WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, 2025, 14(2): 293–308. doi: 10.12000/JR24239
Citation: LAN Xiaoyu, HU Jiyan, LIANG Mingshen, et al. Sparse DOA estimation method based on Riemann averaging under strong intermittent jamming[J]. Journal of Radars, 2025, 14(2): 280–292. doi: 10.12000/JR24175

Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming

DOI: 10.12000/JR24175 CSTR: 32380.14.JR24175
Funds:  National Science Foundation for Young Scientists of China (61801308), Aeronautical Science Foundation (2020Z017054001), General Program of the Education Department of Liaoning Province (LJKMZ20220535), Natural Science Foundation of Liaoning Province of China (2024-MS-135)
More Information
  • Corresponding author: HU Jiyan, 1534018950@qq.com
  • Received Date: 2024-08-31
  • Rev Recd Date: 2024-11-08
  • Available Online: 2024-11-14
  • Publish Date: 2024-12-11
  • Aiming to address the problem of increased radar jamming in complex electromagnetic environments and the difficulty of accurately estimating the target signal close to a strong jamming signal, this paper proposes a sparse Direction of Arrival (DOA) estimation method based on Riemann averaging under strong intermittent jamming. First, under the extended coprime array data model, the Riemann averaging is introduced to suppress the jamming signal by leveraging the property that the target signal is continuously active while the strong jamming signal is intermittently active. Then, the covariance matrix of the processed data is vectorized to obtain virtual array reception data. Finally, the sparse iterative covariance-based estimation method, which is used for estimating the DOA under strong intermittent interference, is employed in the virtual domain to reconstruct the sparse signal and estimate the DOA of the target signal. The simulation results show that the method can provide highly accurate DOA estimation for weak target signals whose angles are closely adjacent to strong interference signals when the number of signal sources is unknown. Compared with existing subspace algorithms and sparse reconstruction class algorithms, the proposed algorithm has higher estimation accuracy and angular resolution at a smaller number of snapshots, as well as a lower signal-to-noise ratio.

     

  • [1]
    MERKOFER J P, REVACH G, SHLEZINGER N, et al. DA-MUSIC: Data-driven DOA estimation via deep augmented MUSIC algorithm[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2771–2785. doi: 10.1109/TVT.2023.3320360.
    [2]
    MAO Zihuan, LIU Shengheng, ZHANG Y D, et al. Joint DoA-range estimation using space-frequency virtual difference coarray[J]. IEEE Transactions on Signal Processing, 2022, 70: 2576–2592. doi: 10.1109/TSP.2022.3173150.
    [3]
    CHEN Feng, YANG Desen, and MO Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi: 10.1109/TIM.2022.3232095.
    [4]
    OSMAN A, MOUSSA M M E, TAMAZIN M, et al. DOA elevation and azimuth angles estimation of GPS jamming signals using fast orthogonal search[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3812–3821. doi: 10.1109/TAES.2020.2988424.
    [5]
    MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
    [6]
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
    [7]
    周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068.

    ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068.
    [8]
    QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
    [9]
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110.

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110.
    [10]
    陈辉, 苏海军. 强干扰/信号背景下的DOA估计新方法[J]. 电子学报, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.

    CHEN Hui and SU Haijun. A new approach to estimate DOA in presence of strong jamming/signal suppression[J]. Acta Electronica Sinica, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.
    [11]
    张静, 廖桂生, 张洁. 强信号背景下基于噪声子空间扩充的弱信号DOA估计方法[J]. 系统工程与电子技术, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.

    ZHANG Jing, LIAO Guisheng, and ZHANG Jie. DOA estimation based on extended noise subspace in the presence of strong signals[J]. Systems Engineering and Electronics, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.
    [12]
    LIN Bin, HU Guoping, ZHOU Hao, et al. Coherent signal DOA estimation for MIMO radar under composite background of strong interference and non-uniform noise[J]. Sensors, 2022, 22(24): 9833. doi: 10.3390/s22249833.
    [13]
    夏楠, 马昕昕, 王思琦. 强干扰下基于三阶互累积量的FMCW雷达信号DOA估计算法[J]. 电子学报, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.

    XIA Nan, MA Xinxin, and WANG Siqi. FMCW radar signal DOA estimation method based on the third-order cross cumulant under high interference[J]. Acta Electronica Sinica, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.
    [14]
    FANG Qingyuan, JIN Mengzhe, LIU Weidong, et al. DOA estimation for sources with large power differences[J]. International Journal of Antennas and Propagation, 2021, 2021: 8862789. doi: 10.1155/2021/8862789.
    [15]
    STOICA P, BABU P, and LI Jian. SPICE: A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629–638. doi: 10.1109/TSP.2010.2090525.
    [16]
    张赫, 陈华伟. 一种强干扰环境下的离格稀疏贝叶斯DOA估计方法[J]. 数据采集与处理, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.

    ZHANG He and CHEN Huawei. Off-grid sparse Bayesian DOA estimation method in strong interference environment[J]. Journal of Data Acquisition & Processing, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.
    [17]
    GENG Jiwen, YU Ze, and LI Chunsheng. Synthetic aperture radar increment imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013705. doi: 10.1109/LGRS.2021.3076451.
    [18]
    ZUO Ming and XIE Shuguo. A novel DOA estimation method for an antenna array under strong interference[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 111. doi: 10.1186/s13634-022-00930-y.
    [19]
    LI Chenmu, LIANG Guolong, QIU Longhao, et al. An efficient sparse method for direction-of-arrival estimation in the presence of strong interference[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1257–1271. doi: 10.1121/10.0017256.
    [20]
    BESSON O, STOICA P, and KAMIYA Y. Direction finding in the presence of an intermittent interference[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1554–1564. doi: 10.1109/TSP.2002.1011196.
    [21]
    王解, 刘文祥, 陈飞强, 等. 分布式间歇干扰下基于SMI的GNSS空时自适应处理器性能分析[J]. 国防科技大学学报, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.

    WANG Jie, LIU Wenxiang, CHEN Feiqiang, et al. Performance analysis of SMI based GNSS space-time adaptive processing under distributed intermittent interferences[J]. Journal of National University of Defense Technology, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.
    [22]
    AKDEMIR Ş B and CANDAN Ç. Maximum-likelihood direction of arrival estimation under intermittent jamming[J]. Digital Signal Processing, 2021, 113: 103028. doi: 10.1016/j.dsp.2021.103028.
    [23]
    BAR A and TALMON R. On interference-rejection using riemannian geometry for direction of arrival estimation[J]. IEEE Transactions on Signal Processing, 2024, 72: 260–274. doi: 10.1109/TSP.2023.3322779.
    [24]
    HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means[J]. Linear Algebra and its Applications, 2009, 430(11/12): 3105–3130. doi: 10.1016/j.laa.2009.01.025.
    [25]
    BARACHANT A, BONNET S, CONGEDO M, et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications[J]. Neurocomputing, 2013, 112: 172–178. doi: 10.1016/j.neucom.2012.12.039.
    [26]
    LI Yongtao, GU Xianming, and ZHAO Jianxing. The weighted arithmetic mean–geometric mean inequality is equivalent to the hölder inequality[J]. Symmetry, 2018, 10(9): 380. doi: 10.3390/sym10090380.
    [27]
    LIM Y and PÁLFIA M. Matrix power means and the Karcher mean[J]. Journal of Functional Analysis, 2012, 262(4): 1498–1514. doi: 10.1016/j.jfa.2011.11.012.
    [28]
    YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792.
    [29]
    CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663.
    [30]
    DONG Feibiao, JIANG Ye, LIU Jian, et al. Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number[J]. Applied Acoustics, 2022, 186: 108502. doi: 10.1016/j.apacoust.2021.108502.
    [31]
    LIU Lutao, XIAO Yue, and WU Yanan. An iterative Lq-norm based optimization algorithm for generalized SPICE[J]. Digital Signal Processing, 2022, 123: 103389. doi: 10.1016/j.dsp.2022.103389.
    [32]
    孙兵, 阮怀林, 吴晨曦, 等. 幅度相位误差条件下的互质阵列DOA估计方法[J]. 系统工程与电子技术, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.

    SUN Bing, RUAN Huailin, WU Chenxi, et al. DOA estimation method for coprime array under gain and phase error[J]. Systems Engineering and Electronics, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.
  • Relative Articles

    [1]LI Miaoge, CHEN Bo, WANG Dongsheng, LIU Hongwei. CNN Model Visualization Method for SAR Image Target Classification[J]. Journal of Radars, 2024, 13(2): 359-373. doi: 10.12000/JR23107
    [2]CHEN Jian, DU Lan, LIAO Leiyao. Survey of Radar HRRP Target Recognition Based on Parametric Statistical Model[J]. Journal of Radars, 2022, 11(6): 1020-1047. doi: 10.12000/JR22127
    [3]CHEN Siwei, CUI Xingchao, LI Mingdian, TAO Chensong, LI Haoliang. SAR Image Active Jamming Type Recognition Based on Deep CNN Model[J]. Journal of Radars, 2022, 11(5): 897-908. doi: 10.12000/JR22143
    [4]ZHANG Xu, XU Feng, JIN Yaqiu. Review of High-frequency Scattering Model of Canonical Geometric Primitives[J]. Journal of Radars, 2022, 11(1): 126-143. doi: 10.12000/JR21163
    [5]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [6]YAN Hua, ZHANG Lei, LU Jinwen, XING Xiaoyu, LI Sheng, YIN Hongcheng. Frequency-dependent Factor Expression of the GTD Scattering Center Model for the Arbitrary Multiple Scattering Mechanism[J]. Journal of Radars, 2021, 10(3): 370-381. doi: 10.12000/JR21005
    [7]HAN Zhaorong, HUANG Tinglei, REN Wenjuan, XU Guangluan. Trajectory Outlier Detection Algorithm Based on Bi-LSTM Model[J]. Journal of Radars, 2019, 8(1): 36-43. doi: 10.12000/JR18039
    [8]YAN Hua, CHEN Yong, LI Sheng, HU Liping, LI Huanmin, YIN Hongcheng. A Fast Algorithm for Establishing 3-D Scattering Center Model for Ship Targets over Sea Surface Using the Shooting and Bouncing Ray Technique[J]. Journal of Radars, 2019, 8(1): 107-117. doi: 10.12000/JR18078
    [9]Zhao Hua, Guo Lixin. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range[J]. Journal of Radars, 2018, 7(1): 91-96. doi: 10.12000/JR17091
    [10]Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094
    [11]Chen Gang, Dang Hongxing, Tan Xiaomin, Chen Hui, Cui Tiejun. Scattering Properties of Electromagnetic Waves from Randomly Oriented Rough Metal Plate in the Lower Terahertz Region[J]. Journal of Radars, 2018, 7(1): 75-82. doi: 10.12000/JR17093
    [12]Gao Jingkun, Deng Bin, Qin Yuliang, Wang Hongqiang, Li Xiang. Radar Echo Scattering Modeling and Image Simulations of Full-scale Convex Rough Targets at Terahertz Frequencies[J]. Journal of Radars, 2018, 7(1): 97-107. doi: 10.12000/JR17086
    [13]Wen Gongjian, Zhu Guoqiang, Yin Hongcheng, Xing Mengdao, Yang Hu, Ma Conghui, Yan Hua, Ding Baiyuan, Zhong Jinrong. SAR ATR Based on 3D Parametric Electromagnetic Scattering Model[J]. Journal of Radars, 2017, 6(2): 115-135. doi: 10.12000/JR17034
    [14]Hu Xikun, Jin Tian. Adaptive Wavelet Scale Selection-based Method for Separating Respiration and Heartbeat in Bio-radars[J]. Journal of Radars, 2016, 5(5): 462-469. doi: 10.12000/JR16103
    [15]Wei Yi-wen, Guo Li-xin, Yin Hong-cheng. Analysis of the Scattering Characteristics of Sea Surface with the Influence from Internal Wave[J]. Journal of Radars, 2015, 4(3): 326-333. doi: 10.12000/JR15060
    [16]Qin Yao, Huang Chun-lin, Lu Min, Xu Wei. Adaptive clutter reduction based on wavelet transform and principal component analysis for ground penetrating radar[J]. Journal of Radars, 2015, 4(4): 445-451. doi: 10.12000/JR15013
    [17]Zhou Yu, Wang Hai-peng, Chen Si-zhe. SAR Automatic Target Recognition Based on Numerical Scattering Simulation and Model-based Matching[J]. Journal of Radars, 2015, 4(6): 666-673. doi: 10.12000/JR15080
    [18]Liu Xiao-ming, Wen Gong-jian, Zhong Jin-rong. Methods for Parametrically Reconstructing Position of 3D Scattering Center Model of Targets from SAR Images[J]. Journal of Radars, 2013, 2(2): 187-194. doi: 10.3724/SP.J.1300.2013.20080
    [19]Ding Bai-yuan, Zhong Jin-rong, Ma Cong-hui, Wen Gong-jian. SAR Target Reconstruction Visualization Enhancement Based on Attributed Scattering Center Model[J]. Journal of Radars, 2013, 2(4): 499-506. doi: 10.3724/SP.J.1300.2013.13071
    [20]Zhu Ying, Zhang Gong, Zhang Jin-dong. Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing[J]. Journal of Radars, 2012, 1(2): 143-148. doi: 10.3724/SP.J.1300.2012.20016
  • Cited by

    Periodical cited type(44)

    1. 齐欣,张云,刘子滔,马欣悦,姜义成. 星载高分宽幅Staggered SAR成像技术研究进展. 现代雷达. 2025(02): 1-20 .
    2. 蔡昇阳,张永红,康永辉,吴宏安,魏钜杰. 陆探一号卫星定位精度与辐射质量分析. 测绘科学. 2024(02): 165-174 .
    3. 邰文飞,陈绪慧,张新胜,蔡明勇,任致华,王丽霞,史雪威. 高分三号卫星影像在地表变化检测中的应用试验. 航天返回与遥感. 2024(03): 41-50 .
    4. 闫莉,许高添,张廷豪. 基于改进混合坐标系的大斜视俯冲机动平台SAR快速时域成像算法. 电子学报. 2024(10): 3472-3481 .
    5. 赵烜靖,陈晔,莫亚军. 一种弹载SAR图像目标定位方法. 舰船电子对抗. 2024(06): 6-10 .
    6. 朱林红,钟若飞,王亚,李清扬. 提高海丝一号SAR影像定位精度的图像配准方法. 测绘通报. 2023(05): 62-66 .
    7. 张文强,张波,刘荣,陈卫荣. 一种高分三号SAR影像五参数变换模型几何精校正方法. 科学技术与工程. 2023(20): 8726-8734 .
    8. 李欣,蒋博洋,汪韬阳,张过,崔浩,程前. 面向高分三号全球正射影像生成的无控定位精度提升方法. 测绘学报. 2023(11): 1929-1940 .
    9. 仇晓兰,胡玉新,上官松涛,付琨. 遥感卫星大数据高精度一体化处理技术. 大数据. 2022(02): 15-27 .
    10. 高敬坤,汪志龙,程家胜,丛琳,范炜康,胡振龙. 天绘二号双星方位向天线方向图在轨测量关键技术. 测绘学报. 2022(12): 2470-2480 .
    11. 邵芸,宫华泽,田维,张庆君,王国军,卞小林,张婷婷,张风丽,李坤,刘致曲,倪崇. 微波目标散射特性全要素测量试验. 遥感学报. 2021(01): 323-331 .
    12. 付琨,孙显,仇晓兰,刁文辉,闫志远,黄丽佳,于泓峰. 遥感大数据条件下多星一体化处理与分析. 遥感学报. 2021(03): 691-707 .
    13. Zhirong MEN,Pengbo WANG,Jie CHEN,Chunsheng LI,Wei LIU,Wei YANG. Advanced high-order nonlinear chirp scaling algorithm for high-resolution wide-swath spaceborne SAR. Chinese Journal of Aeronautics. 2021(02): 563-575 .
    14. 杨涛,赵启钊,孙光才,李光伟,费晓燕,杨军,刘会涛. 基于多处理板联合SAR成像的分布式计算模拟系统研究. 海洋科学. 2021(05): 54-61 .
    15. 李丹,刘佳音. 不同时空条件下的高分三号SAR图像立体定位方法. 中国科学院大学学报. 2021(04): 519-523 .
    16. 王雪松,王占领,庞晨,李永祯. 极化相控阵雷达技术研究综述. 雷达科学与技术. 2021(04): 349-370 .
    17. 王景旭,邱士可,王正,王超,杜军. 基于GF-3号遥感影像水体信息提取的郑州市洪涝灾害监测. 河南科学. 2021(10): 1701-1706 .
    18. 张艳梅,蒙印,黄国满,王萍,杨书成,张荞. 高分三号数据在地形图测制中的应用研究. 地理空间信息. 2020(01): 20-24+40+8 .
    19. 李佳慧,王晓晨. 高分三号全极化SAR散射特性分析与精度评价. 中国激光. 2020(03): 275-282 .
    20. 丁刘建,陶秋香,李涛,陈乾福,陈洋. 高分三号SAR影像广域范围联合几何检校技术. 测绘学报. 2020(05): 598-610 .
    21. 王皎. 一种同侧多角度SAR图像匹配方法. 测绘科学. 2020(08): 90-95 .
    22. 陈洁好,张云华,董晓. 天宫二号三维成像微波高度计大气斜距时延校正. 遥感学报. 2020(09): 1059-1069 .
    23. 孙威,薛莉,黄晨,于喜庆,吴文堂,王鲲鹏. 高精度空间碎片激光测距卫星星座. 航天返回与遥感. 2020(05): 29-37 .
    24. 潘志刚,王超,曹舸. 基于距离方程组的机载SAR图像立体定位方法. 中国科学院大学学报. 2020(06): 798-804 .
    25. 丁苑,郝明磊,行鸿彦,曾祥能. GF-3交叉极化数据的海面风速反演研究. 计算机工程. 2020(11): 286-292+300 .
    26. 蒋莎,仇晓兰,韩冰,胡文龙,卢晓军. 一种基于普通分布目标的极化SAR幅相不平衡快速评价方法. 中国科学院大学学报. 2019(02): 280-288 .
    27. 唐德可,王峰,王宏琦. 基于马尔科夫分割的单极化SAR数据洪涝水体检测方法. 电子与信息学报. 2019(03): 619-625 .
    28. 余博,李如仁,陈振炜,张过. “高分三号”卫星图像干涉测量试验. 航天返回与遥感. 2019(01): 66-73 .
    29. 吴元. 一种基于参数更新的机载SAR图像目标定位方法. 电子与信息学报. 2019(05): 1063-1068 .
    30. 高晗,汪长城,杨敏华,胡灿程,罗兴军. 基于高分三号极化SAR数据的农作物散射特性分析及分类. 测绘工程. 2019(03): 50-56 .
    31. 余博,李如仁,陈振炜,张过. 基于高分三号数据的干涉测量研究. 测绘工程. 2019(04): 19-23+28 .
    32. 张金松,邢孟道,孙光才. 一种基于密集深度分离卷积的SAR图像水域分割算法. 雷达学报. 2019(03): 400-412 . 本站查看
    33. 范军,李涛,左小清,陈乾福,张祥,禄競. 利用参数独立分解的星载SAR干涉测量检校方法. 测绘学报. 2019(06): 737-746 .
    34. 范明虎,赵建辉,田军锋,左宪禹,李宁. 星载SAR图像几何校正影响要素分析. 雷达科学与技术. 2019(03): 246-250+256 .
    35. 陈世阳,黄丽佳,俞雷. 基于改进sinc插值的变PRF采样聚束SAR成像. 雷达学报. 2019(04): 527-536 . 本站查看
    36. 李春升,于泽,陈杰. 高分辨率星载SAR成像与图像质量提升方法综述. 雷达学报. 2019(06): 717-731 . 本站查看
    37. 邢孟道,林浩,陈溅来,孙光才,严棒棒. 多平台合成孔径雷达成像算法综述. 雷达学报. 2019(06): 732-757 . 本站查看
    38. 吕冠南,唐新明,艾波,李涛,陈乾福. 稀少控制的多平台星载SAR联合几何定标方法. 测绘学报. 2018(07): 986-995 .
    39. 李亮,洪峻,陈琦,王爱春,王宇,明峰,朱勇涛. 基于极化有源定标器的高分三号SAR在轨测试分析. 电子学报. 2018(09): 2157-2164 .
    40. 韩凯莉,焦健,曾琪明. 稀疏轨道条件下SAR几何校正轨道拟合策略. 遥感信息. 2018(06): 32-38 .
    41. 刘付刚,张洪全,常俊鑫,江晓林,董军. 基于D-InSAR的矿区地面沉降监测. 黑龙江科技大学学报. 2017(03): 265-269 .
    42. 赵良波,李延,张庆君,刘杰,袁新哲,陈琦. 高分三号卫星图像质量指标设计与验证. 航天器工程. 2017(06): 18-23 .
    43. 范剑超,王德毅,赵建华,宋德瑞,韩敏,姜大伟. 高分三号SAR影像在国家海域使用动态监测中的应用. 雷达学报. 2017(05): 456-472 . 本站查看
    44. 刘泽宇,柳彬,郭炜炜,张增辉,张波,周月恒,马高,郁文贤. 高分三号NSC模式SAR图像舰船目标检测初探. 雷达学报. 2017(05): 473-482 . 本站查看

    Other cited types(53)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.4 %FULLTEXT: 16.4 %META: 74.6 %META: 74.6 %PDF: 9.0 %PDF: 9.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.5 %其他: 16.5 %其他: 0.3 %其他: 0.3 %China: 0.4 %China: 0.4 %India: 0.1 %India: 0.1 %[]: 0.2 %[]: 0.2 %上海: 0.2 %上海: 0.2 %东莞: 0.0 %东莞: 0.0 %中卫: 0.0 %中卫: 0.0 %丽水: 0.0 %丽水: 0.0 %伦敦: 0.1 %伦敦: 0.1 %佛山: 0.1 %佛山: 0.1 %元朗新墟: 0.1 %元朗新墟: 0.1 %凤凰城: 0.0 %凤凰城: 0.0 %包头: 0.0 %包头: 0.0 %北京: 8.2 %北京: 8.2 %南京: 0.6 %南京: 0.6 %南宁: 0.0 %南宁: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.2 %台州: 0.2 %台湾省: 0.0 %台湾省: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.0 %哈尔滨: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.1 %商丘: 0.1 %天津: 0.3 %天津: 0.3 %宜昌: 0.0 %宜昌: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宿迁: 0.2 %宿迁: 0.2 %巴中: 0.0 %巴中: 0.0 %常州: 0.1 %常州: 0.1 %广元: 0.0 %广元: 0.0 %广州: 0.2 %广州: 0.2 %弗吉: 0.0 %弗吉: 0.0 %张家口: 1.0 %张家口: 1.0 %成都: 0.2 %成都: 0.2 %扬州: 0.2 %扬州: 0.2 %抚顺: 0.0 %抚顺: 0.0 %新乡: 0.5 %新乡: 0.5 %日照: 0.0 %日照: 0.0 %昆明: 0.2 %昆明: 0.2 %杭州: 0.8 %杭州: 0.8 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.0 %沈阳: 0.0 %济南: 0.1 %济南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.2 %深圳: 0.2 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.3 %漯河: 0.3 %漳州: 0.0 %漳州: 0.0 %濮阳: 0.3 %濮阳: 0.3 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %石家庄: 0.1 %石家庄: 0.1 %石家庄市: 0.1 %石家庄市: 0.1 %纽约: 0.1 %纽约: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %芒廷维尤: 14.1 %芒廷维尤: 14.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.1 %苏州: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %衡水: 0.0 %衡水: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 48.3 %西宁: 48.3 %西安: 0.3 %西安: 0.3 %贵港: 0.1 %贵港: 0.1 %辽源: 0.0 %辽源: 0.0 %运城: 0.1 %运城: 0.1 %连云港: 0.1 %连云港: 0.1 %郑州: 1.6 %郑州: 1.6 %金华: 0.0 %金华: 0.0 %银川: 0.1 %银川: 0.1 %长春: 0.0 %长春: 0.0 %长沙: 0.1 %长沙: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.0 %香港: 0.0 %其他其他ChinaIndia[]上海东莞中卫丽水伦敦佛山元朗新墟凤凰城包头北京南京南宁台北台州台湾省呼和浩特哈尔滨哥伦布商丘天津宜昌宝鸡宿迁巴中常州广元广州弗吉张家口成都扬州抚顺新乡日照昆明杭州武汉沈阳济南淮安深圳温州渭南湖州湘潭漯河漳州濮阳焦作玉林珠海石家庄石家庄市纽约美国伊利诺斯芝加哥芒廷维尤芝加哥苏州莫斯科衡水衢州西宁西安贵港辽源运城连云港郑州金华银川长春长沙青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(248) PDF downloads(47) Cited by(97)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint