WANG Yingfu, YIN Jiapeng, LU Zhonghao, et al. Analysis of the influence of distributed interrupted-sampling repeating signals on airborne interferometer parameter measurements[J]. Journal of Radars, 2024, 13(5): 1037–1048. doi: 10.12000/JR24090
Citation: SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149

Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering

DOI: 10.12000/JR23149 CSTR: 32380.14.JR23149
Funds:  The National Natural Science Foundation of China (62201594, 62231026)
More Information
  • Interrupted Sampling Repeater Jamming (ISRJ) falls within the category of intrapulse coherent deception interference. ISRJ employs the principle of undersampling to engender multiple spurious target peaks on the range profile, thereby disrupting the detection and tracking of genuine targets. To address this challenge, this study introduces a novel method grounded in the waveform domain to mitigate ISRJ before matched filtering. First, considering the partial matching attributes of ISRJ, an expanded domain, specifically the waveform domain, is incorporated into the matched filtering. This augmentation enables the investigation of local features within the interference signals and components of authentic target echo signals. Moreover, adaptive threshold functions are defined for each waveform domain. Subsequently, the introduction of the Kalman filter enables the state estimation of waveform domain signals. Additionally, valid and invalid integral elements are discriminated within the waveform domain signals via adaptive threshold detection, and a state space estimation is formulated, specifically concerning the valid integral elements. In conclusion, by suppressing the invalid integral elements within the waveform domain signals, the proposed approach simultaneously supplements the estimated state space of valid integral elements with their corresponding length components. This preservation of residual valid integral elements, coupled with integration operation, yields a range profile outcome devoid of deceptive interference artifacts. Importantly, the approach proposed herein operates independently of any prior information regarding the interference device parameters, thereby substantially reducing the effect of ISRJ. Simulation experiments illustrate that, in comparison with traditional methodologies, the method proposed in this study exhibits remarkably superior resistance against the ISRJ interference challenges.

     

  • [1]
    ROOME S J. Digital radio frequency memory[J]. Electronics & Communication Engineering Journal, 1990, 2(4): 147–153.
    [2]
    王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑 信息科学, 2006, 36(8): 891–901. doi: 10.1007/s11432-007-2017-y.

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series E: Information Sciences, 2006, 36(8): 891–901. doi: 10.1007/s11432-007-2017-y.
    [3]
    沈阳, 陈永光, 李修和, 等. 多基地雷达反隐身分布式检测融合算法研究[J]. 电子学报, 2007, 35(3): 506–510. doi: 10.3321/j.issn:0372-2112.2007.03.025

    SHEN Yang, CHEN Yongguang, LI Xiuhe, et al. Study on fusion arithmetic of multi radar distributed detection system against stealthy targets[J]. Acta Electronica Sinica, 2007, 35(3): 506–510. doi: 10.3321/j.issn:0372-2112.2007.03.025
    [4]
    徐裴为. 随队支援干扰效果分析[D]. [硕士论文], 电子科技大学, 2012.

    XU Peiwei. Analysis of the effectiveness of Escort Jamming (ESJ)[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012.
    [5]
    GONG Shixian, WEI Xizhang, and LI Xiang. ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 996–1003. doi: 10.1109/JSEE.2014.00114.
    [6]
    XIONG Wei, ZHANG Gong, and LIU Wenbo. Efficient filter design against interrupted sampling repeater jamming for wideband radar[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 9. doi: 10.1186/s13634-017-0446-3
    [7]
    YUAN Hui, WANG Chunyang, LI Xin, et al. A method against interrupted-sampling repeater jamming based on energy function detection and band-pass filtering[J]. International Journal of Antennas and Propagation, 2017, 2017: 6759169. doi: 10.1155/2017/6759169
    [8]
    CHEN Jian, WU Wenzhen, XU Shiyou, et al. A band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658
    [9]
    周畅, 汤子跃, 朱振波, 等. 抗间歇采样转发干扰的波形设计方法[J]. 电子与信息学报, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236

    ZHOU Chang, TANG Ziyue, ZHU Zhenbo, et al. Anti-interrupted sampling repeater jamming waveform design method[J]. Journal of Electronics & Information Technology, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236
    [10]
    周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06
    [11]
    周凯, 李德鑫, 粟毅, 等. 基于雷达发射波形和非匹配滤波联合设计的间歇采样转发干扰抑制方法[J]. 电子与信息学报, 2021, 43(7): 1939–1946. doi: 10.11999/JEIT200299

    ZHOU Kai, LI Dexin, SU Yi, et al. Joint transmitted waveform and mismatched filter design against interrupted-sampling repeater jamming[J]. Journal of Electronics & Information Technology, 2021, 43(7): 1939–1946. doi: 10.11999/JEIT200299
    [12]
    王福来, 庞晨, 殷加鹏, 等. 一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法[J]. 雷达学报, 2022, 11(2): 278–288. doi: 10.12000/JR22020

    WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020
    [13]
    MENG Yunyun, YU Lei, WEI Yinsheng, et al. A novel parameter estimation method of interrupted sampling repeater jamming[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–5.
    [14]
    WANG Chaoyu, WANG Xinhai, and ZHANG Jindong. A novel parameter estimation method for ISRJ[C]. The 2nd International Conference on Electronic Materials and Information Engineering, Hangzhou, China, 2022: 1–4.
    [15]
    WANG Chaoyu, HU Wanwan, GENG Zhe, et al. Parameter estimation for interrupted sampling repeater jamming based on ADMM[J]. Sensors, 2021, 21(24): 8277. doi: 10.3390/s21248277
    [16]
    WEI Zhenhua, LIU Zhen, PENG Bo, et al. ECCM Scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design[J]. Sensors, 2018, 18(4): 1141.
    [17]
    ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [18]
    CHEN Jian, XU Shiyou, ZOU Jiangwei, et al. Interrupted- sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training[J]. IEEE Access, 2019, 7: 107428–107437. doi: 10.1109/ACCESS.2019.2932793
    [19]
    WU Wenzhen, ZOU Jiangwei, CHEN Jian, et al. False-target recognition against interrupted-sampling repeater jamming based on integration decomposition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2979–2991. doi: 10.1109/TAES.2021.3068443
    [20]
    DAI Huahua, ZHAO Yingxiao, SU Hanning, et al. Research on an intra-pulse orthogonal waveform and methods resisting interrupted-sampling repeater jamming within the same frequency band[J]. Remote Sensing, 2023, 15(14): 3673. doi: 10.3390/rs15143673
    [21]
    BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5–18. doi: 10.1109/MAES.2004.1263228
  • Relative Articles

    [1]YUAN Weijie, WU Jun, SHI Yuye. Multi-UAV Collaborative Covert Communications: An ISAC-Based Approach[J]. Journal of Radars. doi: 10.12000/JR25018
    [2]REN Hang, SUN Zhichao, YANG Jianyu, WU Junjie. A Task Allocation Method for Swarm UAV SAR Based on Low Redundancy Chromosome Encoding[J]. Journal of Radars. doi: 10.12000/JR24218
    [3]LIANG Xiao, YE Shengbo, SONG Chenyang, YUAN Yubing, ZHANG Qunying, LIU Xiaojun, JIANG Hejun, LI Hong. Automatic Multitarget Detection Method Based on Distributed Through-wall Radar[J]. Journal of Radars, 2025, 14(1): 28-44. doi: 10.12000/JR24127
    [4]LI Zhi, TANG Chengyao, DAI Yongpeng, JIN Tian. Multirotor UAV-borne Vital Signs Sensing Using 4D Imaging Radar[J]. Journal of Radars, 2025, 14(1): 62-72. doi: 10.12000/JR24128
    [5]YANG Xiaopeng, GAO Weicheng, QU Xiaodong. Human Anomalous Gait Termination Recognition via Through-the-wall Radar Based on Micro-Doppler Corner Features and Non-Local Mechanism[J]. Journal of Radars, 2024, 13(1): 68-86. doi: 10.12000/JR23181
    [6]XING Mengdao, MA Penghui, LOU Yishan, SUN Guangcai, LIN Hao. Review of Fast Back Projection Algorithms in Synthetic Aperture Radar[J]. Journal of Radars, 2024, 13(1): 1-22. doi: 10.12000/JR23183
    [7]CHEN Yifan, LIU Jiangang, JIA Yong, GUO Shisheng, CUI Guolong. High-resolution Imaging Method for Through-the-wall Radar Based on Transfer Learning with Simulation Samples[J]. Journal of Radars, 2024, 13(4): 807-821. doi: 10.12000/JR24049
    [8]SHI Chenguang, WANG Yijie, DAI Xiangrong, ZHOU Jianjiang. Joint Transmit Resources and Trajectory Planning for Target Tracking in Airborne Radar Networks[J]. Journal of Radars, 2022, 11(5): 778-793. doi: 10.12000/JR22005
    [9]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [10]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [11]LI Xiaofeng, ZHANG Biao, YANG Xiaofeng. Remote Sensing of Sea Surface Wind and Wave from Spaceborne Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(3): 425-443. doi: 10.12000/JR20079
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [14]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [15]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [16]Zhang Pengfei, Li Gang, Huo Chaoying, Yin Hongcheng. Classification of Drones Based on Micro-Doppler Radar Signatures Using Dual Radar Sensors[J]. Journal of Radars, 2018, 7(5): 557-564. doi: 10.12000/JR18061
    [17]Ren Xiaozhen, Yang Ruliang. Four-dimensional SAR Imaging Algorithm Based on Iterative Reconstruction of Magnitude and Phase[J]. Journal of Radars, 2016, 5(1): 65-71. doi: 10.12000/JR15135
    [18]Bai Yang, Wu Yang, Yin Hongcheng, Que Xiaofeng. Indoor Measurement Research on Polarimetric Scattering Characteristics of UAV[J]. Journal of Radars, 2016, 5(6): 647-657. doi: 10.12000/JR16032
    [19]Wang Yanfei, Liu Chang, Zhan Xueli, Han Song. Technology and Applications of UAV Synthetic Aperture Radar System[J]. Journal of Radars, 2016, 5(4): 333-349. doi: 10.12000/JR16089
    [20]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
  • Cited by

    Periodical cited type(9)

    1. 朱梦韬,张露瑶,李瑞,杨静. 基于HMM的逆雷达辐射源状态识别推理方法. 北京理工大学学报. 2024(02): 200-209 .
    2. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    3. 付雨欣,黄洁,王建涛,党同心,李一鸣,孙震宇. 多功能相控阵雷达行为辨识综述. 电讯技术. 2024(04): 643-654 .
    4. 娄雨璇,孙闽红,尹帅. 基于近端策略优化算法和Mask-TIT网络的多功能雷达干扰决策方法. 数据采集与处理. 2024(06): 1355-1369 .
    5. 罗健,仇洪冰,周陬,顾宇,王若楠,费文浩. 基于SOM聚类平滑图信号生成的MFR工作模式识别方法. 桂林电子科技大学学报. 2023(02): 120-127 .
    6. 罗健. 一种基于图卷积网络的雷达工作模式识别方法. 成组技术与生产现代化. 2023(02): 14-19 .
    7. 廖艳苹,谢榕浩. 基于双层强化学习的多功能雷达认知干扰决策方法. 应用科技. 2023(06): 56-62 .
    8. 袁硕,拓世英,尚文秀,罗政昊,刘章孟. 电子侦察脉冲列中重频信息提取与应用综述. 信息对抗技术. 2023(06): 17-28 .
    9. 蒋能,张红敏,李一鸣. 基于分步变门限孤立森林的MFR波形单元无监督提取. 信息对抗技术. 2022(03): 76-85 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 30.7 %FULLTEXT: 30.7 %META: 52.6 %META: 52.6 %PDF: 16.7 %PDF: 16.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.4 %其他: 9.4 %其他: 1.0 %其他: 1.0 %Central District: 0.1 %Central District: 0.1 %China: 0.2 %China: 0.2 %Ecole-Valentin: 0.2 %Ecole-Valentin: 0.2 %Falls Church: 0.3 %Falls Church: 0.3 %Herndon: 0.1 %Herndon: 0.1 %Russian Federation: 0.1 %Russian Federation: 0.1 %上海: 3.0 %上海: 3.0 %东莞: 0.1 %东莞: 0.1 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.3 %佛山: 0.3 %六安: 0.1 %六安: 0.1 %兰州: 0.2 %兰州: 0.2 %内江: 0.1 %内江: 0.1 %列克星敦: 0.1 %列克星敦: 0.1 %加利福尼亚州: 0.4 %加利福尼亚州: 0.4 %北京: 18.2 %北京: 18.2 %十堰: 0.2 %十堰: 0.2 %南京: 3.9 %南京: 3.9 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %南通: 0.1 %南通: 0.1 %印多尔: 0.1 %印多尔: 0.1 %厦门: 0.3 %厦门: 0.3 %双鸭山: 0.1 %双鸭山: 0.1 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 0.9 %合肥: 0.9 %吉安: 0.1 %吉安: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.2 %哥伦布: 0.2 %嘉兴: 0.8 %嘉兴: 0.8 %圣克拉拉: 0.1 %圣克拉拉: 0.1 %圣安东尼奥: 0.1 %圣安东尼奥: 0.1 %大理: 0.3 %大理: 0.3 %大连: 0.2 %大连: 0.2 %大阪: 0.1 %大阪: 0.1 %天津: 0.6 %天津: 0.6 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %宁波: 0.1 %宁波: 0.1 %安康: 0.3 %安康: 0.3 %安顺: 0.1 %安顺: 0.1 %宜春: 0.1 %宜春: 0.1 %宣城: 0.3 %宣城: 0.3 %宿州: 0.1 %宿州: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.1 %常德: 0.1 %广安: 0.1 %广安: 0.1 %广州: 1.2 %广州: 1.2 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.1 %延安: 0.1 %开封: 0.8 %开封: 0.8 %张家口: 1.0 %张家口: 1.0 %张家界: 0.2 %张家界: 0.2 %德里: 0.1 %德里: 0.1 %德黑兰: 0.1 %德黑兰: 0.1 %慕尼黑: 0.1 %慕尼黑: 0.1 %成都: 2.9 %成都: 2.9 %扬州: 0.4 %扬州: 0.4 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新余: 0.1 %新余: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 1.9 %昆明: 1.9 %朝阳: 0.2 %朝阳: 0.2 %本溪: 0.1 %本溪: 0.1 %杭州: 2.2 %杭州: 2.2 %格林维尔: 0.1 %格林维尔: 0.1 %武汉: 0.6 %武汉: 0.6 %永州: 0.1 %永州: 0.1 %汕头: 0.4 %汕头: 0.4 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %沧州: 0.1 %沧州: 0.1 %河源: 0.2 %河源: 0.2 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.2 %海口: 0.2 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.2 %深圳: 2.2 %温州: 0.5 %温州: 0.5 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.1 %烟台: 0.1 %珠海: 0.4 %珠海: 0.4 %白城: 0.1 %白城: 0.1 %百色: 0.2 %百色: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %纽约: 0.6 %纽约: 0.6 %绵阳: 1.4 %绵阳: 1.4 %罗马: 0.2 %罗马: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.3 %莫斯科: 0.3 %营口: 0.1 %营口: 0.1 %衡水: 0.5 %衡水: 0.5 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 3.2 %西宁: 3.2 %西安: 3.8 %西安: 3.8 %诺沃克: 5.5 %诺沃克: 5.5 %贵阳: 0.3 %贵阳: 0.3 %赣州: 0.1 %赣州: 0.1 %运城: 0.3 %运城: 0.3 %通辽: 0.1 %通辽: 0.1 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.2 %邯郸: 0.2 %邵阳: 0.2 %邵阳: 0.2 %郑州: 0.3 %郑州: 0.3 %重庆: 1.1 %重庆: 1.1 %金昌: 0.1 %金昌: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 2.2 %长沙: 2.2 %阜新: 0.1 %阜新: 0.1 %阿什本: 0.2 %阿什本: 0.2 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %陇南: 0.1 %陇南: 0.1 %陵水: 0.1 %陵水: 0.1 %青岛: 0.8 %青岛: 0.8 %首尔特别: 0.2 %首尔特别: 0.2 %香港: 0.2 %香港: 0.2 %马尔默: 0.1 %马尔默: 0.1 %马尼拉: 0.2 %马尼拉: 0.2 %驻马店: 0.1 %驻马店: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.5 %齐齐哈尔: 0.5 %其他其他Central DistrictChinaEcole-ValentinFalls ChurchHerndonRussian Federation上海东莞伦敦佛山六安兰州内江列克星敦加利福尼亚州北京十堰南京南宁南昌南通印多尔厦门双鸭山台北台州合肥吉安呼和浩特哈尔滨哥伦布嘉兴圣克拉拉圣安东尼奥大理大连大阪天津太原威海宁波安康安顺宜春宣城宿州常州常德广安广州库比蒂诺延安开封张家口张家界德里德黑兰慕尼黑成都扬州揭阳新乡新余无锡昆明朝阳本溪杭州格林维尔武汉永州汕头江门沈阳沧州河源洛杉矶洛阳济南海口淄博淮南深圳温州湖州湘潭漯河潍坊烟台珠海白城百色石家庄福州纽约绵阳罗马芒廷维尤芝加哥苏州莫斯科营口衡水衡阳衢州襄阳西宁西安诺沃克贵阳赣州运城通辽遵义邯郸邵阳郑州重庆金昌长春长沙阜新阿什本阿姆斯特丹陇南陵水青岛首尔特别香港马尔默马尼拉驻马店黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1141) PDF downloads(293) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint