XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183

Review of Fast Back Projection Algorithms in Synthetic Aperture Radar

DOI: 10.12000/JR23183
Funds:  The National Natural Science Fundation of China (62271375), The Fundamental Research Funds for the Central Universities (20199234731), The stabilization support of National Radar Signal Processing Laboratory (KGJ202201)
More Information
  • Corresponding author: XING Mengdao, xmd@xidian.edu.cn
  • Received Date: 2023-10-04
  • Rev Recd Date: 2023-12-15
  • Available Online: 2023-12-20
  • Publish Date: 2024-01-05
  • The Back Projection (BP) algorithm is an important direction in the development of synthetic aperture radar imaging algorithms. However, the large computational load of the BP algorithm has hindered its development in engineering applications. Therefore, techniques to enhance the computational efficiency of the BP algorithm have recently received widespread attention. This paper discusses the fast BP algorithm based on various imaging plane coordinate systems, including the distance-azimuth plane coordinate system, the ground plane coordinate system, and the non-Euclidean coordinate system. First, the principle of the original BP algorithm and the impact of different coordinate systems on accelerating the BP algorithm are introduced, and the development history of the BP algorithm is sorted out. Then, the research progress of the fast BP algorithm based on different imaging plane coordinate systems is examined, focusing on the recent research work completed by the author’s research team. Finally, the application of fast BP algorithm in engineering is introduced, and the research development trend of the fast BP imaging algorithm is discussed.

     

  • [1]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [2]
    SOUMEKH M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms[M]. New York: Wiley, 1999.
    [3]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House, 2005: 108–110.
    [4]
    MOREIRA A and HUANG Yonghong. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1029–1040. doi: 10.1109/36.312891
    [5]
    RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786–799. doi: 10.1109/36.298008
    [6]
    BAMLER R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706–713. doi: 10.1109/36.158864
    [7]
    LIN Yun, HONG Wen, TAN Weixian, et al. Extension of range migration algorithm to squint circular SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 651–655. doi: 10.1109/LGRS.2010.2098843
    [8]
    VU V T, SJÖGREN T K, and PETTERSSON M I. SAR imaging in ground plane using fast backprojection for mono- and bistatic cases[C]. 2012 IEEE Radar Conference, Atlanta, GA, USA, 2012: 184–189.
    [9]
    杨泽民. 快速时域SAR成像与三维SAR运动补偿方法研究[D]. [博士论文], 西安电子科技大学, 2016.

    YANG Zemin. Study on fast time domain SAR imaging and three dimensional SAR motion compensation methods[D]. [Ph.D. dissertation], Xidian University, 2016.
    [10]
    ANDERSSON L E. On the determination of a function from spherical averages[J]. SIAM Journal on Mathematical Analysis, 1988, 19(1): 214–232. doi: 10.1137/0519016
    [11]
    FAWCETT J A. Inversion of N-dimensional spherical averages[J]. SIAM Journal on Applied Mathematics, 1985, 45(2): 336–341. doi: 10.1137/0145018
    [12]
    ALBUQUERQUE M, PRATS P, and SCHEIBER R. Applications of time-domain back-projection SAR processing in the airborne case[C]. 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–4.
    [13]
    DURAND R, GINOLHAC G, THIRION-LEFEVRE L, et al. Back projection version of subspace detector SAR processors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1489–1497. doi: 10.1109/TAES.2011.5751274
    [14]
    MUNSON D C, O’BRIEN J D, and JENKINS W K. A tomographic formulation of spotlight-mode synthetic aperture radar[J]. Proceedings of the IEEE, 1983, 71(8): 917–925. doi: 10.1109/PROC.1983.12698
    [15]
    YEGULALP A F. Fast backprojection algorithm for synthetic aperture radar[C]. The 1999 IEEE Radar Conference. Radar into the Next Millennium (Cat. No.99CH36249), Waltham, MA, USA, 1999: 60–65.
    [16]
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734
    [17]
    龙腾, 丁泽刚, 肖枫, 等. 星载高分辨频率步进SAR成像技术[J]. 雷达学报, 2019, 8(6): 782–792. doi: 10.12000/JR19076

    LONG Teng, DING Zegang, XIAO Feng, et al. Spaceborne high-resolution stepped-frequency SAR imaging technology[J]. Journal of Radars, 2019, 8(6): 782–792. doi: 10.12000/JR19076
    [18]
    丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [19]
    CHEN Jianlai, SUN Guangcai, XING Mengdao, et al. A two-dimensional beam-steering method to simultaneously consider doppler centroid and ground observation in GEOSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 161–167. doi: 10.1109/JSTARS.2016.2544349
    [20]
    邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10. doi: 10.3724/SP.J.1300.2012.20015

    DENG Yunkai, ZHAO Fengjun, and WANG Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10. doi: 10.3724/SP.J.1300.2012.20015
    [21]
    李浩林. 机载SAR快速后向投影成像算法研究[D]. [博士论文], 西安电子科技大学, 2015.

    LI Haolin. Study on fast back-projection algorithms for airborne SAR image[D]. [Ph.D. dissertation], Xidian University, 2015.
    [22]
    陈潇翔. 机载超高分辨SAR运动补偿成像技术研究[D]. [博士论文], 西安电子科技大学, 2021.

    CHEN Xiaoxiang. Study on motion compensation algorithm for ultra high resolution airborne SAR imaging[D]. [Ph.D. dissertation], Xidian University, 2021.
    [23]
    杨泽民, 孙光才, 吴玉峰, 等. 一种新的基于极坐标格式的快速后向投影算法[J]. 电子与信息学报, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613

    YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm[J]. Journal of Electronics & Information Technology, 2014, 36(3): 537–544. doi: 10.3724/SP.J.1146.2013.00613
    [24]
    ZHANG Lei, LI Haolin, QIAO Zhijun, et al. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460–1464. doi: 10.1109/LGRS.2013.2295326
    [25]
    ZHANG Lei, LI Haolin, QIAO Zhijun, et al. Integrating autofocus techniques with fast factorized back-projection for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1394–1398. doi: 10.1109/LGRS.2013.2258886
    [26]
    LIANG Yi, LI Guofei, WEN Jun, et al. A fast time-domain SAR imaging and corresponding autofocus method based on hybrid coordinate system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8627–8640. doi: 10.1109/TGRS.2019.2921917
    [27]
    DONG Qi, YANG Zemin, SUN Guangcai, et al. Cartesian factorized backprojection algorithm for synthetic aperture radar[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 1074–1077.
    [28]
    FROLIND P O and ULANDER L M H. Evaluation of angular interpolation kernels in fast back-projection SAR processing[J]. IEE Proceedings-Radar, Sonar And Navigation, 2006, 153(3): 243–249. doi: 10.1049/ip-rsn:20045110
    [29]
    YANG Zemin, SUN Guangcai, and XING Mengdao. A new fast back-projection algorithm using polar format algorithm[C]. 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 2013: 373–376.
    [30]
    YANG Zemin, DONG Qi, SUN Guangcai, et al. A fast implementation method for the FFBP algorithm[C]. 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 2015: 411–414.
    [31]
    YANG Lei, ZHOU Song, and BI Guoan. A modified fast factorized back-projection algorithm for squint UWB-SAR imaging[C]. 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015: 413–416.
    [32]
    WANG Yue, WU Junjie, ZHANG Shaoqing, et al. An accelerate FFBP algorithm of bistatic forward-looking SAR based on azimuth equidistant coordinates[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–5.
    [33]
    邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102

    XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102
    [34]
    董祺, 杨泽民, 孙光才, 等. 子场景处理的弹载前斜视SAR时域成像算法[J]. 系统工程与电子技术, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10

    DONG Qi, YANG Zemin, SUN Guangcai, et al. Missile-borne forward squint SAR time-domain imaging algorithm based on sub-region processing[J]. Systems Engineering and Electronics, 2017, 39(5): 1013–1018. doi: 10.3969/j.issn.1001-506X.2017.05.10
    [35]
    FENG Dong, AN Daoxiang, and HUANG Xiaotao. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2724–2734. doi: 10.1109/TAES.2018.2828238
    [36]
    BIE Bowen, XING Mengdao, XIA Xianggen, et al. A frequency domain backprojection algorithm based on local cartesian coordinate and subregion range migration correction for high-squint sar mounted on maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7086–7101. doi: 10.1109/TGRS.2018.2848249
    [37]
    CHEN Xiaoxiang, SUN Guangcai, XING Mengdao, et al. Ground cartesian back-projection algorithm for high squint diving TOPS SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5812–5827. doi: 10.1109/TGRS.2020.3011589
    [38]
    HU Cheng, LIU Feifeng, YANG Wenfu, et al. Modification of slant range model and imaging processing in GEO SAR[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2010: 4679–4682.
    [39]
    MONTI GUARNIERI A, LEANZA A, RECCHIA A, et al. Atmospheric phase screen in GEO-SAR: Estimation and compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1668–1679. doi: 10.1109/TGRS.2017.2766084
    [40]
    ZENG Tao, LI Yinghe, DING Zegang, et al. Subaperture approach based on azimuth-dependent range cell migration correction and azimuth focusing parameter equalization for maneuvering high-squint-mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6718–6734. doi: 10.1109/TGRS.2015.2447393
    [41]
    CHEN Quan, LIU Wenkang, SUN Guangcai, et al. A fast cartesian back-projection algorithm based on ground surface grid for GEO SAR focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5217114. doi: 10.1109/TGRS.2021.3125797
    [42]
    RAN Lei, LIU Zheng, ZHANG Lei, et al. An autofocus algorithm for estimating residual trajectory deviations in synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3408–3425. doi: 10.1109/TGRS.2017.2670785
    [43]
    WU Junjie, LI Yunli, PU Wei, et al. An effective autofocus method for fast factorized back-projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6145–6154. doi: 10.1109/TGRS.2019.2904608
    [44]
    ZHANG Tao, LIAO Guisheng, LI Yachao, et al. A two-stage time-domain autofocus method based on generalized sharpness metrics and AFBP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205413. doi: 10.1109/TGRS.2021.3068789
    [45]
    WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus—a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [46]
    YE Wei, YEO T S, and BAO Zheng. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2487–2494. doi: 10.1109/36.789644
    [47]
    SAMCZYNSKI P, PIETRZYK G, and KULPA K. Simple method for estimating along track acceleration using autofocus map drift algorithm[C]. Proceedings of International Radar Symposium, Berlin, Germany, 2005: 43–47.
    [48]
    SAMCZYNSKI P and KULPA K. Concept of the coherent autofocus map-drift technique[C]. 2006 International Radar Symposium, Krakow, Poland, 2006: 1–4.
    [49]
    SAMCZYNSKI P and KULPA K. Non iterative map-drift technique[C]. 2008 International Conference on Radar, Adelaide, SA, Australia, 2008: 76–81.
    [50]
    JAKOWATZ JR C V and WAHL D E. Considerations for autofocus of spotlight-mode SAR imagery created using a beamforming algorithm[C]. Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, FL, USA, 2009: 73370A.
    [51]
    ZHOU Song, YANG Lei, ZHAO Lifan, et al. Quasi-polar-based FFBP algorithm for miniature UAV SAR imaging without navigational data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7053–7065. doi: 10.1109/TGRS.2017.2739133
    [52]
    DING Zegang, LI Linghao, WANG Yan, et al. An autofocus approach for UAV-based ultrawideband ultrawidebeam SAR data with frequency-dependent and 2-D space-variant motion errors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203518. doi: 10.1109/TGRS.2021.3062183
    [53]
    RAN Lei, XIE Rong, LIU Zheng, et al. Simultaneous range and cross-range variant phase error estimation and compensation for highly squinted SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4448–4463. doi: 10.1109/TGRS.2018.2820102
    [54]
    ASH J N. An autofocus method for backprojection imagery in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 104–108. doi: 10.1109/LGRS.2011.2161456
    [55]
    HU Kebin, ZHANG Xiaoling, HE Shufeng, et al. A less-memory and high-efficiency autofocus back projection algorithm for SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 890–894. doi: 10.1109/LGRS.2014.2365612
    [56]
    CHEN Leping, AN Daoxiang, and HUANG Xiaotao. Extended autofocus backprojection algorithm for low-frequency SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1323–1327. doi: 10.1109/LGRS.2017.2711005
    [57]
    LUO Yin, ZHAO Fengjun, LI Ning, et al. An autofocus cartesian factorized backprojection algorithm for spotlight synthetic aperture radar imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1244–1248. doi: 10.1109/LGRS.2018.2829483
    [58]
    LOU Yishan, LIU Wenkang, XING Mengdao, et al. A novel motion compensation method applicable to ground cartesian back-projection algorithm for airborne circular SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5208917. doi: 10.1109/TGRS.2023.3276051
  • Relative Articles

    [1]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [2]LAN Xiaoyu, HU Jiyan, LIANG Mingshen, MA Shuang. Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming[J]. Journal of Radars, 2025, 14(2): 280-292. doi: 10.12000/JR24175
    [3]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [4]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [5]ZHAO Kaifa, SONG Hu, LIU Rong, WANG Xinhai. Distributed Radar Main-lobe Interference Suppression Method Via Joint Optimization of Array Configuration and Subarray Element Number[J]. Journal of Radars, 2024, 13(6): 1355-1369. doi: 10.12000/JR24192
    [6]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [7]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [8]WANG Rongqing, XIE Jingyang, TIAN Biao, XU Shiyou, CHEN Zengping. Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2024, 13(6): 1337-1354. doi: 10.12000/JR24153
    [9]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [10]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [11]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [12]GAI Jiyu, JIANG Wei, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. A Method for Interrupted-Sampling Repeater Jamming Identification and Suppression Based on Differential Features[J]. Journal of Radars, 2023, 12(1): 186-196. doi: 10.12000/JR22058
    [13]XIA Deping, ZHANG Liang, WU Tao, MENG Xiangdong. A Multiple Interference Suppression Algorithm Based on Airborne Bistatic Polarization Radar[J]. Journal of Radars, 2022, 11(3): 399-407. doi: 10.12000/JR21212
    [14]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [15]LIU Pingyu, LYU Xiaode, LIU Zhongsheng, ZHANG Hanliang. Research on Co-channel Interference Suppression Method for Passive Radar Based on the Jiont Processing of Primary and Reference Channels[J]. Journal of Radars, 2020, 9(6): 974-986. doi: 10.12000/JR19047
    [16]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [17]MENG Zhichao, LU Jingyue, ZHANG Lei. Forward-looking Multi-channel SAR Adaptive Identification to Suppress Deception Jamming[J]. Journal of Radars, 2019, 8(1): 82-89. doi: 10.12000/JR18081
    [18]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [19]Li Yongzhen, Hu Wanqiu, Sun Dou, Li Zhongwei. Scheme for Polarization Detection and Suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666-672. doi: 10.12000/JR16115
    [20]Zhang Chi, Li Yue-li, Zhou Zhi-min. Wall Clutter Mitigation in Through-the-Wall Imaging Radar with Sparse Array Antenna Based on Independent Component Analysis[J]. Journal of Radars, 2014, 3(5): 524-532. doi: 10.3724/SP.J.1300.2014.14066
  • Cited by

    Periodical cited type(5)

    1. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    2. 陈士超,魏靖彪,范俊,魏玺章,王泽朝,孙谦,刘明. 基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别. 兵工学报. 2024(S1): 43-50 .
    3. 赵娟娟. 基于统计模型的电子信息产业企业成长性分析. 中国电子商情. 2024(04): 64-66 .
    4. 苏海龙,水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计. 西安电子科技大学学报. 2023(06): 105-119 .
    5. 赵春雷,姚嘉嵘,李京效,戚张行,魏汇赞. 地基雷达空中目标识别方法研究综述. 空天预警研究学报. 2023(05): 313-320+334 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 75.5 %META: 75.5 %PDF: 11.1 %PDF: 11.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.3 %其他: 0.3 %Absecon: 0.3 %Absecon: 0.3 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %上海市: 0.0 %上海市: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.4 %中卫: 0.4 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.0 %包头: 0.0 %北京: 20.3 %北京: 20.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南京市: 0.0 %南京市: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %吕梁: 0.0 %吕梁: 0.0 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.0 %和田: 0.0 %唐山: 0.2 %唐山: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.5 %太原: 0.5 %威海: 0.3 %威海: 0.3 %娄底: 0.0 %娄底: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.3 %宿迁: 0.3 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.0 %常州: 0.0 %常德市: 0.0 %常德市: 0.0 %平顶山: 0.0 %平顶山: 0.0 %平顶山市叶县: 0.0 %平顶山市叶县: 0.0 %广州: 0.5 %广州: 0.5 %广州市天河区: 0.1 %广州市天河区: 0.1 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.6 %张家口: 0.6 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.9 %成都: 0.9 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %曼谷: 0.0 %曼谷: 0.0 %杭州: 1.7 %杭州: 1.7 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海西: 0.0 %海西: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %白银: 0.1 %白银: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.0 %苏州: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 27.3 %西宁: 27.3 %西安: 0.5 %西安: 0.5 %贵港: 0.1 %贵港: 0.1 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 0.0 %重庆: 0.0 %金华: 0.1 %金华: 0.1 %长沙: 0.5 %长沙: 0.5 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.8 %青岛: 0.8 %黔南: 0.0 %黔南: 0.0 %齐齐哈尔: 0.4 %齐齐哈尔: 0.4 %其他其他AbseconChinaIndiaMatawanRochesterUnited States[]上海上海市东莞中卫丽水乌鲁木齐佛山信阳兰辛包头北京北京市北海南京南京市南宁南昌台北台州合肥吕梁吴忠呼和浩特和田唐山夏尔迦大连天津太原威海娄底安康宣城宿迁岳阳崇左巴中巴彦淖尔常州常德市平顶山平顶山市叶县广州广州市天河区廊坊张家口张家口市惠州成都成都市新都区扬州新乡无锡昆明曼谷杭州株洲格兰特县桂林榆林武汉沈阳洛阳济南海西淮南淮安深圳温州渭南湖州湘潭漯河潍坊玉林珠海白银石家庄福州秦皇岛红河纽约绵阳芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵港赤峰运城郑州重庆金华长沙阜阳阳泉青岛黔南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3206) PDF downloads(910) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint