Volume 10 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
YASIR Saifullah, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. DOI: 10.12000/JR21061
Citation: YASIR Saifullah, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. DOI: 10.12000/JR21061

A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering

DOI: 10.12000/JR21061
Funds:  The National Key Research and Development Program of China (2017YFA0100203)
More Information
  • Author Bio:

    YASIR Saifullah (1989–) is currently pursuing his Ph.D. degree with the School of Information Science and Technology, Fudan University. His research interests include microwave, metamaterial, coding, dielectric and programmable metasurfaces

    YANG Guomin (1979–) received the B.S. degree (Hons.) in communication engineering from the Xi’an University of Technology, Xi’an, China, in 2002, the M.S. degree in electronic engineering from Shanghai Jiao Tong University, Shanghai, China, in 2006, and the Ph.D. degree in electrical and computer engineering from Northeastern University, Boston, MA, USA, in 2010. In 2010, he joined the Faculty of the School of Information and Technology, Fudan University, Shanghai, China, where he is currently Professor. He has authored 58 journal publications and 58 conference papers. His research interests include antenna miniaturization, magnetodielectric materials, intelligent metamaterials, frequency-selective surfaces, microwave wireless power transfer, RF energy harvesting, and inverse scattering problems in electromagnetics

    XU Feng (1982–) received the B.E. degree (Hons.) in information engineering from Southeast University, Nanjing, China, in 2003, and the Ph.D. degree (Hons.) in electronic engineering from Fudan University, Shanghai, China, in 2008. From 2008 to 2010, he was a Post-Doctoral Fellow with the National Oceanic and Atmospheric Administration (NOAA) Center for Satellite Applications and Research, Camp Springs, MD, USA. From 2010 to 2013, he worked with Intelligent Automation Inc., Rockville, MD, USA, and NASA Goddard Space Flight Center, Greenbelt, MD, USA, as a Research Scientist. In 2012, he was selected for China’s Global Experts Recruitment Program and subsequently returned to Fudan University, in 2013, where he is a Professor. His research interests include electromagnetic scattering modeling, SAR information retrieval, and radar system development. Dr. Xu was a recipient of the second-class National Nature Science Award of China in 2011, the 2014 Early Career Award of the IEEE Geoscience and Remote Sensing Society, and the 2007 SUMMA Graduate Fellowship in the advanced electromagnetics area

  • Corresponding author: YANG Guomin. E-mail: guominyang@fudan.edu.cn
  • Received Date: 2021-05-11
  • Rev Recd Date: 2021-06-21
  • Available Online: 2021-06-24
  • Publish Date: 2021-06-24
  • In this paper, a novel four-leaf clover-shaped coding metasurface is proposed and applied to achieve an ultra-wideband diffusion-like scattering. The proposed metasurface element has rotational symmetry; hence, it produces similar reflection characteristics for both x- and y-polarized waves. To realize a 1-bit coding metasurface, two elements are chosen that have a phase difference of 180°±37° from 15.5 to 40.5 GHz. An optimization algorithm is applied to get the best arrangement of unit cells in the array to attain the wideband RCS reduction. The four-leaf clover-shaped metasurface can attain more than 10 dB RCS reduction from 15.5 to 26.5 GHz and 30.5 to 40.5 GHz. A prototype of the proposed design is fabricated, and an experiment is carried out to validate the performance of the metasurface. The proposed concept of four-leaf clover-shaped coding metasurface is an effective solution for wideband RCS reduction applications.

     

  • loading
  • [1]
    MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98. doi: 10.1038/s41377-019-0205-3
    [2]
    ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186
    [3]
    SCHURIG D, MOCK J J, JUSTICE B, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    [4]
    ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2
    [5]
    LI Yong and ASSOUAR B M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness[J]. Applied Physics Letters, 2016, 108(6): 063502. doi: 10.1063/1.4941338
    [6]
    CUI Tiejun, QI Mengqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [7]
    ZHENG Yuejun, GAO Jun, CAO Xiangyu, et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1582–1585. doi: 10.1109/LAWP.2015.2413456
    [8]
    PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306
    [9]
    GALARREGUI J C I, PEREDA A T, DE FALCÓN J L M, et al. Broadband radar cross-section reduction using amc technology[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6136–6143. doi: 10.1109/TAP.2013.2282915
    [10]
    JIA Yongtao, LIU Ying, GUO Y J, et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 179–188. doi: 10.1109/TAP.2015.2502981
    [11]
    WANG He, HUANG Jiyao, WANG Honglin, et al. Chaos-based coding metasurface for radar cross-section reduction[J]. Journal of Physics D: Applied Physics, 2019, 52(40): 405304. doi: 10.1088/1361-6463/ab2dc6
    [12]
    CHEN Jie, CHENG Qiang, ZHAO Jie, et al. Reduction of radar cross section based on a metasurface[J]. Progress in Electromagnetics Research, 2014, 146: 71–76. doi: 10.2528/PIER14022606
    [13]
    SUI Sai, MA Hua, WANG Jiafu, et al. Absorptive coding metasurface for further radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(6): 065603. doi: 10.1088/1361-6463/aaa3be
    [14]
    LI Sijia, CAO Xiangyu, XU Liming, et al. Ultra-broadband reflective metamaterial with rcs reduction based on polarization convertor, information entropy theory and genetic optimization algorithm[J]. Scientific Reports, 2016, 6: 37409. doi: 10.1038/srep37409
    [15]
    LI Haipeng, WANG Guangming, CAI Tong, et al. Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface[J]. Physical Review Applied, 2019, 11(1): 014043. doi: 10.1103/PhysRevApplied.11.014043
    [16]
    SUN Hengyi, GU Changqing, CHEN Xinlei, et al. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction[J]. Scientific Reports, 2017, 7: 40782. doi: 10.1038/srep40782
    [17]
    SU Jianxun, LU Yao, LIU Jiayi, et al. A novel checkerboard metasurface based on optimized multielement phase cancellation for superwideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(12): 7091–7099. doi: 10.1109/TAP.2018.2870372
    [18]
    YANG Jianing, HUANG Cheng, SONG Jiakun, et al. Ultra-broadband low scattering metasurface utilizing mixed-elements based on phase cancellation[J]. Journal of Physics D: Applied Physics, 2020, 53(2): 025102. doi: 10.1088/1361-6463/ab4b2e
    [19]
    HAJI-AHMADI M J, NAYYERI V, SOLEIMANI M, et al. Pixelated checkerboard metasurface for ultra-wideband radar cross section reduction[J]. Scientific Reports, 2017, 7(1): 11437. doi: 10.1038/s41598-017-11714-y
    [20]
    SUI Sai, MA Hua, LV Yueguang, et al. Fast optimization method of designing a wideband metasurface without using the Pancharatnam–Berry phase[J]. Optics Express, 2018, 26(2): 1443–1451. doi: 10.1364/OE.26.001443
    [21]
    ESKANDAR H, SADOLLAH A, BAHREININEJAD A, et al. Water cycle algorithm–a novel metaheuristic optimization method for solving constrained engineering optimization problems[J]. Computers & Structures, 2012, 110/111: 151–166. doi: 10.1016/j.compstruc.2012.07.010
    [22]
    FENG Maochang, LI Yongfeng, ZHENG Qiqi, et al. Two-dimensional coding phase gradient metasurface for rcs reduction[J]. Journal of Physics D: Applied Physics, 2018, 51(37): 375103. doi: 10.1088/1361-6463/aad5ad
    [23]
    ZHENG Qiqi, LI Yongfeng, ZHANG Jieqiu, et al. Wideband, wide-angle coding phase gradient metasurfaces based on pancharatnam-berry phase[J]. Scientific Reports, 2017, 7: 43543. doi: 10.1038/srep43543
    [24]
    SU Pei, ZHAO Yongjiu, JIA Shengli, et al. An ultra-wideband and polarization-independent metasurface for RCS reduction[J]. Scientific Reports, 2016, 6: 20387. doi: 10.1038/srep20387
    [25]
    ZHUANG Yaqiang, WANG Guangming, LIANG Jiangang, et al. Random combinatorial gradient metasurface for broadband, wide-angle and polarization-independent diffusion scattering[J]. Scientific Reports, 2017, 7(1): 16560. doi: 10.1038/s41598-017-16910-4
    [26]
    YUAN Fang, WANG Guangming, XU Hexiu, et al. Broadband RCS reduction based on spiral-coded metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3188–3191. doi: 10.1109/LAWP.2017.2768129
    [27]
    LIU Xiao, GAO Jun, XU Liming, et al. A coding diffuse metasurface for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 724–727. doi: 10.1109/LAWP.2016.2601108
    [28]
    SU Jianxun, HE Huan, LI Zengrui, et al. Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering[J]. Scientific Reports, 2018, 8(1): 8182. doi: 10.1038/s41598-018-26386-5
    [29]
    HAN Xinmin, XU Haojun, CHANG Yipeng, et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 2020, 8: 162313–162321. doi: 10.1109/ACCESS.2020.3021650
    [30]
    CHEN Ke, CUI Li, FENG Yijun, et al. Coding metasurface for broadband microwave scattering reduction with optical transparency[J]. Optics Express, 2017, 25(5): 5571–5579. doi: 10.1364/OE.25.005571
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1932) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint