Citation: | Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053 |
The adaptive angle-Doppler compensation method adaptively extracts requisite information based on the data itself, thereby avoiding the problem of performance degradation due to inertial system error. However, this method requires the estimation and eigen decomposition of a sample covariance matrix, which has high computational complexity and limits its real-time application. In this paper, we investigate an adaptive angle-Doppler compensation method based on Projection Approximation Subspace Tracking (PAST). This method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector in each range cell, thereby avoiding the computational burden of matrix estimation and eigen decompositon. Then, the spectral centers of all range cells are overlapped by two-dimensional compensation. Our simulation results demonstrate that the proposed method can effectively reduce the nonhomogeneity of airborne bistatic radar, with a performance is similar to that of eigen-decomposition algorithms, but with a reduced computational load and easy implementation.
[1] |
张良, 徐艳国. 机载预警雷达技术发展展望[J]. 现代雷达, 2015, 37(1): 1–7
Zhang Liang and Xu Yan-guo. Prospect for technology of airborne early warning radar[J]. Modern Radar, 2015, 37(1): 1–7
|
[2] |
张永顺, 冯为可, 赵杰, 等. 时变加权的机载双基雷达降维空时自适应处理[J]. 电波科学学报, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701
Zhang Yong-shun, Feng Wei-ke, Zhao Jie, et al. A dimension-reduced STAP method for airborne bistatic radar based on time-varying weighting techniques[J]. Chinese Journal of Radio Science, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701
|
[3] |
Greve S, Ries P, Lapierre F, et al. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084–1099. DOI: 10.1109/TAES.2007.4383596
|
[4] |
阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024
Yang Zhao-cheng, Li Xiang, and Wang Hong-qiang. An overview of space-time adaptive processing technology based on sparsity of space time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024
|
[5] |
Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE National Radar Conference, Dallas, TX, USA, 1998: 135–140.
|
[6] |
冯坤菊, 王春阳, 段垣丽, 等. 机载双基地STAP的OP-DW预处理算法及其性能研究[J]. 电子学报, 2011, 39(3): 700–704
Feng Kun-ju, Wang Chun-yang, Duan Yuan-li, et al. Research on the OP-DW algorithm of bistatic radar and its performance[J]. Acta Electronica Sinica, 2011, 39(3): 700–704
|
[7] |
Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE National Radar Conference, Long Beach, CA, USA, 2002: 311–317.
|
[8] |
Himed B. Effects of bistatic clutter dispersion on STAP systems[J]. IEE Proceedings-Radar,Sonar and Navigation, 2003, 150(1): 28–32. DOI: 10.1049/ip-rsn:20030100
|
[9] |
Fallah A and Bakhshi H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]. Proceedings of the 2012 6th International Symposium on Telecommunications (IST), Tehran, Iran, 2012: 367–372.
|
[10] |
Melvin M L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 651–672. DOI: 10.1109/TAES.2007.4285360
|
[11] |
王杰, 沈明威, 吴迪, 等. 基于主瓣杂波高效配准的机载非正侧视阵雷达STAP算法研究[J]. 雷达学报, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122
Wang Jie, Shen Ming-wei, Wu Di, et al. An efficient STAP algorithm for nonsidelooking airborne radar based on mainlobe clutter compensation[J]. Journal of Radars, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122
|
[12] |
马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002
Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002
|
[13] |
Yang Bin. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95–107. DOI: 10.1109/78.365290
|
[14] |
Belkacemi H and Marcos S. Fast iterative subspace algorithms for airborne STAP radar[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006: 037296.
|
[1] | XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183 |
[2] | CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049 |
[3] | GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243 |
[4] | WANG Yanfei, LI Heping, HAN Song. Synthetic Aperture Imaging of Antenna Array Coded[J]. Journal of Radars, 2023, 12(1): 1-12. doi: 10.12000/JR23011 |
[5] | MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001 |
[6] | WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204 |
[7] | ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004 |
[8] | LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079 |
[9] | LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087 |
[10] | HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113 |
[11] | TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060 |
[12] | WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077 |
[13] | WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054 |
[14] | LONG Teng, DING Zegang, XIAO Feng, WANG Yan, LI Zhe. Spaceborne High-resolution Stepped-frequency SAR Imaging Technology[J]. Journal of Radars, 2019, 8(6): 782-792. doi: 10.12000/JR19076 |
[15] | XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102 |
[16] | Zhao Tuan, Deng Yunkai, Wang Yu, Li Ning, Wang Xiangyu. Processing Sliding Mosaic Mode Data with Modified Full-Aperture Imaging Algorithm Integrating Scalloping Correction[J]. Journal of Radars, 2016, 5(5): 548-557. doi: 10.12000/JR16014 |
[17] | Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135 |
[18] | Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114 |
[19] | Zheng Jian-cheng, Wang Dang-wei, Ma Xiao-yan, Xuan Ze-ping, Feng Xiao-bing. Study on Spin-based Imaging of High-speed Warhead[J]. Journal of Radars, 2013, 2(3): 300-308. doi: 10.3724/SP.J.1300.2013.13070 |
[20] | Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035 |