| Citation: | LAN Xiaoyu, HU Jiyan, LIANG Mingshen, et al. Sparse DOA estimation method based on Riemann averaging under strong intermittent jamming[J]. Journal of Radars, 2025, 14(2): 280–292. doi: 10.12000/JR24175 | 
	                | [1] | 
					 MERKOFER J P, REVACH G, SHLEZINGER N, et al. DA-MUSIC: Data-driven DOA estimation via deep augmented MUSIC algorithm[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2771–2785. doi:  10.1109/TVT.2023.3320360. 
						
					 | 
			
| [2] | 
					 MAO Zihuan, LIU Shengheng, ZHANG Y D, et al. Joint DoA-range estimation using space-frequency virtual difference coarray[J]. IEEE Transactions on Signal Processing, 2022, 70: 2576–2592. doi:  10.1109/TSP.2022.3173150. 
						
					 | 
			
| [3] | 
					 CHEN Feng, YANG Desen, and MO Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi:  10.1109/TIM.2022.3232095. 
						
					 | 
			
| [4] | 
					 OSMAN A, MOUSSA M M E, TAMAZIN M, et al. DOA elevation and azimuth angles estimation of GPS jamming signals using fast orthogonal search[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3812–3821. doi:  10.1109/TAES.2020.2988424. 
						
					 | 
			
| [5] | 
					 MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi:  10.1109/TAP.1968.1139138. 
						
					 | 
			
| [6] | 
					 PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi:  10.1109/TSP.2010.2049264. 
						
					 | 
			
| [7] | 
					 周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi:  10.12000/JR19068. 
					ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi:  10.12000/JR19068. 
						
					 | 
			
| [8] | 
					 QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi:  10.1109/TSP.2015.2393838. 
						
					 | 
			
| [9] | 
					 陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi:  10.12000/JR16110. 
					CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi:  10.12000/JR16110. 
						
					 | 
			
| [10] | 
					 陈辉, 苏海军. 强干扰/信号背景下的DOA估计新方法[J]. 电子学报, 2006, 34(3): 530–534. doi:  10.3321/j.issn:0372-2112.2006.03.033. 
					CHEN Hui and SU Haijun. A new approach to estimate DOA in presence of strong jamming/signal suppression[J]. Acta Electronica Sinica, 2006, 34(3): 530–534. doi:  10.3321/j.issn:0372-2112.2006.03.033. 
						
					 | 
			
| [11] | 
					 张静, 廖桂生, 张洁. 强信号背景下基于噪声子空间扩充的弱信号DOA估计方法[J]. 系统工程与电子技术, 2009, 31(6): 1279–1283. doi:  10.3321/j.issn:1001-506X.2009.06.003. 
					ZHANG Jing, LIAO Guisheng, and ZHANG Jie. DOA estimation based on extended noise subspace in the presence of strong signals[J]. Systems Engineering and Electronics, 2009, 31(6): 1279–1283. doi:  10.3321/j.issn:1001-506X.2009.06.003. 
						
					 | 
			
| [12] | 
					 LIN Bin, HU Guoping, ZHOU Hao, et al. Coherent signal DOA estimation for MIMO radar under composite background of strong interference and non-uniform noise[J]. Sensors, 2022, 22(24): 9833. doi:  10.3390/s22249833. 
						
					 | 
			
| [13] | 
					 夏楠, 马昕昕, 王思琦. 强干扰下基于三阶互累积量的FMCW雷达信号DOA估计算法[J]. 电子学报, 2024, 52(2): 510–517. doi:  10.12263/DZXB.20230258. 
					XIA Nan, MA Xinxin, and WANG Siqi. FMCW radar signal DOA estimation method based on the third-order cross cumulant under high interference[J]. Acta Electronica Sinica, 2024, 52(2): 510–517. doi:  10.12263/DZXB.20230258. 
						
					 | 
			
| [14] | 
					 FANG Qingyuan, JIN Mengzhe, LIU Weidong, et al. DOA estimation for sources with large power differences[J]. International Journal of Antennas and Propagation, 2021, 2021: 8862789. doi:  10.1155/2021/8862789. 
						
					 | 
			
| [15] | 
					 STOICA P, BABU P, and LI Jian. SPICE: A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629–638. doi:  10.1109/TSP.2010.2090525. 
						
					 | 
			
| [16] | 
					 张赫, 陈华伟. 一种强干扰环境下的离格稀疏贝叶斯DOA估计方法[J]. 数据采集与处理, 2019, 34(6): 1019–1029. doi:  10.16337/j.1004-9037.2019.06.008. 
					ZHANG He and CHEN Huawei. Off-grid sparse Bayesian DOA estimation method in strong interference environment[J]. Journal of Data Acquisition & Processing, 2019, 34(6): 1019–1029. doi:  10.16337/j.1004-9037.2019.06.008. 
						
					 | 
			
| [17] | 
					 GENG Jiwen, YU Ze, and LI Chunsheng. Synthetic aperture radar increment imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013705. doi:  10.1109/LGRS.2021.3076451. 
						
					 | 
			
| [18] | 
					 ZUO Ming and XIE Shuguo. A novel DOA estimation method for an antenna array under strong interference[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 111. doi:  10.1186/s13634-022-00930-y. 
						
					 | 
			
| [19] | 
					 LI Chenmu, LIANG Guolong, QIU Longhao, et al. An efficient sparse method for direction-of-arrival estimation in the presence of strong interference[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1257–1271. doi:  10.1121/10.0017256. 
						
					 | 
			
| [20] | 
					 BESSON O, STOICA P, and KAMIYA Y. Direction finding in the presence of an intermittent interference[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1554–1564. doi:  10.1109/TSP.2002.1011196. 
						
					 | 
			
| [21] | 
					 王解, 刘文祥, 陈飞强, 等. 分布式间歇干扰下基于SMI的GNSS空时自适应处理器性能分析[J]. 国防科技大学学报, 2023, 45(6): 90–99. doi:  10.11887/j.cn.202306013. 
					WANG Jie, LIU Wenxiang, CHEN Feiqiang, et al. Performance analysis of SMI based GNSS space-time adaptive processing under distributed intermittent interferences[J]. Journal of National University of Defense Technology, 2023, 45(6): 90–99. doi:  10.11887/j.cn.202306013. 
						
					 | 
			
| [22] | 
					 AKDEMIR Ş B and CANDAN Ç. Maximum-likelihood direction of arrival estimation under intermittent jamming[J]. Digital Signal Processing, 2021, 113: 103028. doi:  10.1016/j.dsp.2021.103028. 
						
					 | 
			
| [23] | 
					 BAR A and TALMON R. On interference-rejection using riemannian geometry for direction of arrival estimation[J]. IEEE Transactions on Signal Processing, 2024, 72: 260–274. doi:  10.1109/TSP.2023.3322779. 
						
					 | 
			
| [24] | 
					 HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means[J]. Linear Algebra and its Applications, 2009, 430(11/12): 3105–3130. doi:  10.1016/j.laa.2009.01.025. 
						
					 | 
			
| [25] | 
					 BARACHANT A, BONNET S, CONGEDO M, et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications[J]. Neurocomputing, 2013, 112: 172–178. doi:  10.1016/j.neucom.2012.12.039. 
						
					 | 
			
| [26] | 
					 LI Yongtao, GU Xianming, and ZHAO Jianxing. The weighted arithmetic mean–geometric mean inequality is equivalent to the hölder inequality[J]. Symmetry, 2018, 10(9): 380. doi:  10.3390/sym10090380. 
						
					 | 
			
| [27] | 
					 LIM Y and PÁLFIA M. Matrix power means and the Karcher mean[J]. Journal of Functional Analysis, 2012, 262(4): 1498–1514. doi:  10.1016/j.jfa.2011.11.012. 
						
					 | 
			
| [28] | 
					 YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi:  10.1109/TSP.2014.2339792. 
						
					 | 
			
| [29] | 
					 CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi:  10.1109/TSP.2018.2881663. 
						
					 | 
			
| [30] | 
					 DONG Feibiao, JIANG Ye, LIU Jian, et al. Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number[J]. Applied Acoustics, 2022, 186: 108502. doi:  10.1016/j.apacoust.2021.108502. 
						
					 | 
			
| [31] | 
					 LIU Lutao, XIAO Yue, and WU Yanan. An iterative Lq-norm based optimization algorithm for generalized SPICE[J]. Digital Signal Processing, 2022, 123: 103389. doi:  10.1016/j.dsp.2022.103389. 
						
					 | 
			
| [32] | 
					 孙兵, 阮怀林, 吴晨曦, 等. 幅度相位误差条件下的互质阵列DOA估计方法[J]. 系统工程与电子技术, 2021, 43(12): 3488–3494. doi:  10.12305/j.issn.1001-506X.2021.12.09. 
					SUN Bing, RUAN Huailin, WU Chenxi, et al. DOA estimation method for coprime array under gain and phase error[J]. Systems Engineering and Electronics, 2021, 43(12): 3488–3494. doi:  10.12305/j.issn.1001-506X.2021.12.09. 
						
					 |