Citation: | Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033 |
[1] |
Lee J S and Pottier E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2009.
|
[2] |
Cloude S R. Polarisation Application in Remote Sensing[M]. Oxford: Oxford University Press, 2009.
|
[3] |
金亚秋, 徐丰. 极化散射与SAR遥感信息理论与方法[M]. 北京: 科学出版社, 2008.
Jin Ya-qiu and Xu Feng. Theory and Approach for Polarimetric Scattering and Information Retrieval of SAR Remote Sensing[M]. Beijing: Science Press, 2008.
|
[4] |
张红, 王超, 刘萌, 等. 极化SAR理论、方法与应用[M]. 北京: 科学出版社, 2015.
Zhang Hong, Wang Chao, Liu Meng, et al.. Theory, Approach and Application of Polarimetric SAR[M]. Beijing: Science Press, 2015.
|
[5] |
Dell’Acqua F and Gamba P. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives[J]. Proceedings of the IEEE, 2012, 100(10): 2876–2890. doi: 10.1109/JPROC.2012.2196404
|
[6] |
Sato M, Chen S W, and Satake M. Polarimetric SAR analysis of Tsunami damage following the March 11, 2011 East Japan Earthquake[J]. Proceedings of the IEEE, 2012, 100(10): 2861–2875. doi: 10.1109/JPROC.2012.2200649
|
[7] |
Chen S W and Sato M. Tsunami damage investigation of built-up areas using multitemporal spaceborne full polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4): 1985–1997. doi: 10.1109/TGRS.2012.2210050
|
[8] |
Chen S W, Wang X S, and Sato M. Urban damage level mapping based on scattering mechanism investigation using fully polarimetric SAR data for the 3.11 East Japan earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6919–6929. doi: 10.1109/TGRS.2016.2588325
|
[9] |
吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. http://radars.ie.ac.cn/CN/abstract/abstract93.shtml
Wu Yi-rong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. http://radars.ie.ac.cn/CN/abstract/abstract93.shtml
|
[10] |
洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. http://radars.ie.ac.cn/CN/abstract/abstract29.shtml
Hong Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. http://radars.ie.ac.cn/CN/abstract/abstract29.shtml
|
[11] |
张杰, 张晰, 范陈清, 等. 极化SAR在海洋探测中的应用与探讨[J]. 雷达学报, 2016, 5(6): 596–606. http://radars.ie.ac.cn/CN/abstract/abstract390.shtml
Zhang Jie, Zhang Xi, Fan Chen-qing, et al.. Discussion on application of polarimetric synthetic aperture radar in marine surveillance[J]. Journal of Radars, 2016, 5(6): 596–606. http://radars.ie.ac.cn/CN/abstract/abstract390.shtml
|
[12] |
许成斌, 周伟, 丛瑜, 等. 基于峰值区域的高分辨率极化SAR舰船目标特征分析与鉴别[J]. 雷达学报, 2015, 4(3): 367–373. http://radars.ie.ac.cn/CN/abstract/abstract213.shtml
Xu Cheng-bin, Zhou Wei, Cong Yu, et al.. Ship analysis and detection in high-resolution Pol-SAR imagery based on peak zone[J]. Journal of Radars, 2015, 4(3): 367–373. http://radars.ie.ac.cn/CN/abstract/abstract213.shtml
|
[13] |
王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. http://radars.ie.ac.cn/CN/abstract/abstract346.shtml
Wang Xue-song. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. http://radars.ie.ac.cn/CN/abstract/abstract346.shtml
|
[14] |
杨汝良, 戴博伟, 李海英. 极化合成孔径雷达极化层次和系统工作方式[J]. 雷达学报, 2016, 5(2): 132–142. http://radars.ie.ac.cn/CN/abstract/abstract337.shtml
Yang Ru-liang, Dai Bo-wei, and Li Hai-ying. Polarization hierarchy and system operating architecture for polarimetric synthetic aperture radar[J]. Journal of Radars, 2016, 5(2): 132–142. http://radars.ie.ac.cn/CN/abstract/abstract337.shtml
|
[15] |
代大海, 廖斌, 肖顺平, 等. 雷达极化信息获取与处理的研究进展[J]. 雷达学报, 2016, 5(2): 143–155. http://radars.ie.ac.cn/CN/abstract/abstract316.shtml
Dai Da-hai, Liao Bin, Xiao Shun-ping, et al.. Advancements on radar polarization information acquisition and processing[J]. Journal of Radars, 2016, 5(2): 143–155. http://radars.ie.ac.cn/CN/abstract/abstract316.shtml
|
[16] |
赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6): 620–638. http://radars.ie.ac.cn/CN/abstract/abstract389.shtml
Zhao Chun-lei, Wang Ya-liang, Yang Yun-long, et al.. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620–638. http://radars.ie.ac.cn/CN/abstract/abstract389.shtml
|
[17] |
Huynen J R. Phenomenological Theory of Radar Targets[D]. [Ph.D. dissertation], Delft University of Technology, 1970.
|
[18] |
Cloude S R and Pottier E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
|
[19] |
Touzi R. Target scattering decomposition in terms of roll-invariant target parameters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 73–84. doi: 10.1109/TGRS.2006.886176
|
[20] |
Paladini R, Martorella M, and Berizzi F. Classification of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3022–3034. doi: 10.1109/TGRS.2011.2116121
|
[21] |
Chen S W, Li Y Z, Wang X S, et al.. Modeling and interpretation of scattering mechanisms in polarimetric synthetic aperture radar: Advances and perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(7): 79–89.
|
[22] |
Xu F and Jin Y Q. Deorientation theory of polarimetric scattering targets and application to terrain surface classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2351–2364. doi: 10.1109/TGRS.2005.855064
|
[23] |
An W T, Cui Y, and Yang J. Three-component model-based decomposition for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2732–2739. doi: 10.1109/TGRS.2010.2041242
|
[24] |
Yamaguchi Y, Sato A, Boerner W M, et al.. Four-component scattering power decomposition with rotation of coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2251–2258. doi: 10.1109/TGRS.2010.2099124
|
[25] |
Van Zyl J J, Arii M, and Kim Y. Model-based decomposition of polarimetric SAR covariance matrices constrained for nonnegative eigenvalues[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3452–3459. doi: 10.1109/TGRS.2011.2128325
|
[26] |
Arii M, Van Zyl J J, and Kim Y. Adaptive model-based decomposition of polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1104–1113. doi: 10.1109/TGRS.2010.2076285
|
[27] |
Neumann M, Ferro-Famil L, and Reigber A. Estimation of forest structure, ground, and canopy layer characteristics from multibaseline polarimetric interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1086–1104. doi: 10.1109/TGRS.2009.2031101
|
[28] |
Chen S W, Wang X S, Xiao S P, et al.. General polarimetric model-based decomposition for coherency matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1843–1855. doi: 10.1109/TGRS.2013.2255615
|
[29] |
Ballester-Berman J D and Lopez-Sanchez J M. Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 466–479. doi: 10.1109/TGRS.2009.2024304
|
[30] |
Chen S W, Wang X S, Li Y Z, et al.. Adaptive model-based polarimetric decomposition using PolInSAR coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1705–1718. doi: 10.1109/TGRS.2013.2253780
|
[31] |
Wang C L, Yu W D, Wang R, et al.. Comparison of nonnegative eigenvalue decompositions with and without reflection symmetry assumptions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2278–2287. doi: 10.1109/TGRS.2013.2259177
|
[32] |
Li H Z, Wang C, Zhang H, et al.. A unified three-component scattering model for polarimetric coherent target decomposition[J]. International Journal of Remote Sensing, 2012, 33(9): 2868–2891. doi: 10.1080/01431161.2011.622728
|
[33] |
Zhu F Y, Zhang Y H, and Li D. An extension of a complete model-based decomposition of polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 287–291. doi: 10.1109/LGRS.2015.2511076
|
[34] |
Deng L and Yan Y N. Improving the Yamaguchi4 decomposition method using selective polarization orientation compensation[J]. Canadian Journal of Remote Sensing, 2016, 42(2): 125–135. doi: 10.1080/07038992.2016.1160774
|
[35] |
Zou B, Zhang Y, Cao N, et al.. A four-component decomposition model for PolSAR data using asymmetric scattering component[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(3): 1051–1061. doi: 10.1109/JSTARS.2014.2380151
|
[36] |
Wang Y H, Liu H W, and Jiu B. PolSAR coherency matrix decomposition based on constrained sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5906–5922. doi: 10.1109/TGRS.2013.2293663
|
[37] |
Cloude S R and Pottier E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 498–518.
|
[38] |
张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12): 3289–3297. http://youxian.cnki.com.cn/yxdetail.aspx?filename=LDAX20170807001&dbname=CAPJ2015
Zhang Lamei, Duan Baolong, and Zou Bin. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3289–3297. http://youxian.cnki.com.cn/yxdetail.aspx?filename=LDAX20170807001&dbname=CAPJ2015
|
[39] |
Chen S W, Ohki M, Shimada M, et al.. Deorientation effect investigation for model-based decomposition over oriented built-up areas[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 273–277.
|
[40] |
Chen S W, Wang X S, and Sato M. Uniform polarimetric matrix rotation theory and its applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4756–4770. doi: 10.1109/TGRS.2013.2284359
|
[41] |
Chen S W, Li Y Z, and Wang X S. A visualization tool for polarimetric SAR data investigation[C]. The 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 579–582.
|
[42] |
Chen S W and Wang X S. Polarimetric coherence pattern: A visualization tool for PolSAR data investigation[C]. The IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 7509–7512.
|
[43] |
Xiao S P, Chen S W, Chang Y L, et al.. Polarimetric coherence optimization and its application for manmade target extraction in PolSAR data[J]. IEICE Transactions on Electronics, 2014, 97(6): 566–574.
|
[44] |
Chen S W, Li Y Z, and Wang X S. Crop discrimination based on polarimetric correlation coefficients optimization for PolSAR data[J]. International Journal of Remote Sensing, 2015, 36(16): 4233–4249. doi: 10.1080/01431161.2015.1079345
|
[45] |
Lee J S, Schuler D L, Ainsworth T L, et al.. On the estimation of radar polarization orientation shifts induced by terrain slopes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 30–41. doi: 10.1109/36.981347
|
[46] |
Chen S W, Wang X S, and Sato M. PolInSAR complex coherence estimation based on covariance matrix similarity test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4699–4710. doi: 10.1109/TGRS.2012.2192937
|
[47] |
陶臣嵩, 陈思伟, 李永祯, 等. 结合旋转域极化特征的极化SAR地物分类[J]. 雷达学报, 录用待刊. doi: 10.12000/JR16131
Tao Chensong, Chen Siwei, Li Yongzhen, et al. Polarimetric SAR terrain classification using polarimetric feature derived from rotation domain[J]. Journal of Radars. doi: 10.12000/JR16131
|
[48] |
Ainsworth T L, Schuler D L, and Lee J S. Polarimetric SAR characterization of man-made structures in urban areas using normalized circular-pol correlation coefficients[J]. Remote Sensing of Environment, 2008, 112(6): 2876–2885. doi: 10.1016/j.rse.2008.02.005
|
[49] |
Yamaguchi Y, Yamamoto Y, Yamada H, et al.. Classification of terrain by implementing the correlation coefficient in the circular polarization basis using X-band POLSAR data[J]. IEICE Transactions on Communications, 2008, E91B(1): 297–301.
|
[1] | WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237 |
[2] | YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198 |
[3] | DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036 |
[4] | HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165 |
[5] | YAN Hua, ZHANG Lei, LU Jinwen, XING Xiaoyu, LI Sheng, YIN Hongcheng. Frequency-dependent Factor Expression of the GTD Scattering Center Model for the Arbitrary Multiple Scattering Mechanism[J]. Journal of Radars, 2021, 10(3): 370-381. doi: 10.12000/JR21005 |
[6] | QUAN Sinong, FAN Hui, DAI Dahai, WANG Wei, XIAO Shunping, WANG Xuesong. Recognition of Ships and Chaff Clouds Based on Sophisticated Polarimetric Target Decomposition[J]. Journal of Radars, 2021, 10(1): 61-73. doi: 10.12000/JR20123 |
[7] | CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147 |
[8] | WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077 |
[9] | WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109 |
[10] | HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073 |
[11] | Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. Journal of Radars, 2017, 6(2): 221-228. doi: 10.12000/JR16129 |
[12] | Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131 |
[13] | Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026 |
[14] | Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132 |
[15] | Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071 |
[16] | Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013 |
[17] | Yan Jian, Li Yang, Yin Qiang, Hong Wen. Freeman-Durden Decomposition with Oriented Dihedral Scattering[J]. Journal of Radars, 2014, 3(5): 574-582. doi: 10.3724/SP.J.1300.2014.14057 |
[18] | Chong Jin-song, Zhou Xiao-zhong. Survey of Study on Internal Waves Detection in Synthetic Aperture Radar Image[J]. Journal of Radars, 2013, 2(4): 406-421. doi: 10.3724/SP.J.1300.2013.13012 |
[19] | Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047 |
1. | 吴林罡,胡生亮,罗亚松,吴兆东,林立. 浮空角反射体动态雷达目标特性研究. 空天技术. 2025(01): 82-92 . ![]() | |
2. | 李铭典,肖顺平,陈思伟. 极化雷达图像目标超分辨率重建研究进展. 电子与信息学报. 2024(05): 1806-1826 . ![]() | |
3. | 韩静雯,杨勇,连静,吴国庆,王雪松. 基于极化与距离像特征融合的雷达导引头角反射器鉴别方法. 系统工程与电子技术. 2024(11): 3658-3670 . ![]() | |
4. | 祝迪,王福来,庞晨,李永祯. 基于船用导航雷达的舰船与角反组合体极化调控鉴别方法. 雷达学报. 2024(06): 1252-1278 . ![]() | |
5. | 毕海霞,况祖正,李凡,高静怀,徐晨. 极化SAR图像分类深度学习算法综述. 科学通报. 2024(35): 5108-5128 . ![]() | |
6. | 崔兴超,李郝亮,付耀文,陈思伟,粟毅. 空间目标散射结构极化旋转域辨识. 电子与信息学报. 2023(06): 2105-2114 . ![]() | |
7. | 陈思伟,周鹏. SAR图像对抗攻击的进展与展望. 信息对抗技术. 2023(Z1): 171-188 . ![]() | |
8. | 李郝亮,陈思伟. 极化测量误差对人造目标散射解译性能的影响研究. 现代雷达. 2022(01): 1-8 . ![]() | |
9. | 李郝亮,陈思伟,王雪松. 海面角反射器的极化旋转域特性研究. 系统工程与电子技术. 2022(07): 2065-2073 . ![]() | |
10. | 吴国庆,陈思伟,李永祯,王雪松. 人造目标散射结构的零极化辨识与应用. 电波科学学报. 2022(05): 733-742+760 . ![]() | |
11. | 赵锋,徐志明,刘蕾,艾小锋. 弹道目标特征提取研究现状与展望. 信息对抗技术. 2022(03): 15-32 . ![]() | |
12. | 于腾,王锐,李沐阳,胡程. 宽带全极化垂直昆虫雷达设计及校准关键技术研究. 信号处理. 2021(02): 222-233 . ![]() | |
13. | 崔兴超,粟毅,陈思伟. 融合极化旋转域特征和超像素技术的极化SAR舰船检测. 雷达学报. 2021(01): 35-48 . ![]() | |
14. | 肖顺平,陈思伟. 雷达极化信息处理的启发式研讨教学研究. 电气电子教学学报. 2021(06): 71-75 . ![]() | |
15. | 杨成财,余慧庄,龙郝明. 基于SVM和能量最小化的PolSAR图像分类方法. 电子测量技术. 2020(03): 146-152 . ![]() | |
16. | 王雪松,陈思伟. 合成孔径雷达极化成像解译识别技术的进展与展望. 雷达学报. 2020(02): 259-276 . ![]() | |
17. | 王宇,禹卫东,刘秀清. 基于极化特征参数和极化干涉最优参数的改进四元素分解方法. 电子与信息学报. 2019(12): 2881-2888 . ![]() | |
18. | 孙翔,宋红军,王宇,李宁. 基于高分辨率全极化SAR图像的取向角校正方法. 雷达学报. 2018(04): 465-474 . ![]() |