Volume 7 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
Zhao Hua, Guo Lixin. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range[J]. Journal of Radars, 2018, 7(1): 91-96. doi: 10.12000/JR17091
Citation: Zhao Hua, Guo Lixin. Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range[J]. Journal of Radars, 2018, 7(1): 91-96. doi: 10.12000/JR17091

Electromagnetic Scattering Characteristics of Fractal Rough Coated Objects in the Terahertz Range

doi: 10.12000/JR17091
Funds:  The National Natural Science Fundation of China (61231003, 61401344)
  • Received Date: 2017-10-26
  • Rev Recd Date: 2017-12-29
  • Available Online: 2018-01-17
  • Publish Date: 2018-02-28
  • Based on the physical optics method, the scattering characteristics of fractal rough surface coated objects are studied in the terahertz (THz) range herein. A blunt model based on fractal rough surfaces is built. The surface current is calculated according to the Fresnel reflection coefficient, and the Radar Cross Section (RCS) of the rough coated target is obtained. The RCS of rough and smooth surface targets are compared. Numerical results for a rough coated blunt cone model are provided, and discussed from the perspective of different frequencies and coating thickness values. The results show that the surface roughness of the target has a significant effect on scattering in the terahertz range.

     

  • loading
  • [1]
    Episkopou E, Papantonis S, Otter W J, et al. Defining material parameters in commercial EM solvers for arbitrary metal-based THz structures[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(5): 513–524. DOI: 10.1109/TTHZ.2012.2208456
    [2]
    Kirley M P and Booske J H. Terahertz conductivity of copper surfaces[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(6): 1012–1020. DOI: 10.1109/TTHZ.2015.2468074
    [3]
    Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [4]
    Danylov A A, Goyette T M, Waldman J, et al. Terahertz inverse synthetic aperture radar (ISAR) imaging with a quantum cascade laser transmitter[J]. Optics Express, 2010, 18(15): 16264–16272. DOI: 10.1364/OE.18.016264
    [5]
    Younus A, Desbarats P, Bosio S, et al. Terahertz dielectric characterisation of photopolymer resin used for fabrication of 3D THz imaging phantoms[J]. Electronics Letters, 2009, 45(13): 702–703. DOI: 10.1049/el.2009.0688
    [6]
    张存林, 牧凯军. 太赫兹波谱与成像[J]. 激光与光电子学进展, 2010, 47(2): 023001

    Zhang Cun-lin and Mu Kai-jun. Terahertz spectroscopy and imaging[J]. Laser&Optoelectronics Progress, 2010, 47(2): 023001
    [7]
    杨洋, 姚建铨, 张镜水, 等. 粗糙铜表面对低频太赫兹波的散射实验[J]. 红外与毫米波学报, 2013, 32(1): 36–39, 79. DOI: 10.3724/SP.J.1010.2013.00036

    Yang Yang, Yao Jian-quan, Zhang Jing-shui, et al. Terahertz scattering on rough copper surface[J]. Journal of Infrared and Millimeter Waves, 2013, 32(1): 36–39, 79. DOI: 10.3724/SP.J.1010.2013.00036
    [8]
    杨洋, 景磊. 金属介电常数对雷达目标散射截面的影响[J]. 激光与红外, 2013, 43(2): 155–158. DOI: 10.3969/j.issn.1001-5078.2013.02.008

    Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser&Infrared, 2013, 43(2): 155–158. DOI: 10.3969/j.issn.1001-5078.2013.02.008
    [9]
    程志华, 谢拥军, 马晓东, 等. 介质目标的太赫兹波近场散射特性计算[J]. 电子与信息学报, 2015, 37(4): 1002–1007. DOI: 10.11999/JEIT140807

    Cheng Zhi-hua, Xie Yong-jun, Ma Xiao-dong, et al. Near-field electromagnetic scattering characteristics of dielectric targets in the terahertz regime[J]. Journal of Electronics&Information Technology, 2015, 37(4): 1002–1007. DOI: 10.11999/JEIT140807
    [10]
    江月松, 聂梦瑶, 张崇辉, 等. 粗糙表面涂覆目标的太赫兹波散射特性研究[J]. 物理学报, 2015, 64(2): 94–100. DOI: 10.7498/aps.64.024101

    Jiang Yue-song, Nie Meng-yao, Zhang Chong-hui, et al. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica, 2015, 64(2): 94–100. DOI: 10.7498/aps.64.024101
    [11]
    Mandelbrot B B. The Fractal Geometry of Nature[M]. New York: Macmillan, 1983.
    [12]
    Michopoulos J G, Young M, and Iliopoulos A. A multiphysics theory for the static contact of deformable conductors with fractal rough surfaces[J]. IEEE Transactions on Plasma Science, 2015, 43(5): 1597–1610. DOI: 10.1109/TPS.2015.2416980
    [13]
    Iodice A, Natale A, and Riccio D. Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 2156–2163. DOI: 10.1109/TAP.2012.2236531
    [14]
    李昌泽, 童创明, 王童, 等. 不稳定表面粗糙目标的太赫兹波段散射特性分析[J]. 强激光与粒子束, 2016, 28(4): 043101. DOI: 10.11972/j.issn.1001-9014.2016.02.020

    Li Chang-ze, Tong Chuang-ming, Wang Tong, et al. Analysis of teraherta wave scattering characteristics of unstable rough surface target[J]. High Power Laser and Particle Beams, 2016, 28(4): 043101. DOI: 10.11972/j.issn.1001-9014.2016.02.020
    [15]
    Yin H C, Huang P K, Liu X G, et al. PO solution for scattering by the complex object coated with anisotropic materials[J]. Journal of Systems Engineering and Electronics, 2003, 14(2): 1–7.
    [16]
    Li X, Xie Y, and Yang R. High-frequency method for scattering from coated targets with electrically large size in half space[J]. IET Microwaves,Antennas&Propagation, 2009, 3(2): 181–186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2370) PDF downloads(431) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint