Volume 4 Issue 3
Jul.  2015
Turn off MathJax
Article Contents
Wang Jia-ning, Xu Xiao-jian. Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces[J]. Journal of Radars, 2015, 4(3): 343-350. doi: 10.12000/JR15053
Citation: Wang Jia-ning, Xu Xiao-jian. Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces[J]. Journal of Radars, 2015, 4(3): 343-350. doi: 10.12000/JR15053

Simulation and Analysis for Wide-band Scattering Characteristics of 2-D Linear and Nonlinear Sea Surfaces

DOI: 10.12000/JR15053
  • Received Date: 2015-05-05
  • Rev Recd Date: 2015-06-23
  • Publish Date: 2015-06-28
  • In this paper, the wideband backscattering fields of two-Dimensional (2-D) linear and nonlinear sea surfaces are numerically simulated employing the Weighted Curvature Approximation (WCA) method. A large number of Monte Carlo trials are performed to investigate the statistical characteristics of the rang-resolved sea clutter, especially for the sea spike phenomenon. Simulation results demonstrate that the long tail of the sea clutter intensity Probability Density Function (PDF) tends to be more evident with finer radar resolution, higher wind speed, and when the radar sight changes from the crosswind direction to the upwind direction. Meanwhile, it is found that the nonlinear sea surfaces are more likely to have sea spikes. In addition, the Pareto distribution is demonstrated to describe the statistics of the sea clutter intensities better than the Kdistribution and Weibull distribution at low grazing angles.

     

  • loading
  • [1]
    Antipov I. Statistical analysis of northern Australia coastline sea clutter data[R]. DSTO-TR-1236, 2001.
    [2]
    Fuchs J, Regas D, Waseda T, et al.. Correlation of hydrodynamic features with LGA radar backscatter from breaking waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2442-2460.
    [3]
    Ward K D, Baker C J, and Watts S. Maritime surveillance radar part 1: radar scattering from the ocean surface[J]. IEE Proceedings F Radar and Signal Processing, 1990, 137(2): 51-62.
    [4]
    Nohara T J and Haykin S. Canadian east coast radar trials and the K-distribution[J]. IEE Proceedings F Radar and Signal Processing, 1991, 138(2): 80-88.
    [5]
    Haykin S, Krasnor C, Nohara T J, et al.. A coherent dualpolarized radar for studying the ocean environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(1): 189-191.
    [6]
    Toporkov J V and Sletten M A. Statistical properties of low-grazing range-resolved sea surface backscatter generated through two-dimensional direct numerical simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5): 1181-1197.
    [7]
    Johnson J T, Burkholder R J, Toporkov J V, et al.. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1641-1650.
    [8]
    Chae C S and Johnson J T. A study of sea surface rangeresolved Doppler spectra using numerically simulated lowgrazing- angle backscatter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3452-3460.
    [9]
    Tessendorf J. Simulating Ocean Water[R]. Simulating Nature: Realistic and Interactive Techniques, SIGGRAPH 2001 Course Notes 47.
    [10]
    Creamer D B, Henyey F, Schult R, et al.. Improved linear representation of ocean surface waves[J]. Journal of Fluid Mechanics, 1989, 205: 135-161.
    [11]
    Soriano G, Joelson M, and Saillard M. Doppler spectra from a two-dimensional ocean surface at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2430-2437.
    [12]
    Nouguier F, Gurin C A, and Chapron B. Choppy Wave model for nonlinear gravity waves[J]. Journal of Geophysical Research, 2009, 114: 1-16.
    [13]
    Gurin C A, Soriano G, and Charpon B. The weighted curvature approximation in scattering from sea surfaces[J]. Waves in Random and Complex Media, 2010, 20(3): 364-384.
    [14]
    Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. Journal of Acoustical Society of America, 1988, 83(1): 78-92.
    [15]
    Ward K D, Tough R J A, and Watts S. Sea Clutter: Scattering, the K Distribution and Radar Performance[M]. London, U. K.: The Institution of Engineering and Technology, 2006: 106-129.
    [16]
    Farshchian M and Posner F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]. Proceedings of IEEE Radar Conference, 2010: 789-793.
    [17]
    Chen X, Guan J, Bao Z, et al.. Detection and extraction of target with micromotion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002-1018.
    [18]
    Melief H W, Greidanus H, Genderen P, et al.. Analysis of sea spikes in radar sea clutter data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 985-993.
    [19]
    Greco M, Stinco P, and Gini F. Identification and analysis of sea radar clutter spikes[J]. IET Radar, Sonar Navigation, 2010, 4(2): 239-250.
    [20]
    Liu L and Frasier S J. Measurement and classification of low grazing angle radar sea spikes[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(1): 27-40.
    [21]
    Moya J C, Menoyo J G, Campo B, et al.. Statistical analysis of a high-resolution sea-clutter database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4): 2024-2037.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2346) PDF downloads(1374) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint