Loading [MathJax]/jax/output/SVG/jax.js
SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: LI Yi, XIA Weijie, ZHOU Jianjiang, et al. A range-angle joint imaging algorithm for automotive radar systems based on Doppler domain compensation[J]. Journal of Radars, 2023, 12(5): 971–985. doi: 10.12000/JR23097

A Range-angle Joint Imaging Algorithm for Automotive Radar Systems Based on Doppler Domain Compensation

DOI: 10.12000/JR23097
Funds:  Special Funds for Transformation of Scientific and Technological Achievements in Jiangsu Province, China (BA2021079)
More Information
  • Corresponding author: XIA Weijie, nuaaxwj@nuaa.edu.cn
  • Received Date: 2023-05-29
  • Rev Recd Date: 2023-07-30
  • Available Online: 2023-08-04
  • Publish Date: 2023-09-04
  • Single snapshot forward-looking imaging technology with high performance and resolution is crucial for enabling the development of automotive radars. However, range migration issues can limit the implementation of coherent integration methods, and improving system resolution is generally difficult due to hardware parameter limitations. Based on the Time-Division Multiplexing Multiple-Input-Multiple-Output (TDM-MIMO) forward-looking imaging systems of automotive millimeter wave radar, this paper proposes Doppler domain compensation and point-to-point echo correction measures for achieving multidomain signal decoupling. However, the accuracy of traditional single-dimension range and angle imaging is limited by the number of finite array elements and significant noise interference. Therefore, this paper proposes a multidomain joint estimation algorithm based on the Improved Bayesian Matching Pursuit (IBMP) method. The Bayesian method is based on the Bernoulli-Gaussian (BG) model, and the estimated parameters and support domain are iteratively updated in this method while adhering to the Maximum a Posteriori (MAP) criterion constraint to achieve the high-precision reconstruction of multidimensional joint signals. The final set of simulation and actual measurement results demonstrate that the proposed method can effectively solve the problem of range migration and improve the angle resolution of radar forward-looking imaging while exhibiting excellent noise robustness.

     

  • [1]
    BILIK I, LONGMAN O, VILLEVAL S, et al. The rise of radar for autonomous vehicles: Signal processing solutions and future research directions[J]. IEEE Signal Processing Magazine, 2019, 36(5): 20–31. doi: 10.1109/MSP.2019.2926573
    [2]
    MUTSCHLER M A, SCHARF P A, RIPPL P, et al. River surface analysis and characterization using FMCW radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2493–2502. doi: 10.1109/JSTARS.2022.3157469
    [3]
    MERCURI M, LORATO I R, LIU Y H, et al. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor[J]. Nature Electronics, 2019, 2(6): 252–262. doi: 10.1038/s41928-019-0258-6
    [4]
    XIA Weijie, LI Yi, and DONG Shiqi. Radar-based high-accuracy cardiac activity sensing[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4003213. doi: 10.1109/TIM.2021.3050827
    [5]
    SUN Hongbo, BRIGUI F, and LESTURGIE M. Analysis and comparison of MIMO radar waveforms[C]. 2014 International Radar Conference, Lille, France, 2014: 1–6.
    [6]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. Dallas, USA: Tata McGraw-Hill Education, 2005.
    [7]
    PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691
    [8]
    HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order Keystone and generalized Hough-HAF transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436
    [9]
    LONGMAN O and BILIK I. Spectral Radon-Fourier transform for automotive radar applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1046–1056. doi: 10.1109/TAES.2020.3038245
    [10]
    XIONG Kai, ZHAO Guanghui, and SHI Guangming. Radar high-speed target coherent detection method based on modified radon inverse Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 950–962. doi: 10.1109/TAES.2022.3193090
    [11]
    ROBERTS W, STOICA P, LI Jian, et al. Iterative adaptive approaches to MIMO radar imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 5–20. doi: 10.1109/JSTSP.2009.2038964
    [12]
    KIM S, OH D, and LEE J. Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1710–1713. doi: 10.1109/LAWP.2015.2420579
    [13]
    FANG W H and FANG L D. Joint angle and range estimation with signal clustering in FMCW radar[J]. IEEE Sensors Journal, 2020, 20(4): 1882–1892. doi: 10.1109/JSEN.2019.2949367
    [14]
    杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099
    [15]
    钟金荣, 文贡坚. 基于块稀疏贝叶斯学习的雷达目标压缩感知[J]. 雷达学报, 2016, 5(1): 99–108. doi: 10.12000/JR15056

    ZHONG Jinrong and WEN Gongjian. Compressive sensing for radar target signal recovery based on block sparse Bayesian learning[J]. Journal of Radars, 2016, 5(1): 99–108. doi: 10.12000/JR15056
    [16]
    ANITORI L, OTTEN M, and HOOGEBOOM P. Compressive sensing for high resolution radar imaging[C]. 2010 Asia-Pacific Microwave Conference, Yokohama, Japan, 2010: 1809–1812.
    [17]
    WU Yang, ZHANG Yin, ZHANG Yongchao, et al. Outline reconstruction for radar forward-looking imaging based on total variation functional deconvloution methodxs[C]. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 7267–7270.
    [18]
    唐军奎, 刘峥, 冉磊, 等. 基于稀疏和低秩先验的雷达前视超分辨成像方法[J]. 雷达学报, 2023, 12(2): 332–342. doi: 10.12000/JR22199

    TANG Junkui, LIU Zheng, RAN Lei, et al. Radar forward-looking super-resolution imaging method based on sparse and low-rank priors[J]. Journal of Radars, 2023, 12(2): 332–342. doi: 10.12000/JR22199
    [19]
    SHU Zhaowei, ZONG Zhulin, HUANG Libing, et al. Forward-looking radar super-resolution imaging combined TSVD with L1 norm constraint[C]. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2559–2562.
    [20]
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356. doi: 10.1109/TSP.2007.914345
    [21]
    XU Yanqin, SONG Yuan, WEI Shunjun, et al. A fast 2D super-resolution imaging method via Bayesian compressive sensing for mmWave automotive radar[C]. 2023 IEEE Radar Conference (RadarConf23), San Antonio, USA, 2023: 1–6.
    [22]
    SCHNITER P, POTTER L C, and ZINIEL J. Fast Bayesian matching pursuit[C]. 2008 Information Theory and Applications Workshop, San Diego, USA, 2008: 326–333.
    [23]
    YOU You, ZHANG Chuan, and ZHANG Li. Bayesian matching pursuit based estimation of off-grid channel for millimeter wave massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11603–11614. doi: 10.1109/TVT.2022.3169721
    [24]
    FIGUEIREDO M A T, NOWAK R D, and WRIGHT S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586–597. doi: 10.1109/JSTSP.2007.910281
    [25]
    MU Huilin, ZHANG Yun, JIANG Yicheng, et al. STAP-based GMTI for multichannel SAR with sparse sampling[C]. 2017 IEEE Radar Conference (RadarConf), Seattle, USA, 2017: 1483–1487.
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]LI Nian, LIU Jie, YU Junming, ZHU Zhihao, LIU Jianguang, GUO Shisheng, CHEN Jiahui, CUI Guolong, KONG Lingjiang, YANG Xiaobo. Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation[J]. Journal of Radars, 2025, 14(2): 309-321. doi: 10.12000/JR24220
    [3]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [4]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [5]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [6]DU Lan, CHEN Xiaoyang, SHI Yu, XUE Shikun, XIE Meng. MMRGait-1.0: A Radar Time-frequency Spectrogram Dataset for Gait Recognition under Multi-view and Multi-wearing Conditions[J]. Journal of Radars, 2023, 12(4): 892-905. doi: 10.12000/JR22227
    [7]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [8]HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119
    [9]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [10]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [11]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [12]YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, LU Dawei, DENG Bin, MA Yanxin. Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656-664. doi: 10.12000/JR21015
    [13]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [14]Xie Pengfei, Zhang Lei, Wu Zhenhua. A Three-dimensional Imaging Algorithm Fusion with ω-K and BP Algorithm for Millimeter-wave Cylindrical Scanning[J]. Journal of Radars, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [15]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [16]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [17]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [18]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [19]Liu Hai-bo, Sheng Meng-meng, Yang Xiao-qian. A Study of MMW Collision Avoidance Radar System for Trains[J]. Journal of Radars, 2013, 2(2): 234-238. doi: 10.3724/SP.J.1300.2013.20091
    [20]Qiao Ming, Pan Zhou-hao, Liu Bo, Li Dao-jing. Analysis and Compensation Method Research on the Channel Leakage Error for Three-baseline MMWInSAR[J]. Journal of Radars, 2013, 2(1): 68-76. doi: 10.3724/SP.J.1300.2013.13008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 48.9 %META: 48.9 %PDF: 14.9 %PDF: 14.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 1.8 %其他: 1.8 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Halfweg: 0.1 %Halfweg: 0.1 %Herndon: 0.1 %Herndon: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 4.6 %上海: 4.6 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.1 %仙桃: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.4 %内江: 0.4 %利斯本: 0.2 %利斯本: 0.2 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %包头: 0.1 %包头: 0.1 %北京: 9.3 %北京: 9.3 %十堰: 0.1 %十堰: 0.1 %南京: 5.8 %南京: 5.8 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡梅尔: 0.3 %卡梅尔: 0.3 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.7 %合肥: 1.7 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.2 %咸宁: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.5 %威海: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.3 %宁波: 0.3 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 2.1 %广州: 2.1 %庆阳: 0.2 %庆阳: 0.2 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.5 %开封: 0.5 %张家口: 1.2 %张家口: 1.2 %张家界: 0.2 %张家界: 0.2 %徐州: 0.4 %徐州: 0.4 %惠州: 0.2 %惠州: 0.2 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 4.8 %成都: 4.8 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新竹: 0.3 %新竹: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.9 %昆明: 1.9 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.1 %杭州: 3.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武威: 0.1 %武威: 0.1 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %泰州: 0.1 %泰州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.5 %深圳: 2.5 %清远: 0.3 %清远: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.7 %绍兴: 0.7 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %自贡: 0.3 %自贡: 0.3 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %茂名: 0.1 %茂名: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 3.4 %西安: 3.4 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 1.2 %重庆: 1.2 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %首尔特别: 0.4 %首尔特别: 0.4 %香港: 0.1 %香港: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaHalfwegHerndon[]三亚上海东京东京都东莞东营丹东亳州仙桃伦敦佛山兰州兰辛内江利斯本加利福尼亚州包头北京十堰南京南充南平南昌南通卡拉奇卡梅尔印多尔厦门台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布唐山嘉兴大连天津太原威海娄底宁波安庆安康宜宾宣城密蘇里城巴中布鲁塞尔常州常德平顶山广州庆阳库比蒂诺廊坊开封张家口张家界徐州惠州慕尼黑成都扬州揭阳新乡新竹无锡昆明晋城普林斯顿朝阳杭州格兰特县桂林武威武汉汕头江门沈阳泰安泰州泸州洛杉矶洛阳济南海口淄博淮南深圳清远温州渭南湖州湘潭湛江漯河烟台白城石家庄福州秦皇岛米兰纽约绍兴绵阳罗马自贡芒廷维尤芝加哥苏州茂名葫芦岛蚌埠衡阳襄阳西宁西安西雅图贵阳费利蒙运城邯郸邵阳郑州重庆金昌长春长沙阿姆斯特丹青岛首尔特别香港黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(970) PDF downloads(296) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint