm(t),0≤t≤Tp | (2) |
where
am(t,θ,ϕ,r)=exp{−j2π((m−1)Δfrc−f1(m−1)dsinαc−(m−1)Δft)} | (3) |
is the mth element of the transmitting steering vector according to the phase difference between adjacent elements, the angle between far-field target and transmitting array is denoted as
Δψt0=2π(Δfrc−f1dsinαc−Δft) | (4) |
where
a0(t,θ,ϕ,r)=[1,exp{−jΔψt0},⋯,exp{−j(M−1)Δψt0}]T | (5) |
For the conformal receiving array, as shown in Fig. 1(b), the time delay between target
τn=rn/c | (6) |
where
rn≈r−→pn⋅→r | (7) |
where r denotes the range between the target and the origin point,
Δτrn=τ1−τn=u(xn−x1)+v(yn−y1)+cosθ(zn−z1)c | (8) |
And the corresponding phase difference between the first element and the nth element is
ΔψRn=2πf1Δτrn | (9) |
Consequently, the receiving steering vector is
b(θ,ϕ)=[r1(θ,ϕ),r2(θ,ϕ)exp(jΔψr2),⋯,rN(θ,ϕ)exp(jΔψrN)]T | (10) |
where
Then the total phase difference between adjacent transmitting array elements can be rewritten as
Δψt=2π(Δf2rc−f1dsinαc−Δft) | (11) |
where the factor
a(t,θ,ϕ,r)=[1,exp{−jΔψt},⋯,exp{−j(M−1)Δψt}]T | (12) |
Assuming L far-field targets are located at
X=AS+N | (13) |
where the array manifold
A=[at,r(θ1,ϕ1,r1),⋯,at,r(θL,ϕL,rL)]=[b(θ1,ϕ1)⊗a(θ1,ϕ1,r1),⋯,b(θL,ϕL)⊗a(θL,ϕL,rL)] | (14) |
where
a(θ,ϕ,r)=[1exp{−j2π(2Δfrc−f1dsinαc)}⋯exp{−j2π(M−1)(2Δfrc−f1dsinαc)}] | (15) |
which can be expressed as
a(θ,ϕ,r)=a(θ,ϕ)⊙a(r) | (16) |
where
a(r)=[1,exp(−j2π2Δfrc),⋯,exp(−j2π(M−1)2Δfrc)]T | (17) |
a(θ,ϕ)=[1,exp(j2πf1dsinαc),⋯,exp[j2π(M−1)f1dsinαc]]T | (18) |
and
The CRLB can be obtained from the inverse of Fisher information matrix[27,28], which establishes a lower bound for the variance of any unbiased estimator. We employ the CRLB for conformal FDA-MIMO parameter estimation to evaluate the performance of some parameter estimation algorithms.
The discrete signal model is
x[k]=at,r(θ,ϕ,r)s[k]+N[k],k=1,2,⋯,K | (19) |
For the sake of simplification, we take
The Probability Distribution Function (PDF) of the signal model with
p(x|θ,ϕ,r)=1(2πσ2n)K2⋅exp(−1σ2n(x−at,rs)H(x−at,rs)) | (20) |
where
The CRLB matrix form of elevation angle, azimuth angle and range is given by Eq. (21), diagonal elements
CRLB=[CθθCθϕCθrCϕθCϕϕCϕrCrθCrϕCrr]=FIM−1=[F11F12F13F21F22F23F31F32F33] | (21) |
The elements of Fisher matrix can be expressed as
Fij=−E[∂2ln(p(x∣θ,ϕ,r))∂xi∂xj],i,j=1,2,3 | (22) |
In the case of
p(x|θ,ϕ,r)=Cexp{−1σ2nK∑n=1(x[k]−at,rs[k])H⋅(x[k]−at,rs[k])} | (23) |
where
ln(p(x|θ,ϕ,r))=ln(C)−1σ2nK∑k=1(x[k]−at,rs[k])H⋅(x[k]−at,rs[k]) | (24) |
where
F11=−E[∂2ln(p(x|θ,ϕ,r))∂θ2] | (25) |
Correspondingly, the first derivative of natural logarithm is given by
∂ln(p(x|θ,ϕ,r))∂θ=−1σ2nK∑k=1(−xH[k]∂at,r∂θs[k]−∂aHt,r∂θs[k]x[k]+∂aHt,r∂θat,rs2[n]a+aHt,r∂at,r∂θs2[n]) | (26) |
Then we can obtain the second derivative of
∂2ln(p(x|θ,ϕ,r))∂θ2=−1σ2nK∑k=1(−x[k]H∂2at,r∂θ2s[k]−∂2aHt,r∂θ2s(k)x[k]+∂2aHt,r∂θ2at,rs[k]2+∂aHt,r∂θ∂at,r∂θs[k]2+∂aHt,r∂θ∂at,r∂θs[k]2+aHt,r∂2at,r∂θ2s[k]2) | (27) |
And then we have
K∑k=1x[k]=K∑k=1at,rs[k]+N[k]=at,r(θ,ϕ,r)K∑k=1s[k] | (28) |
and
K∑k=1s2[k]=Kvar(s[k])=Kσ2s | (29) |
where
E[∂2ln(p(x|θ,ϕ,r))∂θ2]=−Kσ2sσ2n(∂aHt,r∂θ∂at,r∂θ+∂aHt,r∂θ∂at,r∂θ)=−2Kσ2sσ2n‖∂at,r∂θ‖2 | (30) |
where
CRLB−1=FIM=2Kσ2sσ2n⋅[‖∂a∂θ‖2FIM12FIM13FIM21‖∂a∂ϕ‖2FIM23FIM31FIM32‖∂a∂r‖2] | (31) |
where
FIM12=12[∂aHt,r∂θ∂at,r∂ϕ+∂aHt,r∂ϕ∂at,r∂θ], |
FIM13=12[∂aHt,r∂θ∂at,r∂r+∂aHt,r∂r∂at,r∂θ], |
FIM21=12[∂aHt,r∂ϕ∂at,r∂θ+∂aHt,r∂θ∂at,r∂ϕ], |
FIM23=12[∂aHt,r∂ϕ∂at,r∂r+∂aHt,r∂r∂at,r∂ϕ], |
FIM31=12[∂aHt,r∂r∂at,r∂θ+∂aHt,r∂θ∂at,r∂r], |
FIM32=12[∂aHt,r∂r∂at,r∂ϕ+∂aHt,r∂ϕ∂at,r∂r], |
σ2sσ2n=SNR |
Finally, the CRLB of conformal FDA-MIMO can be calculated by the inverse of Fisher matrix.
The covariance matrix of the conformal FDA-MIMO receiving signal can be written as
RX=ARsAH+σ2IMN | (32) |
where
RX=USΛSUHS+UnΛnUHn | (33) |
The traditional MUSIC algorithm is utilized to estimate the three-dimensional parameters
PMUSIC(θ,ϕ,r)=1aHt,r(θ,ϕ,r)UnUHnat,r(θ,ϕ,r) | (34) |
The target location can be obtained by mapping the peak indexes of MUSIC spectrum.
Traditional MUSIC parameter estimation algorithm is realized by 3D parameter search, which has good performance at the cost of high computational complexity. When the angular scan interval is less than 0.1°, the running time of single Monte-Carlo simulation is in hours, which is unpracticable for us to analysis conformal FDA-MIMO estimation performance by hundreds of simulations.
In order to reduce the computation complexity of the parameter estimation algorithm for conformal FDA-MIMO, we propose a RD-MUSIC algorithm, which has a significant increase in computing speed at the cost of little estimation performance loss.
At first, we define
V(θ,ϕ,r)=aHt,r(θ,ϕ,r)HUnUHnat,r(θ,ϕ,r)=[b(θ,ϕ)⊗a(θ,ϕ,r)]HUn⋅UHn[b(θ,ϕ)⊗a(θ,ϕ,r)] | (35) |
Eq. (35) can be further calculated by
V(θ,ϕ,r)=aH(θ,ϕ,r)[b(θ,ϕ)⊗IM]H×UnUHn[b(θ,ϕ)⊗IM]a(θ,ϕ,r)=aH(θ,ϕ,r)Q(θ,ϕ)a(θ,ϕ,r) | (36) |
where
Eq. (36) can be transformed into a quadratic programming problem. To avoid
{min | (37) |
The penalty function can be constructed as
\begin{split} L(\theta ,\phi ,r) =& {{\boldsymbol{a}}^{\rm{H}}}(\theta ,\phi ,r){\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu \left({\boldsymbol{e}}_1^{\text{H}}{\boldsymbol{a}}(\theta ,\phi ,r) - 1\right) \\ \end{split} | (38) |
where
\begin{split} \frac{{\partial L(\theta ,\phi ,r)}}{{\partial {\boldsymbol{a}}(r)}} =& 2{\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu {\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{e}}_{\boldsymbol{1}}^{} \end{split} | (39) |
where
And then let
{\boldsymbol{a}}\left( r \right) = \varsigma {{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){\boldsymbol{e}}_1^{}./{\boldsymbol{a}}(\theta ,\phi ) | (40) |
where
{\boldsymbol{a}}\left( r \right) = \frac{{{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}{{{\boldsymbol{e}}_1^{\rm{H}}{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}./{\boldsymbol{a}}\left( {\theta ,\phi } \right) | (41) |
Substituting
\begin{split} \hfill \lt \hat \theta ,\hat \phi \gt =& {\text{arg}}\mathop {\min }\limits_{\theta ,\phi } \frac{1}{{{\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}}}} \\ =& {\text{arg}}\mathop {\max }\limits_{\theta ,\phi } {\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}} \end{split} | (42) |
Given azimuth-elevation estimations obtained by mapping the
P\left({\hat \theta _i},{\hat \phi _i},r\right){\text{ }} = \frac{1}{{{\boldsymbol{a}}_{t,r}^{\rm{H}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right){{\boldsymbol{U}}_n}{\boldsymbol{U}}_n^{\rm{H}}{{\boldsymbol{a}}_{t,r}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right)}} | (43) |
For conformal array, different array layouts produce different element patterns. We select the semi conical conformal array which is shown in Fig. 2 as the receiving array for the following simulation.
The simulation parameters are provided as follows:
We first analyze the computational complexity of the algorithms in respect of the calculation of covariance matrix, the eigenvalue decomposition of the matrix and the spectral search. The main complexity of the MUISC algorithm and our proposed RD-MUISC algorithm are respectively as
O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{\eta _3}{({MN})^2} \right) | (44) |
O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{({MN})^2} + L{\eta _3}{({MN})^2}\right) | (45) |
Where
From Eq. (44) and Eq. (45), we can see that the main complexity reduction of the RD-MUSIC algorithm lies in the calculation of the spectral search function. With the increase of the search accuracy, the complexity reduction is more significant.
The computational complexity of algorithms is compared in Fig. 3. It can be seen from Fig. 3 that the difference of computational complexity between the two algorithms gradually increases with the increase of search accuracy. In the case of high accuracy, the computational efficiency of RD-MUSIC algorithm can reach more than
In order to illustrate the effectiveness of the RD-MUSIC algorithm for a single target which is located at
Then, we consider the single target parameter estimation performance, Fig. 5 shows the RMSE of different algorithms with the increase of SNR under 200 snapshots condition, and Fig. 6 demonstrates the RMSE of different algorithms with the increase of snapshot number when SNR=0 dB. As shown in Fig. 5 and Fig. 6, the RMSEs of conformal FDA-MIMO gradually descend with the increasing of SNRs and snapshots, respectively. At the same time, the performance of traditional algorithm is slightly higher than RD-MUSIC algorithm. When the number of snapshots is more than 200, the difference of RMSEs is less than
Without loss of generality, we finally consider two targets which are located at
It can be seen from Fig. 7 that the RMSE curve trend of angle estimation is consistent with that of single target case. The performance of traditional MUSIC algorithm is slightly better than that of RD-MUSIC algorithm. In the range dimension, the performance of traditional algorithm hardly changes with SNR, and RD-MUSIC algorithm is obviously better than traditional MUSIC algorithm. The proposed RD-MUSIC algorithm first estimates the angles, and then estimates the multiple peaks from range-dimensional spectrum, which avoids the ambiguity in the three-dimensional spectral search. Therefore, the RD-MUSIC algorithm has better range resolution for multiple targets estimation.
In this paper, a conformal FDA-MIMO radar is first established, and the corresponding signal receiving mathematical model is formulated. In order to avoid the computational complexity caused by three-dimensional parameter search of MUSIC algorithm, we propose a RD-MUSIC algorithm by solving a quadratic programming problem. Simulation results show that the RD-MUSIC algorithm has comparative angle estimation performance with that of traditional MUSIC algorithm while greatly reducing the computation time. And the RD-MUSIC algorithm has better range estimation performance for multiple targets.
[1] |
Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES-9(2): 237–252. DOI: 10.1109/TAES.1973.309792
|
[2] |
Klemm R. Space-Time Adaptive Processing: Principles and Applications[M]. Stevenage, UK: IEE Publishers, 1998.
|
[3] |
王永良, 彭应宁. 空时自适应信号处理[M]. 北京: 清华大学出版社, 2000.
Wang Y L and Peng Y N. Space-Time Adaptive Processing[M]. Beijing: Tsinghua University Press, 2000.
|
[4] |
Klemm R. Principles of Space-Time Adaptive Processing[M]. Second Edition, Stevenage, Herts., UK: IEE Publishers, 2002.
|
[5] |
Guerci J R. Space-Time Adaptive Processing for Radar[M]. Boston: Artech House, 2003.
|
[6] |
Klemm R. Applications of Space-Time Adaptive Processing[M]. London: IEE Publishers, 2004.
|
[7] |
Klemm R. Principles of Space-Time Adaptive Processing[M]. Third edition, London, UK: IEE Publishers, 2006.
|
[8] |
Ward J. Space-time adaptive processing for airborne radar[R]. No. 1015. London: MIT Lincoln Laboratory, 1994.
|
[9] |
Melvin W L. Space-time adaptive processing and adaptive arrays: Special collection of papers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 508–509. DOI: 10.1109/7.845233
|
[10] |
Klemm R. Special issue on space-time adaptive processing (STAP)[J]. Electronics & Communications Engineering Journal, 1999, 11(1): 2.
|
[11] |
Rangaswamy M. An overview of space-time adaptive processing for radar[C]. Proceedings of IEEE International Conference on Radar, Adelaide, Australia, 2003: 45–50.
|
[12] |
Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1/2): 19–35.
|
[13] |
Wicks M C, Rangaswamy M, Adve R, et al. Space-time adaptive processing: A knowledge-based perspective for airborne radar[J]. IEEE Signal Processing Magazine, 2006, 23(1): 51–65. DOI: 10.1109/MSP.2006.1593337
|
[14] |
Greve S, Ries P, Lapierre F, et al. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084–1099. DOI: 10.1109/TAES.2007.4383596
|
[15] |
王永良, 李天泉. 机载雷达空时自适应信号处理技术回顾与展望[J]. 中国电子科学研究院学报, 2008, 3(3): 271–275, 296. DOI: 10.3969/j.issn.1673-5692.2008.03.010
Wang Y L and Li T Q. Overview and outlook of space time adaptive signal processing for airborne radar[J]. Journal of CAEIT, 2008, 3(3): 271–275, 296. DOI: 10.3969/j.issn.1673-5692.2008.03.010
|
[16] |
Maher J, Callahan M, and Lynch D. Effects of clutter modeling in evaluating STAP processing for space-based radars[C]. Proceedings of the Record of the IEEE 2000 International Radar Conference, Alexandria, VA, 2000: 565–570.
|
[17] |
Lesturgie M. Use of STAP techniques to enhance the detection of slow targets in shipborne HFSWR[C]. Proceedings of International Radar Conference, Adelaide, Australia, 2003: 504–509.
|
[18] |
Ender J H G. Space-time processing for multichannel synthetic aperture radar[J]. Electronics&Communications Engineering Journal, 1999, 11(1): 29–38.
|
[19] |
Paulraj A J and Lindskog E. Taxonomy of space-time processing for wireless networks[J]. IEE Proceedings-Radar,Sonar and Navigation, 1998, 145(1): 25–31. DOI: 10.1049/ip-rsn:19981807
|
[20] |
Fante R L and Vaccaro J J. Wideband cancellation of interference in a GPS receive array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 549–564. DOI: 10.1109/7.845241
|
[21] |
Brennan L E, Mallett J D, and Reed I S. Adaptive arrays in airborne MTI radar[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 607–615. DOI: 10.1109/TAP.1976.1141412
|
[22] |
Titi W G. An overview of the ARPA/NAVY mountaintop program[C]. Proceedings of IEEE Adaptive Antenna Systems Symposium, Melville, NY, 1994.
|
[23] |
Suresh Babu, Torres J A, and Melvin W L. Processing and evaluation of multichannel airborne radar measurements (MCARM) measured data[C]. Proceedings of IEEE International Symposium on Phased Array Systems and Technology, Boston, MA, 1996: 395–399.
|
[24] |
Schrader G E. The knowledge aided sensor signal processing and expert reasoning (KASSPER) real-time signal processing architecture[C]. Proceedings of IEEE Radar Conference, Philadelphia, PA, USA, 2004: 394–397.
|
[25] |
Klemm R. Adaptive airborne MTI: An auxiliary channel approach[J]. IEE Proceedings F Communications,Radar and Signal Processing, 1987, 134(3): 269–276. DOI: 10.1049/ip-f-1.1987.0054
|
[26] |
保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21(9): 1–7
Bao Z, Liao G S, Wu R B, et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronica Sinica, 1993, 21(9): 1–7
|
[27] |
Wang Y L, Peng Y N, and Bao Z. Space-time adaptive processing for airborne radar with various array orientation[J]. IEE Proceedings Radar,Sonar Navigation, 1997, 144(6): 330–340.
|
[28] |
Dipietro R C. Extended factored space-time processing for airborne radar systems[C]. Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1992, 1: 425–430.
|
[29] |
Wang H and Cai L J. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 660–670. DOI: 10.1109/7.303737
|
[30] |
Brown R D, Wicks M C, Zhang Y, et al.. A space-time adaptive processing approach for improved performance and affordability[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, MI, 1996: 321–326.
|
[31] |
Wang Y L, Chen J W, Bao Z, et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 71–81.
|
[32] |
Klemm R. Adaptive clutter suppression for airborne phased array radar[J]. IEE Proceedings H-Microwaves,Optics and Antennas, 1983, 130(1): 125–132. DOI: 10.1049/ip-h-1.1983.0021
|
[33] |
Brennan L E and Staudaher F M. Subclutter visibility demonstration[R]. RL-TR-92-21, Adaptive Sensors Incorporated, 1992.
|
[34] |
Haimovich A M and Berin M. Eigenanalysis-based space-time adaptive radar: Performance analysis[J].IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(4): 1170–1179. DOI: 10.1109/7.625104
|
[35] |
Goldstein J S and Reed I S. Reduced-rank adaptive filtering[J]. IEEE Transactions on Signal Processing, 1997, 45(2): 492–496.
|
[36] |
张良. 机载相控阵雷达降维STAP研究[D]. [博士论文], 西安电子科技大学, 1999.
Zhang L. Study of reduced-rank STAP for airborne phased array radar[D]. [Ph.D. dissertation], Xidian University, 1999.
|
[37] |
Rabideau D J and Steinhardt A O. Improved adaptive clutter cancellation through data-adaptive training[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 879–891. DOI: 10.1109/7.784058
|
[38] |
Kogon S M and Zatman M A. STAP adaptive weight training using phase and power selection criteria[C]. Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2001, 1: 98–102.
|
[39] |
Melvin W L, Wicks M C, and Brown R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms[C]. Proceedings of IEEE National Radar Conference, Ann Arbor, Michigan, 1996: 130–135.
|
[40] |
Adve R S, Hale T B, and Wicks M C. Transform domain localized processing using measured steering vectors and non-homogeneity detection[C]. Proceedings of the Record of the 1999 IEEE Radar Conference, Boston, MA, 1999: 285–290.
|
[41] |
Wicks M C, Melvin W L, and Chen P. An efficient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar[C]. Proceedings of (Conf. Publ. No. 449) Radar 97, Edinburgh, UK, 1997: 295–299.
|
[42] |
吴洪, 王永良, 陈建文. 基于频心法的STAP非均匀检测器[J]. 系统工程与电子技术, 2008, 30(4): 606–608. DOI: 10.3321/j.issn:1001-506X.2008.04.005
Wu H, Wang Y L, and Chen J W. Nonhomogeneous detector for STAP based on spectral center frequency method[J]. Systems Engineering and Electronics, 2008, 30(4): 606–608. DOI: 10.3321/j.issn:1001-506X.2008.04.005
|
[43] |
Sarkar T K, Wang H, Park S, et al. A deterministic least-squares approach to space-time adaptive processing (STAP)[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(1): 91–103. DOI: 10.1109/8.910535
|
[44] |
Roman J R, Rangaswamy M, Davis D W, et al. Parametric adaptive matched filter for airborne radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 677–692.
|
[45] |
Parker P and Swindlehurst A. Space-time autoregressive filtering for matched subspace STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 510–520.
|
[46] |
Wang P, Li H B, and Himed B. Knowledge-aided parametric tests for multichannel adaptive signal detection[J]. IEEE Transactions on Signal Processing, 2011, 59(12): 5970–5982.
|
[47] |
段克清, 谢文冲, 高飞, 等. 基于杂波自由度的STAR模型参数估计方法[J]. 信号处理, 2009, 25(11): 1715–1718. DOI: 10.3969/j.issn.1003-0530.2009.11.010
Duan K Q, Xie W C, Gao F, et al. Parameters estimation method for STAR model based on clutter degree of freedom[J]. Signal Processing, 2009, 25(11): 1715–1718. DOI: 10.3969/j.issn.1003-0530.2009.11.010
|
[48] |
Guerci J R and Baranoski E J. Knowledge-aided adaptive radar at DARPA: An overview[J]. IEEE Signal Processing Magazine, 2006, 23(1): 41–50.
|
[49] |
Melvin W L and Guerci J R. Knowledge-aided signal processing: A new paradigm for radar and other advanced sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 983–996.
|
[50] |
Melvin W L and Showman G A. An approach to knowledge-aided covariance estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021–1042.
|
[51] |
Xie W C, Duan K Q, Gao F, et al. Clutter suppression for airborne phased radar with conformal arrays by least squares estimation[J]. Signal Processing, 2011, 91(7): 1665–1669.
|
[52] |
Maria S and Fuchs J J. Application of the global matched filter to STAP data an efficient algorithmic approach[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, 2006: 14–19.
|
[53] |
Sun K, Meng H D, Wang Y L, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222–2236.
|
[54] |
Yang Z C, Rodrigo C. de Lamare, and Li X. L1-regularized STAP algorithms with a generalized sidelobe canceler architecture for airborne radar[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 674–686.
|
[55] |
Ma Z Q, Liu Y M, Meng H D, et al.. Jointly Sparse recovery of multiple snapshots in STAP[C]. Proceedings of IEEE Radar Conference, Ottawa, ON, 2013: 1–4.
|
[56] |
王泽涛, 段克清, 谢文冲, 等. 基于SA-MUSIC理论的联合稀疏恢复STAP算法[J]. 电子学报, 2015, 43(5): 846–853. DOI: 10.3969/j.issn.0372-2112.2015.05.003
Wang Z T, Duan K Q, Xie W C, et al. A joint sparse recovery STAP method based on SA-MUSIC[J]. Acta Electronica Sinica, 2015, 43(5): 846–853. DOI: 10.3969/j.issn.0372-2112.2015.05.003
|
[57] |
Adve R S, Hale T B, and Wicks M C. Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. Part 2: Nonhomogeneous environments[J]. IEE Proceedings-Radar,Sonar and Navigation, 2000, 147(2): 66–74.
|
[58] |
Aboutanios E and Mulgrew B. Hybrid detection approach for STAP in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1021–1033.
|
[59] |
Gerlach K and Picciolo M L. Robust STAP using reiterative censoring[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, 2003: 244–251.
|
[60] |
Shackelford A K, Gerlach K, and Blunt S D. Partially adaptive STAP using the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(1): 58–69.
|
[61] |
Blunt S D, Gerlach K, and Rangaswamy M. STAP using knowledge-aided covariance estimation and the FRACTA algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1043–1057. DOI: 10.1109/TAES.2006.248197
|
[62] |
Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of IEEE Radar Conference, Dallas, TX, 1998: 135–140.
|
[63] |
魏进武, 王永良, 陈建文. 双基地机载预警雷达空时自适应处理方法[J]. 电子学报, 2001, 29(S1): 1936–1939. DOI: 10.3321/j.issn:0372-2112.2001.z1.051
Wei J W, Wang Y L, and Chen J W. Space-time adaptive processing approaches to bistatic airborne early warning radar[J]. Acta Electronica Sinica, 2001, 29(S1): 1936–1939. DOI: 10.3321/j.issn:0372-2112.2001.z1.051
|
[64] |
Pearson F and Borsari G K. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Proceedings of the Adaptive Sensor Array Processing Workshop, Lexington, MA, 2001.
|
[65] |
Himed B, Zhang Y H, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radar[C]. Proceedings of IEEE Radar Conference, Long Beach, CA, 2002: 311–317.
|
[66] |
Jaffer A and Ho P T. Adaptive angle-Doppler compensation techniques for bistatic STAP radars[R]. AFRL-SN-RS-TR-2005-398, AFRL, 2005.
|
[67] |
Lapierre F D, Verly J G, and Van Droogenbroeck M V. New solutions to the problem of range dependence in bistatic STAP radars[C]. Proceedings of IEEE Radar Conference, Huntsville, AL, USA, 2003: 452–459.
|
[68] |
Lapierre F D and Verly J G. Registration-based solutions to the range-dependence problem in radar STAP[C]. Proceedings of the 11th Adaptive Sensor Array Processing Workshop, Lexington, MA, 2003: 1–6.
|
[69] |
Xie W C, Zhang B H, Wang Y L, et al. Range ambiguity clutter suppression for bistatic STAP radar[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(75): 1–13. DOI: 10.1186/1687-6180-2013-13
|
[70] |
Friedlander B. The MVDR beamformer for circular arrays[C]. Proceedings of the 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2000: 25–29.
|
[71] |
Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 56(3): 848–860.
|
[72] |
彭晓瑞, 谢文冲, 王永良. 一种基于空时内插的双基地机载雷达杂波抑制方法[J]. 电子与信息学报, 2010, 32(7): 1697–1702. DOI: 10.3724/SP.J.1146.2009.00975
Peng X R, Xie W C, and Wang Y L. Improved joint space-time interpolation technique for bistatic airborne radar[J]. Journal of Electronics&Information Technology, 2010, 32(7): 1697–1702. DOI: 10.3724/SP.J.1146.2009.00975
|
[73] |
Zatman M. Circular array STAP[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 510–517. DOI: 10.1109/7.845235
|
[74] |
王万林. 非均匀环境下的相控阵机载雷达STAP研究[D]. [博士论文], 西安电子科技大学, 2004.
Wang W L. Study on STAP for phased array airborne radar in nonhomogeneous environment[D]. [Ph.D. dissertation], Xidian University, 2004.
|
[75] |
Lim C H and Mulgrew B. Prediction of inverse covariance matrix (PICM) sequences for STAP[J]. IEEE Signal Processing Letters, 2006, 13(4): 236–239. DOI: 10.1109/LSP.2005.863654
|
[76] |
Lim C H, See C M S, and Mulgrew B. Non-linear prediction of inverse covariance matrix for STAP[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, 2007: II-921–II-924.
|
[77] |
高飞, 谢文冲, 王永良. 非均匀杂波环境3D-STAP方法研究[J]. 电子学报, 2009, 37(4): 868–872. DOI: 10.3321/j.issn:0372-2112.2009.04.036
Gao F, Xie W C, and Wang Y L. Research on 3D-STAP methods in non-stationary clutter[J]. Acta Electronica Sinica, 2009, 37(4): 868–872. DOI: 10.3321/j.issn:0372-2112.2009.04.036
|
[78] |
Wang Y L, Duan K Q, and Xie W C. Cross beam STAP for nonstationary clutter suppression in airborne radar[J]. International Journal of Antennas and Propagation, 2013, 2013: 276310. DOI: 10.1155/2013/276310
|
[79] |
段克清, 谢文冲, 王永良. 共形阵机载雷达杂波非平稳特性及抑制方法研究[J]. 中国科学: 信息科学, 2011, 54(10): 2170–2177
Duan K Q, Xie W C, and Wang Y L. Nonstationary clutter suppression for airborne conformal array radar[J]. Science China Information Sciences, 2011, 54(10): 2170–2177
|
[80] |
谢文冲, 王永良. 基于CMT技术的非正侧面阵机载雷达杂波抑制方法研究[J]. 电子学报, 2007, 35(3): 441–444. DOI: 10.3321/j.issn:0372-2112.2007.03.011
Xie W C and Wang Y L. Study on clutter suppression approach to airborne phased radar with non-sidelooking arrays based on CMT[J]. Acta Electronica Sinica, 2007, 35(3): 441–444. DOI: 10.3321/j.issn:0372-2112.2007.03.011
|
[81] |
Kelly E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. DOI: 10.1109/TAES.1986.310745
|
[82] |
Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched filter detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208–216. DOI: 10.1109/7.135446
|
[83] |
Chen W S and Reed I S. A new CFAR detection test for radar[J]. Digital Signal Processing, 1991, 1(4): 198–214. DOI: 10.1016/1051-2004(91)90113-Y
|
[84] |
Maio A D. Rao test for adaptive detection in Gaussian interference with unknown covariance matrix[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3577–3584. DOI: 10.1109/TSP.2007.894238
|
[85] |
Maio A D. A new derivation of the adaptive matched filter[J].IEEE Signal Processing Letters, 2004, 11(10): 792–793. DOI: 10.1109/LSP.2004.835464
|
[86] |
Raghavan R S, Qiu H F, and Mclaughlin D J. CFAR detection in clutter with unknown correlation properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 647–657. DOI: 10.1109/7.381913
|
[87] |
Kraut S and Scharf L L. The CFAR adaptive subspace detector is a scale-invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2538–2541. DOI: 10.1109/78.782198
|
[88] |
Kraut S, Scharf L L, and McWhorter L T. Adaptive subspace detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 1–16. DOI: 10.1109/78.890324
|
[89] |
王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. DOI: 10.3724/SP.J.1300.2014.13081
Wang Y L, Liu W J, Xie W C, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. DOI: 10.3724/SP.J.1300.2014.13081
|
[90] |
Liu W J, Xie W C, and Wang Y L. Parametric detector in the situation of mismatched signals[J]. IET Radar,Sonar&Navigation, 2014, 8(1): 48–53.
|
[91] |
刘维建, 常晋聃, 李鸿, 等. 干扰背景下机载雷达广义似然比检测方法[J]. 雷达科学与技术, 2014, 12(3): 267–272. DOI: 10.3969/j.issn.1672-2337.2014.03.008
Liu W J, Chang J D, Li H, et al. Generalized likelihood ratio test for airborne radar in the presence of jamming[J]. Radar Science and Technology, 2014, 12(3): 267–272. DOI: 10.3969/j.issn.1672-2337.2014.03.008
|
[92] |
刘维建, 谢文冲, 王永良. 部分均匀环境中存在干扰时机载雷达广义似然比检测[J]. 电子与信息学报, 2013, 35(8): 1820–1826. DOI: 10.3724/SP.J.1146.2012.01492
Liu W J, Xie W C, and Wang Y L. Generalized likelihood ratio test for airborne radar with jamming in partially homogeneous environment[J]. Journal of Electronics&Information Technology, 2013, 35(8): 1820–1826. DOI: 10.3724/SP.J.1146.2012.01492
|
[93] |
Liu W J, Xie W C, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-part I: Homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2345–2357. DOI: 10.1109/TSP.2014.2309556
|
[94] |
Liu W J, Xie W C, Liu J, et al. Adaptive double subspace signal detection in Gaussian background-part II: Partially homogeneous environments[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2358–2369. DOI: 10.1109/TSP.2014.2309553
|
[95] |
Liu W J, Xie W C, Liu J, et al. Detection of a distributed target with direction uncertainty[J]. IET Radar,Sonar&Navigation, 2014, 8(9): 1177–1183.
|
[96] |
Liu W J, Xie W C, and Wang Y L. Rao and Wald tests for distributed targets detection with unknown signal steering[J]. IEEE Signal Processing Letters, 2013, 20(11): 1086–1089. DOI: 10.1109/LSP.2013.2277371
|
[97] |
Liu W J, Xie W C, Li R F, et al. Adaptive detectors in the Krylov subspace[J]. Science China Information Sciences, 2014, 57(10): 102310–102311.
|
[98] |
Wang Y L, Liu W J, Xie W C, et al. Reduced-rank space-time adaptive detection for airborne radar[J]. Science China Information Sciences, 2014, 57(8): 82310–82311.
|
[99] |
Jao J K, Yegulalp A F, and Ayasli S. Unified synthetic aperture space time adaptive radar (USASTAR) concept[R]. No. NTI-4, Lexington, MA: MIT Lincoln Laboratory, 2004.
|
[100] |
常玉林. 多通道低频超宽带SAR/GMTI系统长相干积累STAP技术研究[D]. [博士论文], 国防科学技术大学, 2009.
Chang Y L. Coherent-processing-interval STAP techniques for low frequency multi-channel ultra-wide band SAR/GMTI system[D]. [Ph.D. dissertation], National University of Defense Technology, 2009.
|
[101] |
刘春静. 空时自适应处理进展概述[J]. 雷达与探测技术动态, 2012, (129): 1–6
Liu C J. Progress in space time adaptive processing[J]. Journal of Radar&Detection Technology, 2012, (129): 1–6
|
[1] | LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032 |
[2] | LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024 |
[3] | DONG Yunlong, ZHANG Zhaoxiang, DING Hao, HUANG Yong, LIU Ningbo. Target Detection in Sea Clutter Using a Three-feature Prediction-based Method[J]. Journal of Radars, 2023, 12(4): 762-775. doi: 10.12000/JR23037 |
[4] | DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121 |
[5] | DUAN Keqing, LI Xiang, XING Kun, WANG Yongliang. Clutter Mitigation in Space-based Early Warning Radar Using a Convolutional Neural Network[J]. Journal of Radars, 2022, 11(3): 386-398. doi: 10.12000/JR21161 |
[6] | LI Wenna, ZHANG Shunsheng, WANG Wenqin. Multitarget-tracking Method for Airborne Radar Based on a Transformer Network[J]. Journal of Radars, 2022, 11(3): 469-478. doi: 10.12000/JR22009 |
[7] | CUI Guolong, FAN Tao, KONG Yukai, YU Xianxiang, SHA Minghui, KONG Lingjiang. Pseudo-random Agility Technology for Interpulse Waveform Parameters in Airborne Radar[J]. Journal of Radars, 2022, 11(2): 213-226. doi: 10.12000/JR21189 |
[8] | ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051 |
[9] | MOU Xiaoqian, CHEN Xiaolong, GUAN Jian, ZHOU Wei, LIU Ningbo, DONG Yunlong. Clutter Suppression and Marine Target Detection for Radar Images Based on INet[J]. Journal of Radars, 2020, 9(4): 640-653. doi: 10.12000/JR20090 |
[10] | MA Jiazhi, SHI Longfei, XU Zhenhai, WANG Xuesong. Overview of Multi-source Parameter Estimation and Jamming Mitigation for Monopulse Radars[J]. Journal of Radars, 2019, 8(1): 125-139. doi: 10.12000/JR18093 |
[11] | Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053 |
[12] | Wang Lulu, Wang Hongqiang, Wang Manxi, Li Xiang. An Overview of Radar Waveform Optimization for Target Detection[J]. Journal of Radars, 2016, 5(5): 487-498. doi: 10.12000/JR16084 |
[13] | Dai Huanyao, Liu Yong, Huang Zhenyu, Zhang Yang. Detection and Identification of Multipath Jamming Method for Polarized Radar Seeker[J]. Journal of Radars, 2016, 5(2): 156-163. doi: 10.12000/JR16046 |
[14] | Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091 |
[15] | Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013 |
[16] | Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101 |
[17] | Zhao Yong-ke, Lü Xiao-De. A Joint-optimized Real-time Target Detection Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 666-674. doi: 10.12000/JR14005 |
[18] | Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, Meng Hua-dong. An Overview on Sparse Recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217-228. doi: 10.3724/SP.J.1300.2014.14002 |
[19] | Wang Fu-you, Luo Ding, Liu Hong-wei. Low-resolution Airborne Radar Aircraft Target Classification[J]. Journal of Radars, 2014, 3(4): 444-449. doi: 10.3724/SP.J.1300.2014.14075 |
[20] | Li Jun, Dang Bo, Liu Chang-zan, Liao Gui-sheng. Bistatic MIMO Radar Clutter Suppression by Exploiting the Transmit Angle[J]. Journal of Radars, 2014, 3(2): 208-216. doi: 10.3724/SP.J.1300.2014.13148 |
1. | 葛津津,周浩,凌天庆. 一种应用于脉冲探地雷达前端的探测子系统. 电子测量技术. 2022(04): 27-32 . ![]() | |
2. | 尹诗,郭伟. 用于探地雷达的超宽带天线设计与仿真. 电子设计工程. 2018(03): 98-102 . ![]() | |
3. | 宋立伟,张超,洪涛. 冲击波载荷对平面阵列天线电性能的影响. 电子机械工程. 2017(04): 1-5+58 . ![]() | |
4. | 尹德,叶盛波,刘晋伟,纪奕才,刘小军,方广有. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线. 雷达学报. 2017(06): 611-618 . ![]() |