Volume 4 Issue 4
Oct.  2015
Turn off MathJax
Article Contents
Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101
Citation: Xu Jing-wei, Liao Gui-sheng. Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar[J]. Journal of Radars, 2015, 4(4): 386-392. doi: 10.12000/JR15101

Range-ambiguous Clutter Suppression for Forward-looking Frequency Diverse Array Space-time Adaptive Processing Radar

DOI: 10.12000/JR15101
Funds:

The National Natural Science Foundation of China (61231017)

  • Received Date: 2015-09-02
  • Rev Recd Date: 2015-09-17
  • Publish Date: 2015-08-28
  • In a high pulse-repetitive-frequency forward-looking radar, the clutter echo is not only severely rangedependent but also range-ambiguous. It is therefore difficult to realize clutter compensation and suppression for conventional Space-Time Adaptive Processing (STAP) radar. To alleviate this problem, in this study, a novel range-ambiguous clutter suppression method is proposed for STAP radar with Frequency Diverse Array (FDA). Because the transmit steering vector of the FDA is range-angle dependent, the range-ambiguous clutter can be separated in the spatial domain using a subspace projection approach. The separated clutter can then be compensated using the Doppler warping technique. Finally, the compensated clutter can be suppressed, and target detection is realized in both the unambiguous and ambiguous range regions. Simulation examples demonstrate the effectiveness of the proposed method.

     

  • loading
  • [1]
    Klemm R. Principles of space-time adaptive processing[J]. Electronics Communication Engineering Journal, 2002, 14(6): 295-296.
    [2]
    Guerci J R. Space-Time Adaptive Processing for Rada[M]. Norwood, MA: Artech House, 2003, Chapter 1-10.
    [3]
    Klemm R. Comparison between monostatic and bistatic antenna configurations for STAP[J]. IEEE Transactions on Aerospace and Electronic System, 2000, 36(2): 596-608.
    [4]
    Borsari G. Mitigating effects on STAP processing caused by an inclined array[C]. Proceedings of the 1998 IEEE Radar Conference, Dallas, 1998: 135-140.
    [5]
    Kreyenkamp O and Klemm R. Doppler compensation in forward-looking STAP Radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148(5): 253-258.
    [6]
    Himed B, Zhang Y, and Hajjari A. STAP with angle-Doppler compensation for bistatic airborne radars[C]. Proceedings of the IEEE Radar Conference, Long Beach, 2002: 311-317.
    [7]
    Melvin W L, Himed B, and Davis M E. Doubly adaptive bistatic clutter filtering[C]. Proceedings of the 2003 IEEE Radar Conference, Hunstville, 2003: 171-178.
    [8]
    Melvin W L and Davis M E. Adaptive cancellation method for geometry-induced nonstationary bistatic clutter environments[J]. IEEE Transactions on Aerospace and Electronic System, 2007, 43(2): 651-672.
    [9]
    Pearson F and Borsari G. Simulation and analysis of adaptive interference suppression for bistatic surveillance radars[C]. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, Lexington, 2001: 13-14.
    [10]
    Lapierre F D, Ries P, and Verly J G. Foundation for mitigating range dependence in radar space-time adaptive processing[J]. IET Radar, Sonar Navigation, 2009, 3(1): 18-29.
    [11]
    Ries P, Lapierre F D, and Verly J G. Geometry-induced range-dependence compensation for bistatic STAP with conformal arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 275-294.
    [12]
    Varadarajan V and Krolik J L. Joint space-time interpolation for distorted linear and bistatic array geometries[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 848-860.
    [13]
    Hale T B, Temple M A, Raquet J F, et al.. Localized three-dimensional adaptive spatial-temporal processing for airborne radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(1): 18-22.
    [14]
    Hale T B, Temple M A, and Wicks M C. Clutter suppression using elevation interferometry fused with space-time adaptive processing[J]. Electronic Letters, 2001, 37(12): 793-794.
    [15]
    Baizert P, Hale T B, Temple M A, et al.. Forward-looking radar GMTI benefits using a linear frequency diverse array[J]. Electronics Letters, 2006, 42(22): 1311-1312.
    [16]
    王伟伟, 吴孙勇, 许京伟, 等. 基于频率分集阵列的机载雷达距离模糊杂波抑制方法[J]. 电子与信息学报, 2015, 37(10): 2321-2327.Wang Wei-wei, Wu Sun-yong, Xu Jing-wei, et al.. Range ambiguity clutter suppression for airborne radar based on frequency diverse array[J]. Journal of Electronics Information Technology, 2015, 37(10): 2321-2327.
    [17]
    Sammartino P F and Backer C J. Developments in the frequency diverse bistatic system[C]. IEEE Radar Conference, Pasadena, 2009: 1-5.
    [18]
    Sammartino P F, Backer C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201-222.
    [19]
    Antonik P, Wicks M C, Griffiths H D, et al.. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE conference on Radar, Verona, NY, 2006, DOI: 10.1109/RADAR. 2006.1631858.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3082) PDF downloads(1371) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint