Volume 7 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094
Citation: Mou Yuan, Wu Zhensen, Zhao Hao, Wu Guangling. The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets[J]. Journal of Radars, 2018, 7(1): 83-90. doi: 10.12000/JR17094

The Terahertz Scattering Analysis of Rough Metallic and Dielectric Targets

DOI: 10.12000/JR17094
Funds:  The National Natural Science Fundation of China (61571355)
  • Received Date: 2017-10-30
  • Rev Recd Date: 2017-12-13
  • Available Online: 2018-01-09
  • Publish Date: 2018-02-28
  • The terahertz scattering characteristics of metallic and dielectric rough targets is important for the investigation of the terahertz radar targets properties. According to the stationary phase theory and scalar approximation, if the radius of curvature at any point of the surface is much larger than the incident wavelength, and the wavelength is also much longer than the surface height function and Root-Mean-Square (RMS) surface slope, the coherent and incoherent scattering Radar Cross Section (RCS) of rough metallic and dielectric targets can be obtained. Based on the stationary phase approximation, the coherent RCS of rough conductors, smooth dielectric targets and rough dielectric targets can be easily deputed. The scattering characteristics of electrically large smooth Al and painted spheres are investigated in this paper, and the calculated RCS are verified by Mie scattering theory, the error is less than 0.1 dBm2. Based on lambert theory, it is demonstrated that the incoherent RCS is analyzed with better precision if the rough surfaces are divided into much more facets. In this paper, the coherent and incoherent scattering of rough Al and painted spheres are numerically observed, and the effects of surface roughness and materials are analyzed. The conclusions provide theoretical foundation for the terahertz scattering characteristics of electrically large rough targets.

     

  • loading
  • [1]
    Lee Y S. Principles of Terahertz Science and Technology[M]. New York: Springer, 2009: 1–9.
    [2]
    Piesiewicz R, Jansen C, Mittleman D, et al. Scattering analysis for the modeling of THz communication systems[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 3002–3009. DOI: 10.1109/TAP.2007.908559
    [3]
    Fletcher J R, Swift G P, Dai D C, et al.. Scattering in THz imaging[C]. Proceedings of the SPIE 5989, Technologies for Optical Countermeasures II; Femtosecond Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II, Bruges, Belgium, 2005, 5989: 598912. DOI: 10.1117/ 12.638007.
    [4]
    Duvillaret L, Garet F, and Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 739–746. DOI: 10.1109/2944.571775
    [5]
    Nagashima T and Hangyo M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry[J]. Applied Physics Letters, 2001, 79(24): 3917–3919. DOI: 10.1063/1.1426258
    [6]
    苏杰, 孙诚, 王晓秋. 一个适用于数值计算的金属色散模型分析研究[J]. 光电子·激光, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011

    Su Jie, Sun Cheng, and Wang Xiao-qiu. A metallic dispersion model for numerical simulation[J]. Journal of Optoelectronics·Laser, 2013, 24(2): 408–414. DOI: 10.16136/j.joel.2013.02.011
    [7]
    Ordal M A, Bell R J, Alexander R W, et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths[J].Applied Optics, 1988, 27(6): 1203–1209. DOI: 10.1364/AO.27.001203
    [8]
    华厚强, 江月松, 苏林, 等. 自由空间复杂导体目标的太赫兹RCS高频分析方法[J]. 红外与激光工程, 2014, 43(3): 687–693

    Hua Hou-qiang, Jiang Yue-song, Su Lin, et al. High-frequency analysis on THz RCS of complex conductive targets in free space[J]. Infrared and Laser Engineering, 2014, 43(3): 687–693
    [9]
    Li Z, Cui T J, Zhong X J, et al. Electromagnetic scattering characteristics of PEC targets in the terahertz regime[J]. IEEE Antennas and Propagation Magazine, 2009, 51(1): 39–50. DOI: 10.1109/MAP.2009.4939018
    [10]
    王瑞君, 邓彬, 王宏强, 等. 太赫兹与远红外频段下铝质目标电磁特性与计算[J]. 物理学报, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102

    Wang Rui-jun, Deng Bin, Wang Hong-qiang, et al. Electromagnetic scattering characteristic of aluminous targets in the terahertz and far infrared region[J]. Acta Physica Sinica, 2014, 63(13): 134102. DOI: 10.7498/aps.63.134102
    [11]
    Jansen C, Priebe S, Möller C, et al. Diffuse scattering from rough surfaces in THz communication channels[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(2): 462–472. DOI: 10.1109/TTHZ.2011.2153610
    [12]
    Nam K M, Zurk L M, and Schecklman S. Modeling terahertz diffuse scattering from granular media using radiative transfer theory[J]. Progress in Electromagnetics Research B, 2012, 38: 205–223. DOI: 10.2528/PIERB11102304
    [13]
    Sundberg G, Zurk L M, Schecklman S, et al. Modeling rough-surface and granular scattering at terahertz frequencies using the Finite-Difference time-domain method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3709–3719. DOI: 10.1109/TGRS.2010.2048717
    [14]
    Jansen C, Krumbholz N, Geise R, et al.. Scaled radar cross section measurements with terahertz-spectroscopy up to 800 GHz[C]. Proceedings of the 3rd European Conference on Antennas and Propagation, Berlin, 2009: 3645–3648.
    [15]
    聂雪莹, 项飞荻, 黄欣, 等. 金属平板的太赫兹雷达散射截面测量[J]. 激光技术, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012

    Nie Xue-ying, Xiang Fei-di, Huang Xin, et al. Measurement of terahertz radar cross sections of metal plates[J]. Laser Technology, 2016, 40(5): 676–681. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.012
    [16]
    杨洋, 刘兵, 张镜水, 等. 粗糙金属表面的高频太赫兹散射特性[J]. 激光与红外, 2014, 44(8): 922–926

    Yang Yang, Liu Bing, Zhang Jing-shui, et al. Influence of rough metal surface on the scattering properties of terahertz frequency[J]. Laser&Infrared, 2014, 44(8): 922–926
    [17]
    杨洋, 景磊. 金属介电常数对雷达目标散射截面的影响[J]. 激光与红外, 2013, 43(2): 155–158

    Yang Yang and Jing Lei. Impact of the metal permittivity on radar target scattering cross section[J]. Laser&Infrared, 2013, 43(2): 155–158
    [18]
    Ulaby F T, Moore R K, and Fung A K. Microwave Remote Sensing: Active and Passive. Volume II: Radar Remote Sensing and Surface Scattering and Emission Theory[M]. Norwood: Artech House, Inc., 1982: 304–307.
    [19]
    Wu Z S and Cui S M. Bistatic scattering by arbitrarily shaped objects with rough surface at optical and infrared frequencies[J]. International Journal of Infrared and Millimeter Waves, 1992, 13(4): 537–549. DOI: 10.1007/BF01010711
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2024) PDF downloads(443) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint