WANG Zhirui, ZHAO Liangjin, WANG Yuelei, et al. AIR-PolSAR-Seg-2.0: Polarimetric SAR ground terrain classification dataset for large-scale complex scenes[J]. Journal of Radars, 2025, 14(2): 353–365. doi: 10.12000/JR24237
Citation: WANG Zhirui, ZHAO Liangjin, WANG Yuelei, et al. AIR-PolSAR-Seg-2.0: Polarimetric SAR ground terrain classification dataset for large-scale complex scenes[J]. Journal of Radars, 2025, 14(2): 353–365. doi: 10.12000/JR24237

AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes

DOI: 10.12000/JR24237 CSTR: 32380.14.JR24237
Funds:  The National Natural Science Foundation of China (62331027)
More Information
  • Corresponding author: Zhao Liangjin, zhaolj004896@aircas.ac.cn
  • Received Date: 2024-11-29
  • Rev Recd Date: 2025-03-23
  • Available Online: 2025-03-24
  • Publish Date: 2025-03-31
  • The ground terrain classification using Polarimetric Synthetic Aperture Radar (PolSAR) is one of the research hotspots in the field of intelligent interpretation of SAR images. To further promote the development of research in this field, this paper organizes and releases a polarimetric SAR ground terrain classification dataset named AIR-PolSAR-Seg-2.0 for large-scale complex scenes. This dataset is composed of three L1A-level complex SAR images of the Gaofen-3 satellite from different regions, with a spatial resolution of 8 meters. It includes four polarization modes: HH, HV, VH, VV, and covers six typical ground terrain categories such as water bodies, vegetation, bare land, buildings, roads, and mountains. It has the characteristics of large-scale complex scenes, diverse strong and weak scattering, irregular boundary distribution, diverse category scales, and unbalanced sample distribution. To facilitate experimental verification, this paper cuts the three complete SAR images into 24,672 slices of 512×512 pixels, and conducts experimental verification using a series of common deep learning methods. The experimental results show that the DANet based on the dual-channel self-attention method performs the best, with the average intersection over union ratio reaching 85.96% for amplitude data and 87.03% for amplitude-phase fusion data. This dataset and the experimental index benchmark are helpful for other scholars to further carry out research related to polarimetric SAR ground terrain classification.

     

  • [1]
    JACKSON C R and APEL J R. Synthetic Aperture Radar Marine User’s Manual[M]. Washington: National Oceanic and Atmospheric Administration, 2004.
    [2]
    FU Kun, FU Jiamei, WANG Zhirui, et al. Scattering-keypoint-guided network for oriented ship detection in high-resolution and large-scale SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11162–11178. doi: 10.1109/JSTARS.2021.3109469.
    [3]
    LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: CRC Press, 2017: 1–10. doi: 10.1201/9781420054989.
    [4]
    LIU Xu, JIAO Licheng, TANG Xu, et al. Polarimetric convolutional network for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3040–3054. doi: 10.1109/TGRS.2018.2879984.
    [5]
    PARIKH H, PATEL S, and PATEL V. Classification of SAR and PolSAR images using deep learning: A review[J]. International Journal of Image and Data Fusion, 2020, 11(1): 1–32. doi: 10.1080/19479832.2019.1655489.
    [6]
    BI Haixia, SUN Jian, and XU Zongben. A graph-based semisupervised deep learning model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2116–2132. doi: 10.1109/TGRS.2018.2871504.
    [7]
    CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877.
    [8]
    刘涛, 杨子渊, 蒋燕妮, 等. 极化SAR图像舰船目标检测研究综述[J]. 雷达学报, 2021, 10(1): 1–19. doi: 10.12000/JR20155.

    LIU Tao, YANG Ziyuan, JIANG Yanni, et al. Review of ship detection in polarimetric synthetic aperture imagery[J]. Journal of Radars, 2021, 10(1): 1–19. doi: 10.12000/JR20155.
    [9]
    WU Wenjin, LI Hailei, LI Xinwu, et al. PolSAR image semantic segmentation based on deep transfer learning—realizing smooth classification with small training sets[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6): 977–981. doi: 10.1109/LGRS.2018.2886559.
    [10]
    XIAO Daifeng, WANG Zhirui, WU Youming, et al. Terrain segmentation in polarimetric SAR images using dual-attention fusion network[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4006005. doi: 10.1109/LGRS.2020.3038240.
    [11]
    FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687.
    [12]
    肖东凌, 刘畅. 基于精调的膨胀编组-交叉CNN的PolSAR地物分类[J]. 雷达学报, 2019, 8(4): 479–489. doi: 10.12000/JR19039.

    XIAO Dongling and LIU Chang. PolSAR terrain classification based on fine-tuned dilated group-cross convolution neural network[J]. Journal of Radars, 2019, 8(4): 479–489. doi: 10.12000/JR19039.
    [13]
    秦先祥, 余旺盛, 王鹏, 等. 基于复值卷积神经网络样本精选的极化SAR图像弱监督分类方法[J]. 雷达学报, 2020, 9(3): 525–538. doi: 10.12000/JR20062.

    QIN Xianxiang, YU Wangsheng, WANG Peng, et al. Weakly supervised classification of PolSAR images based on sample refinement with complex-valued convolutional neural network[J]. Journal of Radars, 2020, 9(3): 525–538. doi: 10.12000/JR20062.
    [14]
    邹焕新, 李美霖, 马倩, 等. 一种基于张量积扩散的非监督极化SAR图像地物分类方法[J]. 雷达学报, 2019, 8(4): 436–447. doi: 10.12000/JR19057.

    ZOU Huanxin, LI Meilin, MA Qian, et al. An unsupervised PolSAR image classification algorithm based on tensor product graph diffusion[J]. Journal of Radars, 2019, 8(4): 436–447. doi: 10.12000/JR19057.
    [15]
    FANG Zheng, ZHANG Gong, DAI Qijun, et al. Hybrid attention-based encoder-decoder fully convolutional network for PolSAR image classification[J]. Remote Sensing, 2023, 15(2): 526. doi: 10.3390/rs15020526.
    [16]
    ZHANG Mengxuan, SHI Jingyuan, LIU Long, et al. Evolutionary complex-valued CNN for PolSAR image classification[C]. 2024 International Joint Conference on Neural Networks, Yokohama, Japan, 2024: 1–8. doi: 10.1109/IJCNN60899.2024.10650936.
    [17]
    SUN Xian, WANG Peijin, YAN Zhiyuan, et al. FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 184: 116–130. doi: 10.1016/j.isprsjprs.2021.12.004.
    [18]
    ZAMIR W S, ARORA A, GUPTA A, et al. iSAID: A large-scale dataset for instance segmentation in aerial images[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, USA, 2019: 28–37.
    [19]
    YANG Yi and NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]. The 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 270–279. doi: 10.1145/1869790.1869829.
    [20]
    ROTTENSTEINER F, SOHN G, GERKE M, et al. ISPRS semantic labeling contest[C]. Photogrammetric Computer Vision, Zurich, Switzerland, 2014: 5–7.
    [21]
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998.
    [22]
    SHENG Guofeng, YANG Wen, XU Tao, et al. High-resolution satellite scene classification using a sparse coding based multiple feature combination[J]. International Journal of Remote Sensing, 2012, 33(8): 2395–2412. doi: 10.1080/01431161.2011.608740.
    [23]
    LIU Xu, JIAO Licheng, LIU Fang, et al. PolSF: PolSAR image datasets on San Francisco[C]. The 5th IFIP TC 12 International Conference on Intelligence Science, Xi’an, China, 2022: 214–219. doi: 10.1007/978-3-031-14903-0_23.
    [24]
    WANG Zhirui, ZENG Xuan, YAN Zhiyuan, et al. AIR-PolSAR-Seg: A large-scale data set for terrain segmentation in complex-scene PolSAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3830–3841. doi: 10.1109/JSTARS.2022.3170326.
    [25]
    HOCHSTUHL S, PFEFFER N, THIELE A, et al. Pol-InSAR-island—a benchmark dataset for multi-frequency pol-InSAR data land cover classification[J]. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2023, 10: 100047. doi: 10.1016/j.ophoto.2023.100047.
    [26]
    WEST R D, HENRIKSEN A, STEINBACH E, et al. High-resolution fully-polarimetric synthetic aperture radar dataset[J]. Discover Geoscience, 2024, 2(1): 83. doi: 10.1007/s44288-024-00090-6.
    [27]
    LONG J, SHELHAMER E, and DARRELL T. Fully convolutional networks for semantic segmentation[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3431–3440. doi: 10.1109/CVPR.2015.7298965.
    [28]
    ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/CVPR.2017.660.
    [29]
    CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 833–851. doi: 10.1007/978-3-030-01234-2_49.
    [30]
    KIRILLOV A, WU Yuxin, HE Kaiming, et al. PointRend: Image segmentation as rendering[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9796–9805. doi: 10.1109/CVPR42600.2020.00982.
    [31]
    FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3141–3149. doi: 10.1109/CVPR.2019.00326.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(161) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint