Citation: | LAN Xiaoyu, HU Jiyan, LIANG Mingshen, et al. Sparse DOA estimation method based on Riemann averaging under strong intermittent jamming[J]. Journal of Radars, 2025, 14(2): 280–292. doi: 10.12000/JR24175 |
[1] |
MERKOFER J P, REVACH G, SHLEZINGER N, et al. DA-MUSIC: Data-driven DOA estimation via deep augmented MUSIC algorithm[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2771–2785. doi: 10.1109/TVT.2023.3320360.
|
[2] |
MAO Zihuan, LIU Shengheng, ZHANG Y D, et al. Joint DoA-range estimation using space-frequency virtual difference coarray[J]. IEEE Transactions on Signal Processing, 2022, 70: 2576–2592. doi: 10.1109/TSP.2022.3173150.
|
[3] |
CHEN Feng, YANG Desen, and MO Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi: 10.1109/TIM.2022.3232095.
|
[4] |
OSMAN A, MOUSSA M M E, TAMAZIN M, et al. DOA elevation and azimuth angles estimation of GPS jamming signals using fast orthogonal search[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3812–3821. doi: 10.1109/TAES.2020.2988424.
|
[5] |
MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
|
[6] |
PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
|
[7] |
周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068.
ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068.
|
[8] |
QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
|
[9] |
陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110.
CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110.
|
[10] |
陈辉, 苏海军. 强干扰/信号背景下的DOA估计新方法[J]. 电子学报, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.
CHEN Hui and SU Haijun. A new approach to estimate DOA in presence of strong jamming/signal suppression[J]. Acta Electronica Sinica, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.
|
[11] |
张静, 廖桂生, 张洁. 强信号背景下基于噪声子空间扩充的弱信号DOA估计方法[J]. 系统工程与电子技术, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.
ZHANG Jing, LIAO Guisheng, and ZHANG Jie. DOA estimation based on extended noise subspace in the presence of strong signals[J]. Systems Engineering and Electronics, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.
|
[12] |
LIN Bin, HU Guoping, ZHOU Hao, et al. Coherent signal DOA estimation for MIMO radar under composite background of strong interference and non-uniform noise[J]. Sensors, 2022, 22(24): 9833. doi: 10.3390/s22249833.
|
[13] |
夏楠, 马昕昕, 王思琦. 强干扰下基于三阶互累积量的FMCW雷达信号DOA估计算法[J]. 电子学报, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.
XIA Nan, MA Xinxin, and WANG Siqi. FMCW radar signal DOA estimation method based on the third-order cross cumulant under high interference[J]. Acta Electronica Sinica, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.
|
[14] |
FANG Qingyuan, JIN Mengzhe, LIU Weidong, et al. DOA estimation for sources with large power differences[J]. International Journal of Antennas and Propagation, 2021, 2021: 8862789. doi: 10.1155/2021/8862789.
|
[15] |
STOICA P, BABU P, and LI Jian. SPICE: A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629–638. doi: 10.1109/TSP.2010.2090525.
|
[16] |
张赫, 陈华伟. 一种强干扰环境下的离格稀疏贝叶斯DOA估计方法[J]. 数据采集与处理, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.
ZHANG He and CHEN Huawei. Off-grid sparse Bayesian DOA estimation method in strong interference environment[J]. Journal of Data Acquisition & Processing, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.
|
[17] |
GENG Jiwen, YU Ze, and LI Chunsheng. Synthetic aperture radar increment imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013705. doi: 10.1109/LGRS.2021.3076451.
|
[18] |
ZUO Ming and XIE Shuguo. A novel DOA estimation method for an antenna array under strong interference[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 111. doi: 10.1186/s13634-022-00930-y.
|
[19] |
LI Chenmu, LIANG Guolong, QIU Longhao, et al. An efficient sparse method for direction-of-arrival estimation in the presence of strong interference[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1257–1271. doi: 10.1121/10.0017256.
|
[20] |
BESSON O, STOICA P, and KAMIYA Y. Direction finding in the presence of an intermittent interference[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1554–1564. doi: 10.1109/TSP.2002.1011196.
|
[21] |
王解, 刘文祥, 陈飞强, 等. 分布式间歇干扰下基于SMI的GNSS空时自适应处理器性能分析[J]. 国防科技大学学报, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.
WANG Jie, LIU Wenxiang, CHEN Feiqiang, et al. Performance analysis of SMI based GNSS space-time adaptive processing under distributed intermittent interferences[J]. Journal of National University of Defense Technology, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.
|
[22] |
AKDEMIR Ş B and CANDAN Ç. Maximum-likelihood direction of arrival estimation under intermittent jamming[J]. Digital Signal Processing, 2021, 113: 103028. doi: 10.1016/j.dsp.2021.103028.
|
[23] |
BAR A and TALMON R. On interference-rejection using riemannian geometry for direction of arrival estimation[J]. IEEE Transactions on Signal Processing, 2024, 72: 260–274. doi: 10.1109/TSP.2023.3322779.
|
[24] |
HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means[J]. Linear Algebra and its Applications, 2009, 430(11/12): 3105–3130. doi: 10.1016/j.laa.2009.01.025.
|
[25] |
BARACHANT A, BONNET S, CONGEDO M, et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications[J]. Neurocomputing, 2013, 112: 172–178. doi: 10.1016/j.neucom.2012.12.039.
|
[26] |
LI Yongtao, GU Xianming, and ZHAO Jianxing. The weighted arithmetic mean–geometric mean inequality is equivalent to the hölder inequality[J]. Symmetry, 2018, 10(9): 380. doi: 10.3390/sym10090380.
|
[27] |
LIM Y and PÁLFIA M. Matrix power means and the Karcher mean[J]. Journal of Functional Analysis, 2012, 262(4): 1498–1514. doi: 10.1016/j.jfa.2011.11.012.
|
[28] |
YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792.
|
[29] |
CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663.
|
[30] |
DONG Feibiao, JIANG Ye, LIU Jian, et al. Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number[J]. Applied Acoustics, 2022, 186: 108502. doi: 10.1016/j.apacoust.2021.108502.
|
[31] |
LIU Lutao, XIAO Yue, and WU Yanan. An iterative Lq-norm based optimization algorithm for generalized SPICE[J]. Digital Signal Processing, 2022, 123: 103389. doi: 10.1016/j.dsp.2022.103389.
|
[32] |
孙兵, 阮怀林, 吴晨曦, 等. 幅度相位误差条件下的互质阵列DOA估计方法[J]. 系统工程与电子技术, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.
SUN Bing, RUAN Huailin, WU Chenxi, et al. DOA estimation method for coprime array under gain and phase error[J]. Systems Engineering and Electronics, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.
|
1. | 齐欣,张云,刘子滔,马欣悦,姜义成. 星载高分宽幅Staggered SAR成像技术研究进展. 现代雷达. 2025(02): 1-20 . ![]() | |
2. | 蔡昇阳,张永红,康永辉,吴宏安,魏钜杰. 陆探一号卫星定位精度与辐射质量分析. 测绘科学. 2024(02): 165-174 . ![]() | |
3. | 邰文飞,陈绪慧,张新胜,蔡明勇,任致华,王丽霞,史雪威. 高分三号卫星影像在地表变化检测中的应用试验. 航天返回与遥感. 2024(03): 41-50 . ![]() | |
4. | 闫莉,许高添,张廷豪. 基于改进混合坐标系的大斜视俯冲机动平台SAR快速时域成像算法. 电子学报. 2024(10): 3472-3481 . ![]() | |
5. | 赵烜靖,陈晔,莫亚军. 一种弹载SAR图像目标定位方法. 舰船电子对抗. 2024(06): 6-10 . ![]() | |
6. | 朱林红,钟若飞,王亚,李清扬. 提高海丝一号SAR影像定位精度的图像配准方法. 测绘通报. 2023(05): 62-66 . ![]() | |
7. | 张文强,张波,刘荣,陈卫荣. 一种高分三号SAR影像五参数变换模型几何精校正方法. 科学技术与工程. 2023(20): 8726-8734 . ![]() | |
8. | 李欣,蒋博洋,汪韬阳,张过,崔浩,程前. 面向高分三号全球正射影像生成的无控定位精度提升方法. 测绘学报. 2023(11): 1929-1940 . ![]() | |
9. | 仇晓兰,胡玉新,上官松涛,付琨. 遥感卫星大数据高精度一体化处理技术. 大数据. 2022(02): 15-27 . ![]() | |
10. | 高敬坤,汪志龙,程家胜,丛琳,范炜康,胡振龙. 天绘二号双星方位向天线方向图在轨测量关键技术. 测绘学报. 2022(12): 2470-2480 . ![]() | |
11. | 邵芸,宫华泽,田维,张庆君,王国军,卞小林,张婷婷,张风丽,李坤,刘致曲,倪崇. 微波目标散射特性全要素测量试验. 遥感学报. 2021(01): 323-331 . ![]() | |
12. | 付琨,孙显,仇晓兰,刁文辉,闫志远,黄丽佳,于泓峰. 遥感大数据条件下多星一体化处理与分析. 遥感学报. 2021(03): 691-707 . ![]() | |
13. | Zhirong MEN,Pengbo WANG,Jie CHEN,Chunsheng LI,Wei LIU,Wei YANG. Advanced high-order nonlinear chirp scaling algorithm for high-resolution wide-swath spaceborne SAR. Chinese Journal of Aeronautics. 2021(02): 563-575 . ![]() | |
14. | 杨涛,赵启钊,孙光才,李光伟,费晓燕,杨军,刘会涛. 基于多处理板联合SAR成像的分布式计算模拟系统研究. 海洋科学. 2021(05): 54-61 . ![]() | |
15. | 李丹,刘佳音. 不同时空条件下的高分三号SAR图像立体定位方法. 中国科学院大学学报. 2021(04): 519-523 . ![]() | |
16. | 王雪松,王占领,庞晨,李永祯. 极化相控阵雷达技术研究综述. 雷达科学与技术. 2021(04): 349-370 . ![]() | |
17. | 王景旭,邱士可,王正,王超,杜军. 基于GF-3号遥感影像水体信息提取的郑州市洪涝灾害监测. 河南科学. 2021(10): 1701-1706 . ![]() | |
18. | 张艳梅,蒙印,黄国满,王萍,杨书成,张荞. 高分三号数据在地形图测制中的应用研究. 地理空间信息. 2020(01): 20-24+40+8 . ![]() | |
19. | 李佳慧,王晓晨. 高分三号全极化SAR散射特性分析与精度评价. 中国激光. 2020(03): 275-282 . ![]() | |
20. | 丁刘建,陶秋香,李涛,陈乾福,陈洋. 高分三号SAR影像广域范围联合几何检校技术. 测绘学报. 2020(05): 598-610 . ![]() | |
21. | 王皎. 一种同侧多角度SAR图像匹配方法. 测绘科学. 2020(08): 90-95 . ![]() | |
22. | 陈洁好,张云华,董晓. 天宫二号三维成像微波高度计大气斜距时延校正. 遥感学报. 2020(09): 1059-1069 . ![]() | |
23. | 孙威,薛莉,黄晨,于喜庆,吴文堂,王鲲鹏. 高精度空间碎片激光测距卫星星座. 航天返回与遥感. 2020(05): 29-37 . ![]() | |
24. | 潘志刚,王超,曹舸. 基于距离方程组的机载SAR图像立体定位方法. 中国科学院大学学报. 2020(06): 798-804 . ![]() | |
25. | 丁苑,郝明磊,行鸿彦,曾祥能. GF-3交叉极化数据的海面风速反演研究. 计算机工程. 2020(11): 286-292+300 . ![]() | |
26. | 蒋莎,仇晓兰,韩冰,胡文龙,卢晓军. 一种基于普通分布目标的极化SAR幅相不平衡快速评价方法. 中国科学院大学学报. 2019(02): 280-288 . ![]() | |
27. | 唐德可,王峰,王宏琦. 基于马尔科夫分割的单极化SAR数据洪涝水体检测方法. 电子与信息学报. 2019(03): 619-625 . ![]() | |
28. | 余博,李如仁,陈振炜,张过. “高分三号”卫星图像干涉测量试验. 航天返回与遥感. 2019(01): 66-73 . ![]() | |
29. | 吴元. 一种基于参数更新的机载SAR图像目标定位方法. 电子与信息学报. 2019(05): 1063-1068 . ![]() | |
30. | 高晗,汪长城,杨敏华,胡灿程,罗兴军. 基于高分三号极化SAR数据的农作物散射特性分析及分类. 测绘工程. 2019(03): 50-56 . ![]() | |
31. | 余博,李如仁,陈振炜,张过. 基于高分三号数据的干涉测量研究. 测绘工程. 2019(04): 19-23+28 . ![]() | |
32. | 张金松,邢孟道,孙光才. 一种基于密集深度分离卷积的SAR图像水域分割算法. 雷达学报. 2019(03): 400-412 . ![]() | |
33. | 范军,李涛,左小清,陈乾福,张祥,禄競. 利用参数独立分解的星载SAR干涉测量检校方法. 测绘学报. 2019(06): 737-746 . ![]() | |
34. | 范明虎,赵建辉,田军锋,左宪禹,李宁. 星载SAR图像几何校正影响要素分析. 雷达科学与技术. 2019(03): 246-250+256 . ![]() | |
35. | 陈世阳,黄丽佳,俞雷. 基于改进sinc插值的变PRF采样聚束SAR成像. 雷达学报. 2019(04): 527-536 . ![]() | |
36. | 李春升,于泽,陈杰. 高分辨率星载SAR成像与图像质量提升方法综述. 雷达学报. 2019(06): 717-731 . ![]() | |
37. | 邢孟道,林浩,陈溅来,孙光才,严棒棒. 多平台合成孔径雷达成像算法综述. 雷达学报. 2019(06): 732-757 . ![]() | |
38. | 吕冠南,唐新明,艾波,李涛,陈乾福. 稀少控制的多平台星载SAR联合几何定标方法. 测绘学报. 2018(07): 986-995 . ![]() | |
39. | 李亮,洪峻,陈琦,王爱春,王宇,明峰,朱勇涛. 基于极化有源定标器的高分三号SAR在轨测试分析. 电子学报. 2018(09): 2157-2164 . ![]() | |
40. | 韩凯莉,焦健,曾琪明. 稀疏轨道条件下SAR几何校正轨道拟合策略. 遥感信息. 2018(06): 32-38 . ![]() | |
41. | 刘付刚,张洪全,常俊鑫,江晓林,董军. 基于D-InSAR的矿区地面沉降监测. 黑龙江科技大学学报. 2017(03): 265-269 . ![]() | |
42. | 赵良波,李延,张庆君,刘杰,袁新哲,陈琦. 高分三号卫星图像质量指标设计与验证. 航天器工程. 2017(06): 18-23 . ![]() | |
43. | 范剑超,王德毅,赵建华,宋德瑞,韩敏,姜大伟. 高分三号SAR影像在国家海域使用动态监测中的应用. 雷达学报. 2017(05): 456-472 . ![]() | |
44. | 刘泽宇,柳彬,郭炜炜,张增辉,张波,周月恒,马高,郁文贤. 高分三号NSC模式SAR图像舰船目标检测初探. 雷达学报. 2017(05): 473-482 . ![]() |