DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002
Citation: Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132

Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning

DOI: 10.12000/JR15132
Funds:

The Inner Mongolia Autonomous Region Science and Technology Project (20131108,20140155),TheNational Natural Science Foundation of China (61271401,41501414),The Fudan University Key Laboratory of EMWInformation Open Fund Project (EMW201504)

  • Received Date: 2015-12-27
  • Rev Recd Date: 2016-04-07
  • Publish Date: 2016-12-28
  • In this paper, we propose a supervised classification algorithm for Polarimetric Synthetic Aperture Radar (PolSAR) images using multiple-feature fusion and ensemble learning.First, we extract different polarimetric features, including extended polarimetric feature space, Hoekman, Huynen, H/alpha/A, and fourcomponent scattering features of PolSAR images.Next, we randomly select two types of features each time from all feature sets to guarantee the reliability and diversity of later ensembles and use a support vector machine as the basic classifier for predicting classification results.Finally, we concatenate all prediction probabilities of basic classifiers as the final feature representation and employ the random forest method to obtain final classification results.Experimental results at the pixel and region levels show the effectiveness of the proposed algorithm.

     

  • [1]
    李春升,杨威,王鹏波.星载SAR成像处理算法综述[J].雷达学报,2013,2(1):111-122.Li Chun-sheng,Yang Wei,and Wang Peng-bo.A review of spaceborne SAR algorithm for image formation[J].Journal of Radars,2013,2(1):111-122.
    [2]
    田维,徐旭,卞小林,等.环境一号C卫星SAR图像典型环境遥感应用初探[J].雷达学报,2014,3(3):339-351.Tian Wei,Xu Xu,Bian Xiao-lin,et al..Applications of environmental remote sensing by HJ-1C SAR imagery[J].Journal of Radars,2014,3(3):339-351.
    [3]
    Yang Wen,Yin Xiao-shuang,Song Hui,et al..Extraction of built-up areas from fully polarimetric SAR imagery via PU learning[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(4):1207-1216.
    [4]
    Banerjee B,Bhattacharya A,and Buddhiraju K M.A generic land-cover classification framework for polarimetric SAR images using the optimum Touzi decomposition parameter subset-An insight on mutual information-based feature selection techniques[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(4):1167-1176.
    [5]
    Hariharan S,Tirodkar S,De S,et al..Variable importance and random forest classification using RADARSAT-2 PolSAR data[C].IEEE International Geoscience and Remote Sensing Symposium (IGARSS),Quebec,2014:1210-1213.
    [6]
    滑文强,王爽,侯彪.基于半监督学习的SVM-Wishart极化SAR图像分类方法[J].雷达学报,2015,4(1):93-98.Hua Wen-qiang,Wang Shuang,and Hou Biao.Semi-supervised Learning for classification of polarimetric SAR images based on SVM-Wishart[J].Journal of Radars,2015,4(1):93-98.
    [7]
    Yang Wen,Yin Xiao-shuang,and Xia Gui-song.Learning high-level features for satellite image classification with limited training samples[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(8):4472-4482.
    [8]
    Yuan Han-ning,Fang Meng,and Zhu Xing-quan.Hierarchical sampling for multi-instance ensemble learning[J].Knowledge and Data Engineering,2013,25(12):2900-2905.
    [9]
    Zhang La-mei,Wang Xiao,Li Meng,et al..Classification of fully polarimetric SAR images based on ensemble learning and feature integration[C].IEEE International Geoscience and Remote Sensing Symposium (IGARSS),Quebec,2014:2758-2761.
    [10]
    刘培,杜培军,谭琨.一种基于集成学习和特征融合的遥感影像分类新方法[J].红外与毫米波学报,2014,33(3):311-317.Liu Pei,Du Pei-jun,and Tan Kun.A novel remotely sensed image classification based on ensemble learning and feature integration[J].Journal of Infrared and Millimeter Waves,2014,33(3):311-317.
    [11]
    Samat A,Du P,Baig M H A,et al..Ensemble learning with multiple classifiers and polarimetric features for polarized SAR image classification[J].Photogrammetric EngineeringRemote Sensing,2014,80(3):239-251.
    [12]
    Wang Y,Zhang Y,Zhuo T,et al..Ensemble learning based on multi-features fusion and selection for polarimetric SAR image classification[C].International Conference on Signal Processing (ICSP),Hangzhou,2014:734-737.
    [13]
    Doulgeris A P.A simple and extendable segmentation method for multi-polarisation SAR images[C].6th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry,2013.
    [14]
    Yang J,Peng Y N,Yamaguchi Y,et al..On Huynen's decomposition of a Kennaugh matrix[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):369-372.
    [15]
    Hoekman D H and Vissers M A M.A new polarimetric classification approach evaluated for agricultural crops[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2881-2889.
    [16]
    Cloude S R and Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
    [17]
    Yamaguchi Y,Sato A,Boerner W,et al..Four-component scattering power decomposition with rotation of coherency matrix[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2251-2258.
    [18]
    Sato A,Yamaguchi Y,Singh G,et al..Four-component scattering power decomposition with extended volume scattering model[J].IEEE Geoscience and Remote Sensing Letters,2012,9(2):166-170.
    [19]
    Zhang Cha and Ma Yun-qian.Ensemble Machine Learning[M].Springer US,2012:1-34.
    [20]
    陈博,王爽,焦李成,等.利用0-1矩阵分解集成的极化SAR图像分类[J].电子与信息学报,2015,37(6):1495-1501.Chen Bo,Wang Shuang,Jiao Li-cheng,et al..Polarimetric SAR image classification via weighted ensemble based on 0-1 matrix decomposition[J].Journal of ElectronicsInformation Technology,2015,37(6):1495-1501.
    [21]
    Chang Chih-Chung and Lin Chih-Jen.Libsvm:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):27.
  • Relative Articles

    [1]WANG Zhirui, ZHAO Liangjin, WANG Yuelei, ZENG Xuan, KANG Jian, YANG Jian, SUN Xian. AIR-PolSAR-Seg-2.0: Polarimetric SAR Ground Terrain Classification Dataset for Large-scale Complex Scenes[J]. Journal of Radars, 2025, 14(2): 353-365. doi: 10.12000/JR24237
    [2]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [3]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [4]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [5]YAN Hua, ZHANG Lei, LU Jinwen, XING Xiaoyu, LI Sheng, YIN Hongcheng. Frequency-dependent Factor Expression of the GTD Scattering Center Model for the Arbitrary Multiple Scattering Mechanism[J]. Journal of Radars, 2021, 10(3): 370-381. doi: 10.12000/JR21005
    [6]QUAN Sinong, FAN Hui, DAI Dahai, WANG Wei, XIAO Shunping, WANG Xuesong. Recognition of Ships and Chaff Clouds Based on Sophisticated Polarimetric Target Decomposition[J]. Journal of Radars, 2021, 10(1): 61-73. doi: 10.12000/JR20123
    [7]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [8]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [9]WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109
    [10]HU Cheng, DENG Yunkai, TIAN Weiming, ZENG Tao. A Compensation Method of Nonlinear Atmospheric Phase Applied for GB-InSAR Images[J]. Journal of Radars, 2019, 8(6): 831-840. doi: 10.12000/JR19073
    [11]Hu Dingsheng, Qiu Xiaolan, Lei Bin, Xu Feng. Analysis of Crosstalk Impact on the Cloude-decomposition-based Scattering Characteristic[J]. Journal of Radars, 2017, 6(2): 221-228. doi: 10.12000/JR16129
    [12]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [13]Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026
    [14]Sun Xun, Huang Pingping, Tu Shangtan, Yang Xiangli. Polarimetric SAR Image Classification Using Multiple-feature Fusion and Ensemble Learning[J]. Journal of Radars, 2016, 5(6): 692-700. doi: 10.12000/JR15132
    [15]Huang Xiaojing, Yang Xiangli, Huang Pingping, Yang Wen. Prototype Theory Based Feature Representation for PolSAR Images[J]. Journal of Radars, 2016, 5(2): 208-216. doi: 10.12000/JR15071
    [16]Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
    [17]Yan Jian, Li Yang, Yin Qiang, Hong Wen. Freeman-Durden Decomposition with Oriented Dihedral Scattering[J]. Journal of Radars, 2014, 3(5): 574-582. doi: 10.3724/SP.J.1300.2014.14057
    [18]Chong Jin-song, Zhou Xiao-zhong. Survey of Study on Internal Waves Detection in Synthetic Aperture Radar Image[J]. Journal of Radars, 2013, 2(4): 406-421. doi: 10.3724/SP.J.1300.2013.13012
    [19]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
  • Cited by

    Periodical cited type(23)

    1. 肖敏睿,王巍,尤明懿,陈新. 存在时频统误差条件下的联合时频差定位与观测站航迹优化方法. 信号处理. 2025(01): 150-160 .
    2. Xin Yang,Hongming Liu,Xiaoke Wang,Wen Yu,Jingqiu Liu,Sipei Zhang. A Fusion Localization Method Based on Target Measurement Error Feature Complementarity and Its Application. Journal of Beijing Institute of Technology. 2024(01): 75-88 .
    3. 任洋,姚金杰,赵昶淳,邹宇,薛晓东. 卫星导航多干扰源直接定位方法. 计算机测量与控制. 2024(04): 159-165+173 .
    4. 罗军,张顺生. 联合自适应LASSO与块稀疏贝叶斯直接定位方法. 雷达科学与技术. 2024(03): 265-274 .
    5. 万鹏武,李文杰,彭康. 混合信道下基于到达时间的快速直接定位算法. 西安邮电大学学报. 2024(02): 20-26 .
    6. Dandan Li,Deyi Wang,Hao Huan. LFM Radar Source Passive Localization Algorithm Based on Range Migration. Journal of Beijing Institute of Technology. 2024(02): 130-140 .
    7. 李俊霞,王欣,黄高见,徐勇军,郝万明,朱政宇,李兴旺. 无源定位技术发展及其展望. 无线电工程. 2024(08): 1825-1846 .
    8. 陈梁栋,黄知涛,王翔,吴癸周. 基于角速度信息先验的固定无源单站直接定位方法. 电子学报. 2024(07): 2190-2200 .
    9. 任洋,姚金杰,赵昶淳. 一种自适应网格细化的卫星干扰源定位方法. 火力与指挥控制. 2024(08): 152-158+165 .
    10. 张炜,杨秋,李昊. 一种分布式一体化传感器异步纯方位跟踪管理方法. 指挥控制与仿真. 2024(06): 43-48 .
    11. 王雨琦,吴楠,张旭,刘丹,王海强,韩笑冬,仲小清,王宁远. 多星分布式无源相干定位方法. 中国空间科学技术. 2023(01): 63-68 .
    12. 陈志坤,翁一鸣,彭冬亮,吴美婵. 基于VEPPSO-EXTRA混合算法的分布式直接定位技术. 电子与信息学报. 2023(02): 664-671 .
    13. 罗迪,尹灿斌,李智. 双星对地面未知辐射源直接定位方法研究. 指挥控制与仿真. 2023(01): 136-143 .
    14. 刘云天,史鑫磊. 多基站非圆信号直接定位:降维PM与泰勒补偿. 太赫兹科学与电子信息学报. 2023(06): 725-733 .
    15. 夏楠,高丹阳,邢宝辉,王亚宁. 基于外辐射源的空中目标直接定位算法. 通信学报. 2023(06): 117-124 .
    16. 唐元春,陈端云,夏炳森. 基于传播算子的卫星导航系统干扰源直接定位方法. 太赫兹科学与电子信息学报. 2023(08): 985-991 .
    17. 张怡霄,王怀习,姚云龙,常超,康凯. 基于聚类与霍夫变换的同型雷达多目标定位算法. 电讯技术. 2023(12): 1885-1893 .
    18. 刘清,谢坚,王伶,王秋红,张兆林. 卫星导航欺骗式干扰源高精度直接定位方法. 电子学报. 2022(05): 1117-1122 .
    19. 韦卓. 基于单站干涉仪测向法的未知辐射源定位技术. 舰船电子工程. 2022(07): 159-161 .
    20. 王裕旗,孙光才,邢孟道,张子敬. 合成孔径无源定位性能分析与参数设计. 电子与信息学报. 2022(09): 3155-3162 .
    21. 刘振,苏晓龙,刘天鹏,彭勃,陈鑫,刘永祥. 基于矩阵差分的远场和近场混合源定位方法. 雷达学报. 2021(03): 432-442 . 本站查看
    22. 金峥嵘,王洁,陈丹彤,赵翼,朱秋明,段洪涛. 基于频谱测绘的辐射源定位. 通信技术. 2021(12): 2644-2649 .
    23. 张国鑫,易伟,孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法. 雷达学报. 2021(06): 970-981 . 本站查看

    Other cited types(22)

  • 加载中
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.1 %FULLTEXT: 27.1 %META: 62.6 %META: 62.6 %PDF: 10.3 %PDF: 10.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 1.7 %其他: 1.7 %China: 0.3 %China: 0.3 %Falls Church: 0.0 %Falls Church: 0.0 %Happy Valley: 0.1 %Happy Valley: 0.1 %Kao-sung: 0.1 %Kao-sung: 0.1 %Tottori-shi: 0.2 %Tottori-shi: 0.2 %三亚: 0.0 %三亚: 0.0 %上海: 1.4 %上海: 1.4 %东京: 0.3 %东京: 0.3 %东京都: 0.0 %东京都: 0.0 %东莞: 0.2 %东莞: 0.2 %中卫: 0.2 %中卫: 0.2 %丹东: 0.2 %丹东: 0.2 %乌鲁木齐: 0.0 %乌鲁木齐: 0.0 %九江: 0.0 %九江: 0.0 %九龙城: 0.0 %九龙城: 0.0 %云浮: 0.2 %云浮: 0.2 %京畿道: 0.1 %京畿道: 0.1 %佛山: 0.1 %佛山: 0.1 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.1 %内江: 0.1 %北京: 12.2 %北京: 12.2 %十堰: 0.2 %十堰: 0.2 %华沙: 0.3 %华沙: 0.3 %南京: 3.4 %南京: 3.4 %南充: 0.0 %南充: 0.0 %南宁: 0.0 %南宁: 0.0 %南昌: 0.3 %南昌: 0.3 %卡拉奇: 0.0 %卡拉奇: 0.0 %印多尔: 0.1 %印多尔: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %合肥: 0.6 %合肥: 0.6 %吉林: 0.0 %吉林: 0.0 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.0 %咸阳: 0.0 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.0 %哥伦布: 0.0 %商洛: 0.0 %商洛: 0.0 %喀什: 0.6 %喀什: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %塔斯卡卢萨: 0.0 %塔斯卡卢萨: 0.0 %大连: 0.1 %大连: 0.1 %天津: 1.2 %天津: 1.2 %太原: 0.0 %太原: 0.0 %威海: 0.0 %威海: 0.0 %娄底: 0.0 %娄底: 0.0 %孟买: 0.1 %孟买: 0.1 %安康: 0.3 %安康: 0.3 %安阳: 0.0 %安阳: 0.0 %宣城: 0.2 %宣城: 0.2 %巴中: 0.0 %巴中: 0.0 %帕萨迪纳: 0.0 %帕萨迪纳: 0.0 %常州: 0.3 %常州: 0.3 %常德: 0.5 %常德: 0.5 %平顶山: 0.0 %平顶山: 0.0 %广州: 1.8 %广州: 1.8 %库比蒂诺: 0.0 %库比蒂诺: 0.0 %延安: 0.2 %延安: 0.2 %开封: 0.6 %开封: 0.6 %弗吉: 0.1 %弗吉: 0.1 %张家口: 3.0 %张家口: 3.0 %张家界: 0.2 %张家界: 0.2 %徐州: 0.2 %徐州: 0.2 %悉尼: 0.1 %悉尼: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 2.3 %成都: 2.3 %扬州: 0.4 %扬州: 0.4 %新德里: 0.1 %新德里: 0.1 %无锡: 0.2 %无锡: 0.2 %昆明: 1.8 %昆明: 1.8 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.3 %朝阳: 0.3 %来宾: 0.0 %来宾: 0.0 %杭州: 0.9 %杭州: 0.9 %松原: 0.0 %松原: 0.0 %武汉: 1.2 %武汉: 1.2 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.3 %沈阳: 0.3 %河池: 0.0 %河池: 0.0 %泉州: 0.2 %泉州: 0.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.0 %济南: 0.0 %海东: 0.1 %海东: 0.1 %海口: 0.0 %海口: 0.0 %淄博: 0.2 %淄博: 0.2 %淮南: 0.0 %淮南: 0.0 %深圳: 1.3 %深圳: 1.3 %温州: 0.3 %温州: 0.3 %湖州: 0.0 %湖州: 0.0 %漯河: 0.9 %漯河: 0.9 %漳州: 0.0 %漳州: 0.0 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %珠海: 0.0 %珠海: 0.0 %白山: 0.0 %白山: 0.0 %眉山: 0.0 %眉山: 0.0 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.0 %纽约: 0.0 %绍兴: 0.2 %绍兴: 0.2 %绵阳: 0.0 %绵阳: 0.0 %芒廷维尤: 24.1 %芒廷维尤: 24.1 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.2 %莫斯科: 0.2 %菏泽: 0.2 %菏泽: 0.2 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.3 %衡水: 0.3 %衡阳: 1.0 %衡阳: 1.0 %衢州: 1.5 %衢州: 1.5 %襄阳: 0.0 %襄阳: 0.0 %西宁: 8.9 %西宁: 8.9 %西安: 4.2 %西安: 4.2 %诺沃克: 0.3 %诺沃克: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %达州: 0.1 %达州: 0.1 %迈阿密: 0.0 %迈阿密: 0.0 %运城: 0.4 %运城: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.3 %郑州: 0.3 %鄂州: 0.0 %鄂州: 0.0 %重庆: 0.6 %重庆: 0.6 %钱德勒: 0.0 %钱德勒: 0.0 %铁岭: 0.0 %铁岭: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.3 %长春: 0.3 %长沙: 2.1 %长沙: 2.1 %阿什本: 0.0 %阿什本: 0.0 %青岛: 0.6 %青岛: 0.6 %首尔: 0.0 %首尔: 0.0 %首尔特别: 0.1 %首尔特别: 0.1 %香港: 0.3 %香港: 0.3 %马鞍山: 0.0 %马鞍山: 0.0 %黄冈: 0.0 %黄冈: 0.0 %齐齐哈尔: 0.6 %齐齐哈尔: 0.6 %其他其他ChinaFalls ChurchHappy ValleyKao-sungTottori-shi三亚上海东京东京都东莞中卫丹东乌鲁木齐九江九龙城云浮京畿道佛山六安兰州兰辛内江北京十堰华沙南京南充南宁南昌卡拉奇印多尔厦门台北合肥吉林周口呼和浩特咸阳哈尔滨哥伦布商洛喀什嘉兴塔斯卡卢萨大连天津太原威海娄底孟买安康安阳宣城巴中帕萨迪纳常州常德平顶山广州库比蒂诺延安开封弗吉张家口张家界徐州悉尼惠州成都扬州新德里无锡昆明晋城朝阳来宾杭州松原武汉汕头沈阳河池泉州洛阳济南海东海口淄博淮南深圳温州湖州漯河漳州潍坊烟台焦作珠海白山眉山石家庄福州秦皇岛纽约绍兴绵阳芒廷维尤芝加哥苏州莫斯科菏泽葫芦岛衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州达州迈阿密运城邯郸郑州鄂州重庆钱德勒铁岭银川长春长沙阿什本青岛首尔首尔特别香港马鞍山黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3636) PDF downloads(1549) Cited by(45)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint