Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
Citation: HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images [J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073

A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images

DOI: 10.12000/JR19073
Funds:  The National Natural Science Foundation of China (61427802, 61601031)
More Information
  • Corresponding author: HU Cheng, cchchb@163.com; DENG Yunkai, yunkai_bit@foxmail.com
  • Received Date: 2019-08-12
  • Rev Recd Date: 2019-11-08
  • Available Online: 2019-11-25
  • Publish Date: 2019-12-01
  • When the Permanent Scatterer (PS) technique is utilized to compensate the Atmospheric Phase (AP) for Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) images, a proper parametric model should be built to describe the AP. However, for some interferograms, the AP may nonlinearly vary with the PS range, and this cannot be effectively compensated via the conventional method. This paper proposes an improved method to compensate the nonlinear AP. Here, the conventional method is first used to compensate all the phase interferograms. By calculating the standard deviation of the phase sequence of every PS and setting a proper threshold, a large number of stable PSs are selected. Then these stable PSs are divided into a certain number of sub-regions, and some control points are determined. With the inverse distance weighting interpolation, the APs of all the PSs are estimated and compensated. To verify the effectiveness of the proposed method, 460 radar images are processed, and the results are made compared with those of the conventional method. The nonlinear AP could be better compensated with the proposed method to avoid misunderstanding of the motional area. Several reference PSs are selected to make quantitative comparisons, and measurement error up to 1 rad could be reduced.

     

  • [1]
    刘斌, 葛大庆, 李曼, 等. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01

    LIU Bin, GE Daqing, LI Man, et al. Ground-based interferometric synthetic aperture radar and its applications[J]. Remote Sensing for Land &Resources, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01
    [2]
    曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154–170. doi: 10.12000/JR18115

    ZENG Tao, DENG Yunkai, HU Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154–170. doi: 10.12000/JR18115
    [3]
    董杰, 董妍. 基于气象数据的地基雷达大气扰动校正方法研究[J]. 测绘工程, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017

    DONG Jie and DONG Yan. Atmospheric artifact compensation for deformation monitoring with ground-based radar[J]. Engineering of Surveying and Mapping, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017
    [4]
    IANNINI L and GUARNIERI A M. Atmospheric phase screen in ground-based radar: Statistics and compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 537–541. doi: 10.1109/LGRS.2019.1590876
    [5]
    黄长军, 夏红梅, 周吕. 基于GCP方法的地基InSAR大气扰动误差改正分析[J]. 测绘与空间地理信息, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003

    HUANG Changjun, XIA Hongmei, and ZHOU Lyu. Atmospheric disturbance error correction in GB-InSAR based on ground control point[J]. Geomatics &Spatial Information Technology, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003
    [6]
    徐亚明, 周校, 王鹏, 等. GB-SAR构建永久散射体网改正气象扰动方法[J]. 武汉大学学报: 信息科学版, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507

    XU Yaming, ZHOU Xiao, WANG Peng, et al. A method of constructing permanent scatterers network to correct the meteorological disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507
    [7]
    NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459–1471. doi: 10.1109/tgrs.2005.848707
    [8]
    IGLESIAS R, FABREGAS X, AGUASCA A, et al. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436–2449. doi: 10.1109/TGRS.2019.1590876
    [9]
    HU Cheng, DENG Yunkai, TIAN Weiming, et al. A PS processing framework for long-term and real-time GB-SAR monitoring[J]. International Journal of Remote Sensing, 2019, 40(16): 6298–6314. doi: 10.1080/01431161.2019.1590876
    [10]
    张祥, 陆必应, 宋千. 地基SAR差分干涉测量大气扰动误差校正[J]. 雷达科学与技术, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004

    ZHANG Xiang, LU Biying, and SONG Qian. Atmospheric disturbance correction in ground-based SAR differential interferometry[J]. Radar Science and Technology, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004
    [11]
    HU Cheng, ZHU Mao, ZENG Tao, et al. High-precision deformation monitoring algorithm for GBSAR system: Rail determination phase error compensation[J]. Science China Information Sciences, 2015, 59(8): 082307. doi: 10.1007/s11432-015-5446-z
    [12]
    张建萍, 刘希玉. 基于聚类分析的K-means算法研究及应用[J]. 计算机应用研究, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051

    ZHNAG Jianping and LIU Xiyu. Application in cluster′s analysis is analyzed in children development period[J]. Application Research of Computers, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051
    [13]
    朱吉祥, 张礼中, 周小元, 等. 反距离加权法在区域滑坡危险性评价中的应用[J]. 水土保持通报, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009

    ZHU Jixiang, ZHANG Lizhong, ZHOU Xiaoyuan, et al. Application of inverse distance weighted method to regional landslide hazards assessment[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009
    [14]
    刘作利, 刘景玉, 申修强, 等. 唐山马兰庄铁矿露天开采边坡变形监测的GB-InSAR技术[J]. 现代矿业, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047

    LIU Zuoli, LIU Jingyu, SHEN Xiuqiang, et al. Deformation monitoring of the open-pit slope of Malanshan iron mine in Tangshan city based on GB-InSAR[J]. Modern Mining, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047
    [15]
    TIAN Weiming, ZHAO Zheng, HU Cheng, et al. GB-InSAR-based DEM generation method and precision analysis[J]. Remote Sensing, 2019, 11(9): 997. doi: 10.3390/rs11090997
    [16]
    HU Cheng, WANG Jingyang, TIAN Weiming, et al. Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays[J]. Sensors, 2017, 17(3): 598. doi: 10.3390/s17030598
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]SHAO Hui, ZHANG Hulong, DAI Hui, CHEN Yuwei, SUN Long, XU Heng, LI Xingyun. Fast Reflectance Spectral Profile Reconstruction Method for Full-waveform Hyperspectral LiDAR[J]. Journal of Radars. doi: 10.12000/JR24214
    [3]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [4]LI Haoliang, CHEN Siwei. Electromagnetic Scattering Characteristics and Radar Identification of Sea Corner Reflectors: Advances and Prospects[J]. Journal of Radars, 2023, 12(4): 738-761. doi: 10.12000/JR23100
    [5]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [6]WANG Fulai, PANG Chen, YIN Jiapeng, LI Nanjun, LI Yongzhen, WANG Xuesong. Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2022, 11(2): 278-288. doi: 10.12000/JR22020
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [9]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [10]WANG Zhihao, LI Gang, JIANG Xiao. Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images[J]. Journal of Radars, 2020, 9(3): 539-553. doi: 10.12000/JR19095
    [11]LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Yin De, Ye Shengbo, Liu Jinwei, Ji Yicai, Liu Xiaojun, Fang Guangyou. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications[J]. Journal of Radars, 2017, 6(6): 611-618. doi: 10.12000/JR17004
    [14]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [15]Wu Bing-heng, Ji Yi-cai, Fang Guang-you. Design and Analysis of the Distributed Resistor-loading GPR Antenna with Reflected Cavity[J]. Journal of Radars, 2015, 4(5): 538-544. doi: 10.12000/JR15070
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Huang Zhi-rong, Zheng Shi-kun, Zhu Jia-long, Chen Guo-ding. Design Optimization of Expansion Driven Components for the HJ-1-C Satellite[J]. Journal of Radars, 2014, 3(3): 282-287. doi: 10.3724/SP.J.1300.2014.14016
    [18]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [19]You Hong-jian, Hu Yan-feng. Investigation on Fine Registration for SAR and Optical Image[J]. Journal of Radars, 2014, 3(1): 78-84. doi: 10.3724/SP.J.1300.2014.13154
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 69.8 %META: 69.8 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Keelung: 0.0 %Keelung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %包头: 0.0 %包头: 0.0 %北京: 14.7 %北京: 14.7 %北京市: 0.0 %北京市: 0.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.1 %嘉义: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣地亚哥库特拉尔潘: 0.1 %圣地亚哥库特拉尔潘: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.0 %太原: 0.0 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %密蘇里城: 0.0 %密蘇里城: 0.0 %巴中: 0.2 %巴中: 0.2 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德宏: 0.0 %德宏: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.3 %武汉: 0.3 %永州: 0.0 %永州: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.2 %玉林: 0.2 %白银: 0.2 %白银: 0.2 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石家庄市: 0.2 %石家庄市: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.0 %莆田: 0.0 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 34.2 %西宁: 34.2 %西安: 0.3 %西安: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %遵义: 0.0 %遵义: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %青岛: 0.2 %青岛: 0.2 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %鹤岗: 0.0 %鹤岗: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaIndiaKeelungTaiwan, ChinaUnited States[]三亚三明上海东莞中卫中山临汾丹东佛山保定包头北京北京市十堰南京南宁南昌厦门台北台州台湾省合肥吉安呼和浩特咸阳哥伦布嘉义嘉兴圣地亚哥库特拉尔潘大连天津太原宁波安康安阳宜春宣城密蘇里城巴中巴中市巴州区巴彦淖尔巴音郭楞广州张家口张家口市德宏成都成都市新都区扬州新加坡无锡昆明晋城普洱杭州枣庄格兰特县桂林梅州武汉永州汉中汕头沈阳洛杉矶洛阳济南海口淄博淮南淮安深圳温州湖州湘潭滨州漯河漳州烟台焦作牡丹江玉林白银盐城盘锦石家庄石家庄市纽约绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥芬兰赫尔辛基苏州荆州莆田萍乡蚌埠襄阳西宁西安诺沃克贵港赤峰达州运城遵义郑州重庆重庆市银川长春长沙长治青岛韶关香港香港特别行政区鹤岗龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3563) PDF downloads(234) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint