Turn off MathJax
Article Contents
LAN Xiaoyu, HU Jiyan, LIANG Mingshen, et al. Sparse DOA estimation method based on Riemann averaging under strong intermittent jamming[J]. Journal of Radars, in press. doi: 10.12000/JR24175
Citation: LAN Xiaoyu, HU Jiyan, LIANG Mingshen, et al. Sparse DOA estimation method based on Riemann averaging under strong intermittent jamming[J]. Journal of Radars, in press. doi: 10.12000/JR24175

Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming

DOI: 10.12000/JR24175
Funds:  National Science Foundation for Young Scientists of China (61801308), Aeronautical Science Foundation (2020Z017054001), General Program of the Education Department of Liaoning Province (LJKMZ20220535), Natural Science Foundation of Liaoning Province of China (2024-MS-135)
More Information
  • Corresponding author: HU Jiyan, 1534018950@qq.com
  • Received Date: 2024-08-31
  • Rev Recd Date: 2024-11-08
  • Available Online: 2024-11-14
  • Aiming to address the problem of increased radar jamming in complex electromagnetic environments and the difficulty of accurately estimating the target signal close to a strong jamming signal, this paper proposes a sparse Direction of Arrival (DOA) estimation method based on Riemann averaging under strong intermittent jamming. First, under the extended coprime array data model, the Riemann averaging is introduced to suppress the jamming signal by leveraging the property that the target signal is continuously active while the strong jamming signal is intermittently active. Then, the covariance matrix of the processed data is vectorized to obtain virtual array reception data. Finally, the sparse iterative covariance-based estimation method, which is used for estimating the DOA under strong intermittent interference, is employed in the virtual domain to reconstruct the sparse signal and estimate the DOA of the target signal. The simulation results show that the method can provide highly accurate DOA estimation for weak target signals whose angles are closely adjacent to strong interference signals when the number of signal sources is unknown. Compared with existing subspace algorithms and sparse reconstruction class algorithms, the proposed algorithm has higher estimation accuracy and angular resolution at a smaller number of snapshots, as well as a lower signal-to-noise ratio.

     

  • loading
  • [1]
    MERKOFER J P, REVACH G, SHLEZINGER N, et al. DA-MUSIC: Data-driven DOA estimation via deep augmented MUSIC algorithm[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2771–2785. doi: 10.1109/TVT.2023.3320360.
    [2]
    MAO Zihuan, LIU Shengheng, ZHANG Y D, et al. Joint DoA-range estimation using space-frequency virtual difference coarray[J]. IEEE Transactions on Signal Processing, 2022, 70: 2576–2592. doi: 10.1109/TSP.2022.3173150.
    [3]
    CHEN Feng, YANG Desen, and MO Shiqi. A DOA estimation algorithm based on eigenvalues ranking problem[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9501315. doi: 10.1109/TIM.2022.3232095.
    [4]
    OSMAN A, MOUSSA M M E, TAMAZIN M, et al. DOA elevation and azimuth angles estimation of GPS jamming signals using fast orthogonal search[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3812–3821. doi: 10.1109/TAES.2020.2988424.
    [5]
    MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172–175. doi: 10.1109/TAP.1968.1139138.
    [6]
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264.
    [7]
    周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068.

    ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068.
    [8]
    QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838.
    [9]
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110.

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110.
    [10]
    陈辉, 苏海军. 强干扰/信号背景下的DOA估计新方法[J]. 电子学报, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.

    CHEN Hui and SU Haijun. A new approach to estimate DOA in presence of strong jamming/signal suppression[J]. Acta Electronica Sinica, 2006, 34(3): 530–534. doi: 10.3321/j.issn:0372-2112.2006.03.033.
    [11]
    张静, 廖桂生, 张洁. 强信号背景下基于噪声子空间扩充的弱信号DOA估计方法[J]. 系统工程与电子技术, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.

    ZHANG Jing, LIAO Guisheng, and ZHANG Jie. DOA estimation based on extended noise subspace in the presence of strong signals[J]. Systems Engineering and Electronics, 2009, 31(6): 1279–1283. doi: 10.3321/j.issn:1001-506X.2009.06.003.
    [12]
    LIN Bin, HU Guoping, ZHOU Hao, et al. Coherent signal DOA estimation for MIMO radar under composite background of strong interference and non-uniform noise[J]. Sensors, 2022, 22(24): 9833. doi: 10.3390/s22249833.
    [13]
    夏楠, 马昕昕, 王思琦. 强干扰下基于三阶互累积量的FMCW雷达信号DOA估计算法[J]. 电子学报, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.

    XIA Nan, MA Xinxin, and WANG Siqi. FMCW radar signal DOA estimation method based on the third-order cross cumulant under high interference[J]. Acta Electronica Sinica, 2024, 52(2): 510–517. doi: 10.12263/DZXB.20230258.
    [14]
    FANG Qingyuan, JIN Mengzhe, LIU Weidong, et al. DOA estimation for sources with large power differences[J]. International Journal of Antennas and Propagation, 2021, 2021: 8862789. doi: 10.1155/2021/8862789.
    [15]
    STOICA P, BABU P, and LI Jian. SPICE: A sparse covariance-based estimation method for array processing[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629–638. doi: 10.1109/TSP.2010.2090525.
    [16]
    张赫, 陈华伟. 一种强干扰环境下的离格稀疏贝叶斯DOA估计方法[J]. 数据采集与处理, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.

    ZHANG He and CHEN Huawei. Off-grid sparse Bayesian DOA estimation method in strong interference environment[J]. Journal of Data Acquisition & Processing, 2019, 34(6): 1019–1029. doi: 10.16337/j.1004-9037.2019.06.008.
    [17]
    GENG Jiwen, YU Ze, and LI Chunsheng. Synthetic aperture radar increment imaging based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013705. doi: 10.1109/LGRS.2021.3076451.
    [18]
    ZUO Ming and XIE Shuguo. A novel DOA estimation method for an antenna array under strong interference[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 111. doi: 10.1186/s13634-022-00930-y.
    [19]
    LI Chenmu, LIANG Guolong, QIU Longhao, et al. An efficient sparse method for direction-of-arrival estimation in the presence of strong interference[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 1257–1271. doi: 10.1121/10.0017256.
    [20]
    BESSON O, STOICA P, and KAMIYA Y. Direction finding in the presence of an intermittent interference[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1554–1564. doi: 10.1109/TSP.2002.1011196.
    [21]
    王解, 刘文祥, 陈飞强, 等. 分布式间歇干扰下基于SMI的GNSS空时自适应处理器性能分析[J]. 国防科技大学学报, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.

    WANG Jie, LIU Wenxiang, CHEN Feiqiang, et al. Performance analysis of SMI based GNSS space-time adaptive processing under distributed intermittent interferences[J]. Journal of National University of Defense Technology, 2023, 45(6): 90–99. doi: 10.11887/j.cn.202306013.
    [22]
    AKDEMIR Ş B and CANDAN Ç. Maximum-likelihood direction of arrival estimation under intermittent jamming[J]. Digital Signal Processing, 2021, 113: 103028. doi: 10.1016/j.dsp.2021.103028.
    [23]
    BAR A and TALMON R. On interference-rejection using riemannian geometry for direction of arrival estimation[J]. IEEE Transactions on Signal Processing, 2024, 72: 260–274. doi: 10.1109/TSP.2023.3322779.
    [24]
    HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means[J]. Linear Algebra and its Applications, 2009, 430(11/12): 3105–3130. doi: 10.1016/j.laa.2009.01.025.
    [25]
    BARACHANT A, BONNET S, CONGEDO M, et al. Classification of covariance matrices using a Riemannian-based kernel for BCI applications[J]. Neurocomputing, 2013, 112: 172–178. doi: 10.1016/j.neucom.2012.12.039.
    [26]
    LI Yongtao, GU Xianming, and ZHAO Jianxing. The weighted arithmetic mean–geometric mean inequality is equivalent to the hölder inequality[J]. Symmetry, 2018, 10(9): 380. doi: 10.3390/sym10090380.
    [27]
    LIM Y and PÁLFIA M. Matrix power means and the Karcher mean[J]. Journal of Functional Analysis, 2012, 262(4): 1498–1514. doi: 10.1016/j.jfa.2011.11.012.
    [28]
    YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792.
    [29]
    CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663.
    [30]
    DONG Feibiao, JIANG Ye, LIU Jian, et al. Experimental study on the performance of DOA estimation algorithm using a coprime acoustic sensor array without a priori knowledge of the source number[J]. Applied Acoustics, 2022, 186: 108502. doi: 10.1016/j.apacoust.2021.108502.
    [31]
    LIU Lutao, XIAO Yue, and WU Yanan. An iterative Lq-norm based optimization algorithm for generalized SPICE[J]. Digital Signal Processing, 2022, 123: 103389. doi: 10.1016/j.dsp.2022.103389.
    [32]
    孙兵, 阮怀林, 吴晨曦, 等. 幅度相位误差条件下的互质阵列DOA估计方法[J]. 系统工程与电子技术, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.

    SUN Bing, RUAN Huailin, WU Chenxi, et al. DOA estimation method for coprime array under gain and phase error[J]. Systems Engineering and Electronics, 2021, 43(12): 3488–3494. doi: 10.12305/j.issn.1001-506X.2021.12.09.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(97) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint