Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
Citation: Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053

Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST

DOI: 10.12000/JR17053
Funds:  The National Natural Science Foundation of China (61671240)
  • Received Date: 2017-05-17
  • Rev Recd Date: 2017-06-21
  • Publish Date: 2017-12-28
  • The adaptive angle-Doppler compensation method adaptively extracts requisite information based on the data itself, thereby avoiding the problem of performance degradation due to inertial system error. However, this method requires the estimation and eigen decomposition of a sample covariance matrix, which has high computational complexity and limits its real-time application. In this paper, we investigate an adaptive angle-Doppler compensation method based on Projection Approximation Subspace Tracking (PAST). This method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector in each range cell, thereby avoiding the computational burden of matrix estimation and eigen decompositon. Then, the spectral centers of all range cells are overlapped by two-dimensional compensation. Our simulation results demonstrate that the proposed method can effectively reduce the nonhomogeneity of airborne bistatic radar, with a performance is similar to that of eigen-decomposition algorithms, but with a reduced computational load and easy implementation.

     

  • [1]
    张良, 徐艳国. 机载预警雷达技术发展展望[J]. 现代雷达, 2015, 37(1): 1–7

    Zhang Liang and Xu Yan-guo. Prospect for technology of airborne early warning radar[J]. Modern Radar, 2015, 37(1): 1–7
    [2]
    张永顺, 冯为可, 赵杰, 等. 时变加权的机载双基雷达降维空时自适应处理[J]. 电波科学学报, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701

    Zhang Yong-shun, Feng Wei-ke, Zhao Jie, et al. A dimension-reduced STAP method for airborne bistatic radar based on time-varying weighting techniques[J]. Chinese Journal of Radio Science, 2015, 30(1): 194–200. DOI: 10.13443/j.cjors.2014040701
    [3]
    Greve S, Ries P, Lapierre F, et al. Framework and taxonomy for radar space-time adaptive processing (STAP) methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1084–1099. DOI: 10.1109/TAES.2007.4383596
    [4]
    阳召成, 黎湘, 王宏强. 基于空时功率谱稀疏性的空时自适应处理技术研究进展[J]. 电子学报, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024

    Yang Zhao-cheng, Li Xiang, and Wang Hong-qiang. An overview of space-time adaptive processing technology based on sparsity of space time power spectrum[J]. Acta Electronica Sinica, 2014, 42(6): 1194–1204. DOI: 10.3969/j.issn.0372-2112.2014.06.024
    [5]
    Borsari G K. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE National Radar Conference, Dallas, TX, USA, 1998: 135–140.
    [6]
    冯坤菊, 王春阳, 段垣丽, 等. 机载双基地STAP的OP-DW预处理算法及其性能研究[J]. 电子学报, 2011, 39(3): 700–704

    Feng Kun-ju, Wang Chun-yang, Duan Yuan-li, et al. Research on the OP-DW algorithm of bistatic radar and its performance[J]. Acta Electronica Sinica, 2011, 39(3): 700–704
    [7]
    Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE National Radar Conference, Long Beach, CA, USA, 2002: 311–317.
    [8]
    Himed B. Effects of bistatic clutter dispersion on STAP systems[J]. IEE Proceedings-Radar,Sonar and Navigation, 2003, 150(1): 28–32. DOI: 10.1049/ip-rsn:20030100
    [9]
    Fallah A and Bakhshi H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]. Proceedings of the 2012 6th International Symposium on Telecommunications (IST), Tehran, Iran, 2012: 367–372.
    [10]
    Melvin M L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 651–672. DOI: 10.1109/TAES.2007.4285360
    [11]
    王杰, 沈明威, 吴迪, 等. 基于主瓣杂波高效配准的机载非正侧视阵雷达STAP算法研究[J]. 雷达学报, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122

    Wang Jie, Shen Ming-wei, Wu Di, et al. An efficient STAP algorithm for nonsidelooking airborne radar based on mainlobe clutter compensation[J]. Journal of Radars, 2014, 3(2): 235–240. DOI: 10.3724/SP.J.1300.2014.13122
    [12]
    马泽强, 王希勤, 刘一民, 等. 基于稀疏恢复的空时二维自适应处理技术研究现状[J]. 雷达学报, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002

    Ma Ze-qiang, Wang Xi-qin, Liu Yi-min, et al. An overview on sparse recovery-based STAP[J]. Journal of Radars, 2014, 3(2): 217–228. DOI: 10.3724/SP.J.1300.2014.14002
    [13]
    Yang Bin. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95–107. DOI: 10.1109/78.365290
    [14]
    Belkacemi H and Marcos S. Fast iterative subspace algorithms for airborne STAP radar[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006: 037296.
  • Relative Articles

    [1]LI Zhongyu, PI Haozhuo, LI Jun’ao, YANG Qing, WU Junjie, YANG Jianyu. Clutter Suppression Technology Based Space-time Adaptive ANM-ADMM-Net for Bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24032
    [2]WAN Fuhai, XU Jingwei, LIAO Guisheng, WANG Weiwei. Space-time Two-dimensional Clutter Suppression Method Based on Subarray Beam Pattern Design[J]. Journal of Radars, 2024, 13(5): 1061-1072. doi: 10.12000/JR24064
    [3]LIAO Zhipeng, DUAN Keqing, HE Jinjun, QIU Zizhou, WANG Yongliang. Interpretable STAP Algorithm Based on Deep Convolutional Neural Network[J]. Journal of Radars, 2024, 13(4): 917-928. doi: 10.12000/JR24024
    [4]LI Yi, XIA Weijie, ZHOU Jianjiang, CHU Yongyan. A Range-angle Joint Imaging Algorithm for Automotive Radar Systems Based on Doppler Domain Compensation[J]. Journal of Radars, 2023, 12(5): 971-985. doi: 10.12000/JR23097
    [5]DUAN Keqing, LI Yufan, YANG Xingjia, QIU Zizhou, WANG Yongliang. Reduced Degrees of Freedom in Space-Time Adaptive Processing for Space-based Early Warning Radar[J]. Journal of Radars, 2022, 11(5): 871-883. doi: 10.12000/JR22075
    [6]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [7]HAN Jinwang, ZHANG Zijing, LIU Jun, ZHAO Yongbo. Adaptive Bayesian Detection for MIMO Radar in Gaussian Clutter[J]. Journal of Radars, 2019, 8(4): 501-509. doi: 10.12000/JR18090
    [8]XU Zheng, WANG Xiaobei, LUO Yunhua. Accurate and Efficient Airborne Dual-channel SAR/GMTI Adaptive Channel Equalization Method[J]. Journal of Radars. doi: 10.12000/JR18099
    [9]Sun Mingcai, Zhang Qin, Chen Guanglu. Dynamic Time Window Adaptive Scheduling Algorithm for the Phased Array Radar[J]. Journal of Radars, 2018, 7(3): 303-312. doi: 10.12000/JR17104
    [10]Ge Jianjun, Li Chunxia. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy[J]. Journal of Radars, 2017, 6(6): 587-593. doi: 10.12000/JR17081
    [11]Ding Hao, Wang Guoqing, Liu Ningbo, Guan Jian. Adaptive Detectors for Two Types of Subspace Targets in an Inverse Gamma Textured Background[J]. Journal of Radars, 2017, 6(3): 275-284. doi: 10.12000/JR16088
    [12]Xie Wenchong, Duan Keqing, Wang Yongliang. Space Time Adaptive Processing Technique for Airborne Radar: An Overview of Its Development and Prospects[J]. Journal of Radars, 2017, 6(6): 575-586. doi: 10.12000/JR17073
    [13]Hu Xikun, Jin Tian. Adaptive Wavelet Scale Selection-based Method for Separating Respiration and Heartbeat in Bio-radars[J]. Journal of Radars, 2016, 5(5): 462-469. doi: 10.12000/JR16103
    [14]Chen Xixin. Post-Doppler Adaptive Digital Beamforming of Skywave Radar[J]. Journal of Radars, 2016, 5(4): 373-377. doi: 10.12000/JR15124
    [15]Ding Hao, Xue Yong-hua, Huang Yong, Guan Jian. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter[J]. Journal of Radars, 2015, 4(4): 418-430. doi: 10.12000/JR14133
    [16]Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
    [17]Wang Ting, Zhao Yong-jun, Hu Tao. Overview of Space-Time Adaptive Processing for Airborne Multiple-Input Multiple-Output Radar[J]. Journal of Radars, 2015, 4(2): 136-148. doi: 10.12000/JR14091
    [18]Wang Yong-liang, Liu Wei-jian, Xie Wen-chong, Duan Ke-qing, Gao Fei, Wang Ze-tao. Research Progress of Space-Time Adaptive Detection for Airborne Radar[J]. Journal of Radars, 2014, 3(2): 201-207. doi: 10.3724/SP.J.1300.2014.13081
    [19]Duan Ke-qing, Wang Ze-tao, Xie Wen-chong, Gao Fei, Wang Yong-liang. A Space-time Adaptive Processing Algorithm Based on Joint Sparse Recovery[J]. Journal of Radars, 2014, 3(2): 229-234. doi: 10.3724/SP.J.1300.2014.13149
    [20]Qian Guang-hua, Li Ying, Luo Rong-jian. One Maneuvering Frequency and the Variance Adaptive Filtering Algorithm for Maneuvering Target Tracking[J]. Journal of Radars, 2013, 2(2): 257-264. doi: 10.3724/SP.J.1300.2013.13003
  • Cited by

    Periodical cited type(3)

    1. 李永伟,谢文冲. 基于空时内插的端射阵机载雷达杂波补偿新方法. 电子与信息学报. 2019(09): 2115-2122 .
    2. 吕晓德,杨璟茂,岳琦,张汉良. 基于稀疏贝叶斯学习的机载双基雷达杂波抑制. 电子与信息学报. 2018(11): 2651-2658 .
    3. 杨璟茂,吕晓德,岳琦,张汉良. 机载双基雷达杂波分类及抑制方法. 雷达科学与技术. 2018(06): 608-614 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.9 %FULLTEXT: 19.9 %META: 71.8 %META: 71.8 %PDF: 8.4 %PDF: 8.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.9 %其他: 13.9 %其他: 0.6 %其他: 0.6 %Bryn Mawr: 0.2 %Bryn Mawr: 0.2 %China: 0.8 %China: 0.8 %India: 0.0 %India: 0.0 %Seattle: 0.1 %Seattle: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %东营: 0.0 %东营: 0.0 %丹东: 0.0 %丹东: 0.0 %伊利诺伊州: 0.1 %伊利诺伊州: 0.1 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.2 %兰辛: 0.2 %内江: 0.1 %内江: 0.1 %包头: 0.0 %包头: 0.0 %北京: 10.3 %北京: 10.3 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南充: 0.1 %南充: 0.1 %南宁: 0.0 %南宁: 0.0 %南昌: 0.1 %南昌: 0.1 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %呼和浩特: 0.1 %呼和浩特: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %天津: 0.5 %天津: 0.5 %太原: 0.1 %太原: 0.1 %孝感: 0.0 %孝感: 0.0 %安康: 0.0 %安康: 0.0 %宜春: 0.3 %宜春: 0.3 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.0 %宿迁: 0.0 %广州: 0.7 %广州: 0.7 %广州市: 0.0 %广州市: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.1 %张家口市: 0.1 %惠州: 0.0 %惠州: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %杭州: 2.2 %杭州: 2.2 %格兰特县: 0.0 %格兰特县: 0.0 %武汉: 0.8 %武汉: 0.8 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %浙江: 0.0 %浙江: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.2 %漯河: 0.2 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %玉林: 0.0 %玉林: 0.0 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %芒廷维尤: 13.4 %芒廷维尤: 13.4 %芝加哥: 0.4 %芝加哥: 0.4 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西双版纳: 0.0 %西双版纳: 0.0 %西宁: 44.4 %西宁: 44.4 %西安: 0.9 %西安: 0.9 %贵港: 0.2 %贵港: 0.2 %运城: 0.4 %运城: 0.4 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.3 %郑州: 0.3 %重庆: 0.1 %重庆: 0.1 %金华: 0.0 %金华: 0.0 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.0 %阳泉: 0.0 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %其他其他Bryn MawrChinaIndiaSeattleTaiwan, ChinaUnited Kingdom[]上海东营丹东伊利诺伊州佛山保定兰辛内江包头北京北海南京南充南宁南昌台北台州呼和浩特哈尔滨哥伦布天津太原孝感安康宜春宝鸡宣城宿迁广州广州市开封张家口张家口市惠州成都成都市新都区拉贾斯坦邦新乡无锡昆明杭州格兰特县武汉沈阳济南浙江淮南深圳深圳市温州湖州湘潭漯河烟台焦作玉林石家庄石家庄市纽约绍兴芒廷维尤芝加哥衡阳衢州西双版纳西宁西安贵港运城邯郸郑州重庆金华长沙阳泉香港特别行政区

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3186) PDF downloads(383) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint