Volume 8 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images[J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073
Citation: HU Cheng, DENG Yunkai, TIAN Weiming, et al. A compensation method of nonlinear atmospheric phase applied for GB-InSAR images [J]. Journal of Radars, 2019, 8(6): 831–840. doi: 10.12000/JR19073

A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images

DOI: 10.12000/JR19073
Funds:  The National Natural Science Foundation of China (61427802, 61601031)
More Information
  • Corresponding author: HU Cheng, cchchb@163.com; DENG Yunkai, yunkai_bit@foxmail.com
  • Received Date: 2019-08-12
  • Rev Recd Date: 2019-11-08
  • Available Online: 2019-11-25
  • Publish Date: 2019-12-01
  • When the Permanent Scatterer (PS) technique is utilized to compensate the Atmospheric Phase (AP) for Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR) images, a proper parametric model should be built to describe the AP. However, for some interferograms, the AP may nonlinearly vary with the PS range, and this cannot be effectively compensated via the conventional method. This paper proposes an improved method to compensate the nonlinear AP. Here, the conventional method is first used to compensate all the phase interferograms. By calculating the standard deviation of the phase sequence of every PS and setting a proper threshold, a large number of stable PSs are selected. Then these stable PSs are divided into a certain number of sub-regions, and some control points are determined. With the inverse distance weighting interpolation, the APs of all the PSs are estimated and compensated. To verify the effectiveness of the proposed method, 460 radar images are processed, and the results are made compared with those of the conventional method. The nonlinear AP could be better compensated with the proposed method to avoid misunderstanding of the motional area. Several reference PSs are selected to make quantitative comparisons, and measurement error up to 1 rad could be reduced.

     

  • loading
  • [1]
    刘斌, 葛大庆, 李曼, 等. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01

    LIU Bin, GE Daqing, LI Man, et al. Ground-based interferometric synthetic aperture radar and its applications[J]. Remote Sensing for Land &Resources, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01
    [2]
    曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154–170. doi: 10.12000/JR18115

    ZENG Tao, DENG Yunkai, HU Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154–170. doi: 10.12000/JR18115
    [3]
    董杰, 董妍. 基于气象数据的地基雷达大气扰动校正方法研究[J]. 测绘工程, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017

    DONG Jie and DONG Yan. Atmospheric artifact compensation for deformation monitoring with ground-based radar[J]. Engineering of Surveying and Mapping, 2014, 23(10): 72–75. doi: 10.3969/j.issn.1006-7949.2014.10.017
    [4]
    IANNINI L and GUARNIERI A M. Atmospheric phase screen in ground-based radar: Statistics and compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 537–541. doi: 10.1109/LGRS.2019.1590876
    [5]
    黄长军, 夏红梅, 周吕. 基于GCP方法的地基InSAR大气扰动误差改正分析[J]. 测绘与空间地理信息, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003

    HUANG Changjun, XIA Hongmei, and ZHOU Lyu. Atmospheric disturbance error correction in GB-InSAR based on ground control point[J]. Geomatics &Spatial Information Technology, 2018, 41(10): 8–11. doi: 10.3969/j.issn.1672-5867.2018.10.003
    [6]
    徐亚明, 周校, 王鹏, 等. GB-SAR构建永久散射体网改正气象扰动方法[J]. 武汉大学学报: 信息科学版, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507

    XU Yaming, ZHOU Xiao, WANG Peng, et al. A method of constructing permanent scatterers network to correct the meteorological disturbance by GB-SAR[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1007–1012, 1020. doi: 10.13203/j.whugis20140507
    [7]
    NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459–1471. doi: 10.1109/tgrs.2005.848707
    [8]
    IGLESIAS R, FABREGAS X, AGUASCA A, et al. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436–2449. doi: 10.1109/TGRS.2019.1590876
    [9]
    HU Cheng, DENG Yunkai, TIAN Weiming, et al. A PS processing framework for long-term and real-time GB-SAR monitoring[J]. International Journal of Remote Sensing, 2019, 40(16): 6298–6314. doi: 10.1080/01431161.2019.1590876
    [10]
    张祥, 陆必应, 宋千. 地基SAR差分干涉测量大气扰动误差校正[J]. 雷达科学与技术, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004

    ZHANG Xiang, LU Biying, and SONG Qian. Atmospheric disturbance correction in ground-based SAR differential interferometry[J]. Radar Science and Technology, 2011, 9(6): 502–506, 512. doi: 10.3969/j.issn.1672-2337.2011.06.004
    [11]
    HU Cheng, ZHU Mao, ZENG Tao, et al. High-precision deformation monitoring algorithm for GBSAR system: Rail determination phase error compensation[J]. Science China Information Sciences, 2015, 59(8): 082307. doi: 10.1007/s11432-015-5446-z
    [12]
    张建萍, 刘希玉. 基于聚类分析的K-means算法研究及应用[J]. 计算机应用研究, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051

    ZHNAG Jianping and LIU Xiyu. Application in cluster′s analysis is analyzed in children development period[J]. Application Research of Computers, 2007, 24(5): 166–168. doi: 10.3969/j.issn.1001-3695.2007.05.051
    [13]
    朱吉祥, 张礼中, 周小元, 等. 反距离加权法在区域滑坡危险性评价中的应用[J]. 水土保持通报, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009

    ZHU Jixiang, ZHANG Lizhong, ZHOU Xiaoyuan, et al. Application of inverse distance weighted method to regional landslide hazards assessment[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 136–140. doi: 10.13961/j.cnki.stbctb.2012.03.009
    [14]
    刘作利, 刘景玉, 申修强, 等. 唐山马兰庄铁矿露天开采边坡变形监测的GB-InSAR技术[J]. 现代矿业, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047

    LIU Zuoli, LIU Jingyu, SHEN Xiuqiang, et al. Deformation monitoring of the open-pit slope of Malanshan iron mine in Tangshan city based on GB-InSAR[J]. Modern Mining, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047
    [15]
    TIAN Weiming, ZHAO Zheng, HU Cheng, et al. GB-InSAR-based DEM generation method and precision analysis[J]. Remote Sensing, 2019, 11(9): 997. doi: 10.3390/rs11090997
    [16]
    HU Cheng, WANG Jingyang, TIAN Weiming, et al. Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays[J]. Sensors, 2017, 17(3): 598. doi: 10.3390/s17030598
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3481) PDF downloads(226) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint