XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094

The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets

DOI: 10.12000/JR17094
Funds:  The National Natural Science Fundation of China (61571355)
  • Received Date: 2017-10-30
  • Rev Recd Date: 2017-12-13
  • Available Online: 2018-01-09
  • Publish Date: 2018-02-28
  • The terahertz scattering characteristics of metallic and dielectric rough targets is important for the investigation of the terahertz radar targets properties. According to the stationary phase theory and scalar approximation, if the radius of curvature at any point of the surface is much larger than the incident wavelength, and the wavelength is also much longer than the surface height function and Root-Mean-Square (RMS) surface slope, the coherent and incoherent scattering Radar Cross Section (RCS) of rough metallic and dielectric targets can be obtained. Based on the stationary phase approximation, the coherent RCS of rough conductors, smooth dielectric targets and rough dielectric targets can be easily deputed. The scattering characteristics of electrically large smooth Al and painted spheres are investigated in this paper, and the calculated RCS are verified by Mie scattering theory, the error is less than 0.1 dBm2. Based on lambert theory, it is demonstrated that the incoherent RCS is analyzed with better precision if the rough surfaces are divided into much more facets. In this paper, the coherent and incoherent scattering of rough Al and painted spheres are numerically observed, and the effects of surface roughness and materials are analyzed. The conclusions provide theoretical foundation for the terahertz scattering characteristics of electrically large rough targets.

     

  • [1]
    Lee Y S. Principles of Terahertz Science and Technology[M]. New York: Springer, 2009: 1–9.
    [2]
    Piesiewicz R, Jansen C, Mittleman D, et al. Scattering analysis for the modeling of THz communication systems[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3002–3009. DOI: 10.1109/TAP.2007.908559
    [3]
    Fletcher J R, Swift G P, Dai D C, et al.. Scattering in THz imaging[C]. Proceedings of the SPIE 5989, Technologies for Optical Countermeasures II; Femtosecond Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II, Bruges, Belgium, 2005, 5989: 598912. DOI: 10.1117/ 12.638007.
    [4]
    Duvillaret L, Garet F, and Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739–746. DOI: 10.1109/2944.571775
    [5]
    Nagashima T and Hangyo M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24): 3917–3919. DOI: 10.1063/1.1426258
    [6]
    苏杰, 孙诚, 王晓秋. 一个适用于数值计算的金属色散模型分析研究[J]. 光电子·激光, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011

    Su Jie, Sun Cheng, and Wang Xiao-qiu. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011
    [7]
    Ordal M A, Bell R J, Alexander R W, et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J].Applied Optics, 1988, 27(6): 1203–1209. DOI: 10.1364/AO.27.001203
    [8]
    华厚强, 江月松, 苏林, 等. 自由空间复杂导体目标的太赫兹RCS高频分析方法[J]. 红外与激光工程, 2014, 43(3): 687–693

    Hua Hou-qiang, Jiang Yue-song, Su Lin, et al. High-frequency analysis on THz RCS of complex conductive targets in free space[J]. Infrared and Laser Engineering, 2014, 43(3): 687–693
    [9]
    Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [10]
    王瑞君, 邓彬, 王宏强, 等. 太赫兹与远红外频段下铝质目标电磁特性与计算[J]. 物理学报, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102

    Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region[J]. Acta Physica Sinica, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102
    [11]
    Jansen C, Priebe S, Möller C, et al. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462–472. DOI: 10.1109/TTHZ.2011.2153610
    [12]
    Nam K M, Zurk L M, and Schecklman S. Modeling terahertz diffuse scattering from granular media using radiative transfer theory[J]. Progress in Electromagnetics Research B, 2012, 38: 205–223. DOI: 10.2528/PIERB11102304
    [13]
    Sundberg G, Zurk L M, Schecklman S, et al. Modeling rough-surface and granular scattering at terahertz frequencies using the Finite-Difference time-domain method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3709–3719. DOI: 10.1109/TGRS.2010.2048717
    [14]
    Jansen C, Krumbholz N, Geise R, et al.. Scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz[C]. Proceedings of the 3rd European Conference on Antennas and Propagation, Berlin, 2009: 3645–3648.
    [15]
    聂雪莹, 项飞荻, 黄欣, 等. 金属平板的太赫兹雷达散射截面测量[J]. 激光技术, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012

    Nie Xue-ying, Xiang Fei-di, Huang Xin, et al. Measurement of terahertz radar cross sections of metal plates[J]. Laser Technology, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012
    [16]
    杨洋, 刘兵, 张镜水, 等. 粗糙金属表面的高频太赫兹散射特性[J]. 激光与红外, 2014, 44(8): 922–926

    Yang Yang, Liu Bing, Zhang Jing-shui, et al. Influence of rough metal surface on the scattering properties of terahertz frequency[J]. Laser&Infrared, 2014, 44(8): 922–926
    [17]
    杨洋, 景磊. 金属介电常数对雷达目标散射截面的影响[J]. 激光与红外, 2013, 43(2): 155–158

    Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser&Infrared, 2013, 43(2): 155–158
    [18]
    Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing: Active and Passive. Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood: Artech House, Inc., 1982: 304–307.
    [19]
    Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537–549. DOI: 10.1007/BF01010711
  • Relative Articles

    [1]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [2]LAN Xiaoyu, HU Jiyan, LIANG Mingshen, MA Shuang. Sparse DOA Estimation Method Based on Riemann Averaging under Strong Intermittent Jamming[J]. Journal of Radars, 2025, 14(2): 280-292. doi: 10.12000/JR24175
    [3]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [4]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [5]ZHAO Kaifa, SONG Hu, LIU Rong, WANG Xinhai. Distributed Radar Main-lobe Interference Suppression Method Via Joint Optimization of Array Configuration and Subarray Element Number[J]. Journal of Radars, 2024, 13(6): 1355-1369. doi: 10.12000/JR24192
    [6]CHEN Zirui, JI Yifei, LIU Xiwang, ZHANG Yongsheng, DONG Zhen, CHEN Alei, LIU Weijian. Transient Interference Suppression Algorithm Based on Time Frequency Sparse Prior for Skywave OTHR[J]. Journal of Radars, 2024, 13(6): 1157-1169. doi: 10.12000/JR24188
    [7]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [8]WANG Rongqing, XIE Jingyang, TIAN Biao, XU Shiyou, CHEN Zengping. Integrated Jamming Perception and Parameter Estimation Method for Anti-interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2024, 13(6): 1337-1354. doi: 10.12000/JR24153
    [9]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [10]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [11]HAN Zhaoyun, CEN Xi, CUI Jiahe, LI Yachao, ZHANG Peng. Self-supervised Learning Method for SAR Interference Suppression Based on Abnormal Texture Perception[J]. Journal of Radars, 2023, 12(1): 154-172. doi: 10.12000/JR22168
    [12]GAI Jiyu, JIANG Wei, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. A Method for Interrupted-Sampling Repeater Jamming Identification and Suppression Based on Differential Features[J]. Journal of Radars, 2023, 12(1): 186-196. doi: 10.12000/JR22058
    [13]XIA Deping, ZHANG Liang, WU Tao, MENG Xiangdong. A Multiple Interference Suppression Algorithm Based on Airborne Bistatic Polarization Radar[J]. Journal of Radars, 2022, 11(3): 399-407. doi: 10.12000/JR21212
    [14]ZOU Kun, LAI Lei, LUO Yanbo, LI Wei. Suppression of Non-Gaussian Clutter from Subspace Interference[J]. Journal of Radars, 2020, 9(4): 715-722. doi: 10.12000/JR19050
    [15]LIU Pingyu, LYU Xiaode, LIU Zhongsheng, ZHANG Hanliang. Research on Co-channel Interference Suppression Method for Passive Radar Based on the Jiont Processing of Primary and Reference Channels[J]. Journal of Radars, 2020, 9(6): 974-986. doi: 10.12000/JR19047
    [16]HUANG Yan, ZHAO Bo, TAO Mingliang, CHEN Zhanye, HONG Wei. Review of Synthetic Aperture Radar Interference Suppression[J]. Journal of Radars, 2020, 9(1): 86-106. doi: 10.12000/JR19113
    [17]MENG Zhichao, LU Jingyue, ZHANG Lei. Forward-looking Multi-channel SAR Adaptive Identification to Suppress Deception Jamming[J]. Journal of Radars, 2019, 8(1): 82-89. doi: 10.12000/JR18081
    [18]Zhou Chunhui, Li Fei, Li Ning, Zheng Huifang, Wang Xiangyu. Modified Eigensubspace-based Approach for Radio-frequency Interference Suppression of SAR Image[J]. Journal of Radars, 2018, 7(2): 235-243. doi: 10.12000/JR17025
    [19]Li Yongzhen, Hu Wanqiu, Sun Dou, Li Zhongwei. Scheme for Polarization Detection and Suppression of TRAD[J]. Journal of Radars, 2016, 5(6): 666-672. doi: 10.12000/JR16115
    [20]Zhang Chi, Li Yue-li, Zhou Zhi-min. Wall Clutter Mitigation in Through-the-Wall Imaging Radar with Sparse Array Antenna Based on Independent Component Analysis[J]. Journal of Radars, 2014, 3(5): 524-532. doi: 10.3724/SP.J.1300.2014.14066
  • Cited by

    Periodical cited type(5)

    1. 王沙飞,朱梦韬,李云杰,杨健,李岩. 对先进多功能雷达系统行为的识别、推理与预测:综述与展望. 信号处理. 2024(01): 17-55 .
    2. 陈士超,魏靖彪,范俊,魏玺章,王泽朝,孙谦,刘明. 基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别. 兵工学报. 2024(S1): 43-50 .
    3. 赵娟娟. 基于统计模型的电子信息产业企业成长性分析. 中国电子商情. 2024(04): 64-66 .
    4. 苏海龙,水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计. 西安电子科技大学学报. 2023(06): 105-119 .
    5. 赵春雷,姚嘉嵘,李京效,戚张行,魏汇赞. 地基雷达空中目标识别方法研究综述. 空天预警研究学报. 2023(05): 313-320+334 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.4 %FULLTEXT: 13.4 %META: 75.5 %META: 75.5 %PDF: 11.1 %PDF: 11.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.3 %其他: 0.3 %Absecon: 0.3 %Absecon: 0.3 %China: 0.7 %China: 0.7 %India: 0.1 %India: 0.1 %Matawan: 0.0 %Matawan: 0.0 %Rochester: 0.0 %Rochester: 0.0 %United States: 0.1 %United States: 0.1 %[]: 0.5 %[]: 0.5 %上海: 1.1 %上海: 1.1 %上海市: 0.0 %上海市: 0.0 %东莞: 0.0 %东莞: 0.0 %中卫: 0.4 %中卫: 0.4 %丽水: 0.1 %丽水: 0.1 %乌鲁木齐: 0.1 %乌鲁木齐: 0.1 %佛山: 0.0 %佛山: 0.0 %信阳: 0.0 %信阳: 0.0 %兰辛: 0.0 %兰辛: 0.0 %包头: 0.0 %包头: 0.0 %北京: 20.3 %北京: 20.3 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %南京: 0.9 %南京: 0.9 %南京市: 0.0 %南京市: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.6 %南昌: 0.6 %台北: 0.0 %台北: 0.0 %台州: 0.3 %台州: 0.3 %合肥: 0.2 %合肥: 0.2 %吕梁: 0.0 %吕梁: 0.0 %吴忠: 0.0 %吴忠: 0.0 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.0 %和田: 0.0 %唐山: 0.2 %唐山: 0.2 %夏尔迦: 0.1 %夏尔迦: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %太原: 0.5 %太原: 0.5 %威海: 0.3 %威海: 0.3 %娄底: 0.0 %娄底: 0.0 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.3 %宿迁: 0.3 %岳阳: 0.0 %岳阳: 0.0 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.0 %常州: 0.0 %常德市: 0.0 %常德市: 0.0 %平顶山: 0.0 %平顶山: 0.0 %平顶山市叶县: 0.0 %平顶山市叶县: 0.0 %广州: 0.5 %广州: 0.5 %广州市天河区: 0.1 %广州市天河区: 0.1 %廊坊: 0.0 %廊坊: 0.0 %张家口: 0.6 %张家口: 0.6 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.0 %惠州: 0.0 %成都: 0.9 %成都: 0.9 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %曼谷: 0.0 %曼谷: 0.0 %杭州: 1.7 %杭州: 1.7 %株洲: 0.0 %株洲: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %榆林: 0.0 %榆林: 0.0 %武汉: 1.0 %武汉: 1.0 %沈阳: 0.2 %沈阳: 0.2 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %海西: 0.0 %海西: 0.0 %淮南: 0.1 %淮南: 0.1 %淮安: 0.0 %淮安: 0.0 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.0 %潍坊: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.1 %珠海: 0.1 %白银: 0.1 %白银: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.0 %福州: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %红河: 0.1 %红河: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 10.5 %芒廷维尤: 10.5 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.0 %苏州: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %衡水: 0.2 %衡水: 0.2 %衢州: 0.1 %衢州: 0.1 %西宁: 27.3 %西宁: 27.3 %西安: 0.5 %西安: 0.5 %贵港: 0.1 %贵港: 0.1 %赤峰: 0.0 %赤峰: 0.0 %运城: 0.1 %运城: 0.1 %郑州: 1.4 %郑州: 1.4 %重庆: 0.0 %重庆: 0.0 %金华: 0.1 %金华: 0.1 %长沙: 0.5 %长沙: 0.5 %阜阳: 0.0 %阜阳: 0.0 %阳泉: 0.1 %阳泉: 0.1 %青岛: 0.8 %青岛: 0.8 %黔南: 0.0 %黔南: 0.0 %齐齐哈尔: 0.4 %齐齐哈尔: 0.4 %其他其他AbseconChinaIndiaMatawanRochesterUnited States[]上海上海市东莞中卫丽水乌鲁木齐佛山信阳兰辛包头北京北京市北海南京南京市南宁南昌台北台州合肥吕梁吴忠呼和浩特和田唐山夏尔迦大连天津太原威海娄底安康宣城宿迁岳阳崇左巴中巴彦淖尔常州常德市平顶山平顶山市叶县广州广州市天河区廊坊张家口张家口市惠州成都成都市新都区扬州新乡无锡昆明曼谷杭州株洲格兰特县桂林榆林武汉沈阳洛阳济南海西淮南淮安深圳温州渭南湖州湘潭漯河潍坊玉林珠海白银石家庄福州秦皇岛红河纽约绵阳芒廷维尤芝加哥苏州蚌埠衡水衢州西宁西安贵港赤峰运城郑州重庆金华长沙阜阳阳泉青岛黔南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2091) PDF downloads(447) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint