Volume 1 Issue 2
Jun.  2012
Turn off MathJax
Article Contents
Zhu Ying, Zhang Gong, Zhang Jin-dong. Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing[J]. Journal of Radars, 2012, 1(2): 143-148. doi: 10.3724/SP.J.1300.2012.20016
Citation: Zhu Ying, Zhang Gong, Zhang Jin-dong. Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing[J]. Journal of Radars, 2012, 1(2): 143-148. doi: 10.3724/SP.J.1300.2012.20016

Signal Model and Parameters Estimation of Statistical MIMO Radar Based on Distributed Compressed Sensing

doi: 10.3724/SP.J.1300.2012.20016
  • Received Date: 2012-03-28
  • Rev Recd Date: 2012-05-31
  • Publish Date: 2012-04-28
  • Distributed Compressed Sensing (DCS) extends compressive sampling from single signal to multi-signal ensembles. It also enables joint recovery that exploits both intra- and inter-signal correlation structures. Statistical MIMO radar systems that are made up of widely separated transmit/receive antennas form distributed detection systems for targets among transmitters, targets and receivers. In this paper, DCS is applied to statistical MIMO radars, and through the analysis of sparisty of the delays of target echo signals in the range space, the idea is proposed to construct target scene by joining all received signals. It also establishes the joint sparsity model of received signals, and gives joint reconstruction algorithms that can estimate target parameters. Simulation results show that, compared with the algorithm based on CS, the one based on DCS increases the parameter estimation accuracy while offering a reduction in the number of measurements. It is also validated that DCS -MIMO radars can effectively overcome target RCS fluctuations.

     

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3338) PDF downloads(2664) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint