Volume 6 Issue 6
Dec.  2017
Turn off MathJax
Article Contents
Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
Citation: Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053

Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST

DOI: 10.12000/JR17053
Funds:  The National Natural Science Foundation of China (61671240)
  • Received Date: 2017-05-17
  • Rev Recd Date: 2017-06-21
  • Publish Date: 2017-12-28
  • The adaptive angle-Doppler compensation method adaptively extracts requisite information based on the data itself, thereby avoiding the problem of performance degradation due to inertial system error. However, this method requires the estimation and eigen decomposition of a sample covariance matrix, which has high computational complexity and limits its real-time application. In this paper, we investigate an adaptive angle-Doppler compensation method based on Projection Approximation Subspace Tracking (PAST). This method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector in each range cell, thereby avoiding the computational burden of matrix estimation and eigen decompositon. Then, the spectral centers of all range cells are overlapped by two-dimensional compensation. Our simulation results demonstrate that the proposed method can effectively reduce the nonhomogeneity of airborne bistatic radar, with a performance is similar to that of eigen-decomposition algorithms, but with a reduced computational load and easy implementation.

     

  • loading
  • [1]
    张良, 徐艳国. 机载预警雷达技术发展展望[J]. 现代雷达, 2015, 37(1): 1–7

    Zhang Liang and Xu Yan-guo. Prospect for technology of airborne early warning radar[J]. Modern Radar, 2015, 37(1): 1–7
    [2]
    张永顺, 冯为可, 赵杰, 等. 时变加权的机载双基雷达降维空时自适应处理[J]. 电波科学学报, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701

    Zhang Yong-shun, Feng Wei-ke, Zhao Jie, et al. A dimension-reduced STAP method for airborne bistatic radar based on time-varying weighting techniques[J]. Chinese Journal of Radio Science, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701
    [3]
    Greve S, Ries P, Lapierre F, et al. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084–1099. DOI: 10.1109/TAES.2007.4383596
    [4]
    阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024

    Yang Zhao-cheng, Li Xiang, and Wang Hong-qiang. An overview of space-time adaptive processing technology based on sparsity of space time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024
    [5]
    Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE National Radar Conference, Dallas, TX, USA, 1998: 135–140.
    [6]
    冯坤菊, 王春阳, 段垣丽, 等. 机载双基地STAP的OP-DW预处理算法及其性能研究[J]. 电子学报, 2011, 39(3): 700–704

    Feng Kun-ju, Wang Chun-yang, Duan Yuan-li, et al. Research on the OP-DW algorithm of bistatic radar and its performance[J]. Acta Electronica Sinica, 2011, 39(3): 700–704
    [7]
    Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE National Radar Conference, Long Beach, CA, USA, 2002: 311–317.
    [8]
    Himed B. Effects of bistatic clutter dispersion on STAP systems[J]. IEE Proceedings-Radar,Sonar and Navigation, 2003, 150(1): 28–32. DOI: 10.1049/ip-rsn:20030100
    [9]
    Fallah A and Bakhshi H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]. Proceedings of the 2012 6th International Symposium on Telecommunications (IST), Tehran, Iran, 2012: 367–372.
    [10]
    Melvin M L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 651–672. DOI: 10.1109/TAES.2007.4285360
    [11]
    王杰, 沈明威, 吴迪, 等. 基于主瓣杂波高效配准的机载非正侧视阵雷达STAP算法研究[J]. 雷达学报, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122

    Wang Jie, Shen Ming-wei, Wu Di, et al. An efficient STAP algorithm for nonsidelooking airborne radar based on mainlobe clutter compensation[J]. Journal of Radars, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122
    [12]
    马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002

    Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002
    [13]
    Yang Bin. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95–107. DOI: 10.1109/78.365290
    [14]
    Belkacemi H and Marcos S. Fast iterative subspace algorithms for airborne STAP radar[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006: 037296.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3162) PDF downloads(381) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint